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AN APPLICATION OF BIN-PACKING
TO MULTIPROCESSOR SCHEDULING*

E. G. COFFMAN, JR.," M. R. GAREY, AND D. S. JOHNSON*

Abstract. We consider one of the basic, well-studied problems of scheduling theory, that of
nonpreemptively scheduling n independent tasks on m identical, parallel processors with the objective
of minimizing the "makespan," i.e., the total timespan required to process all the given tasks. Because
this problem is NP-complete and apparently intractable in general, much effort has been directed
toward devising fast algorithms which find near-optimal schedules. The well-known LPT (Largest
Processing Time first) algorithm always finds a schedule having makespan within 4/3 1.333 of
the minimum possible makespan, and this is the best such bound satisfied by any previously published
fast algorithm. We describe a comparably fast algorithm, based on techniques from "bin-packing,"
which we prove satisfies a bound of 1.220. On the basis of exact upper bounds determined for each
m =< 7, we conjecture that the best possible general bound for our algorithm is actually 20/17
1.176 .
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1. Introduction. One of the fundamental problems of deterministic schedul-
ing theory is that of scheduling independent tasks on a nonpreemptive multi-
processor system so as to minimize overall finishing time [1, Chap. 5], [2], [3].
Formally, we are given a set {T1, T2," , Tn} of tasks, each task T having
length l(T), and a set of m _-> 2 identical processors. A schedule in this case can be
thought of as a partition (P1, P2, , P,,) of ff into rn disjoint sets, one for
each processor. The ith processor, 1-< i-< m, executes the tasks in Pi. (Since the
tasks are assumed to be independent, we may restrict our attention to schedules in
which no idle time is inserted between consecutively executed tasks. For the same
reason, the particular sequence in which tasks are executed on a processor is
unconstrained and irrelevant for this problem.) The finishing time for the schedule

is then given by

f() max l(Pi)
<--i<=rn

where for any X
_ , l(X) is defined to be YTxl(T).

An optimum m-processor schedule * is one that satisfies f(*)-<f() for
all partitions of - into rn subsets. Since there are only a finite number of
possible partitions, such an optimum schedule must exist, and we let -*,*, f(*)
denote its finishing time.

The problem of finding an optimum schedule appears to be quite difficult in
general. All known algorithms require computation time that grows exponentially
with the number of tasks. This is not surprising, however, in light of the fact that
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this problem is known to be "NP-complete" and hence computationally "equival-
ent" to a host of other notoriously intractable problems [8]. These computational
difficulties force us to lower our sights somewhat and seek instead reasonably
efficient algorithms that find "near-optimal" schedules.

Let A be an algorithm that, when given S and m, constructs a partition
iA [,r m] of 3 into m subsets. We shall use FA[ff, m] to denote the finishing time
of A[3", m], i.e., FA[3", m] =f(A[ff’, m]). The m-processor performance ratio
for A is then defined by

R,,,(A) sup {F [’, m]
all task sets -].

We would like to find an efficient algorithm A such that R,,, (A) is as close to 1 as
possible, for all rn ->_ 2 (the problem is trivial for rn 1).

In [2], [3], R. L. Jraham describes a sequence A1, A2," of algorithms such
that limi_, R,(Ai)= 1 for all rn >-2. Unfortunately these algorithms require
computation time growing exponentially with rn and become more and more like
exhaustive search as the guaranteed accuracy improves. (Sahni presents similarly
behaved algorithms in [7]). The best of the previously published polynomial-time
algorithms, also in [2], [3], is the LPT algorithm, which satisfies

R(LPT)
4 1
3 3m

In this paper we present a simple iterative algorithm, based on ideas from bin
packing [5], [6], which substantially improves on this worst-case performance and
also seems to outperform LPT on the average.

In the next section we discuss the bin-packing problem and the well known
first fit decreasing algorithm for it. We then describe the new results about this
algorithm which have motivated the design of our scheduling algorithm and
helped us produce upper bounds on its worst case behavior. The scheduling
algorithm itself, called MULTIFIT, is then presented in 3, along with our results
about it. The remainder of the paper, 4 and 5, are devoted to the proofs of the
new bin-packing results.

2. Bin-packing. Our scheduling algorithm is based on the bin-packing
algorithm first fit decreasing (abbreviated FFD). The bin-packing problem is in a
sense the dual problem to the scheduling problem defined above. Given as
before, and a bound C, a packing is a partition (P1, P2,""", P,,,) of such
that l(P)<= C, 1 <= <= m. The tasks T are here thought of as items with size l(T),
which are placed in bins of capacity C. Our goal is to minimize the number m of
bins used in the packing. We let OPT[, C] denote this minimum possible value
of m. As before, the problem of finding an optimum packing appears to be
intractable. The algorithm FFD is an attempt to find a near-optimum packing
quickly. It constructs a packing )FFD[’, C] as follows.

1The algorithm described here is also an improvement, both in worst-case behavior and
experimental average case behavior, over the earlier version described in [4].



AN APPLICATION OF BIN-PACKING 3

First, the items in 3- are put in "decreasing order," that is, they are re-indexed
so that l(T1)>-l(T2)>= >-l(Tn). Then a packing is built up by treating each
item in succession, and adding it to the lowest indexed bin into which it will
fit without violating the capacity constraint. More formally, we might describe the
packing procedure as follows"

1. Set Piq, l=<i=<n, and]<-l.
2. Set k <-- min {i => 1: l(Pi)+ l(Ti)<= C}.
3. Set Pk -Pk J{T.}, ]j+ l.
4. If/’ =< n, go to 2. Otherwise, halt.
Let us denote by FFD[, C] the number m of nonempty bins in FFO[3-, C].

It was proved in [5], [6] that for all - and C

FFD -, C] <=.. OPT[, C] + 4.

In the following, however, we shall be interested in a different question
about FFD: namely, "given - and m, how large does C have to be so that
FFD 3, C] <- m ?"

This question will of course have many different answers, depending on 3-
and m. We are interested, however, in finding an answer that works for all 3- and
m. To obtain such an answer, we shall ask "how large does C have to be, in terms of
*,*,, so that, for all 3- and m, FFD[3-, C] is guaranteed to be m or less?"

Recalling our definition of 3*,, from 1, we note that, in terms of the bin
packing problem,

3"*,, min {C: OPT[3-, C] <= m }.

Thus 3-,,* is the smallest bin capacity which allows 3- to be packed into m or fewer
bins. We now define

r,, inf {r: for all , FFD[3-, r3-*,,,] <-_ m}.

The intent of this definition is that r,, be the least "expansion factor" by which
the optimum bin capacity should be enlarged to guarantee that FFD will use no
more than m bins. However, the definition allows for the possibility that, while
expansion factors arbitrarily close to r,, will work, the limiting value r,, itself does
not. That this cannot happen (and hence that "inf" could have been replaced by
"min") is proved as part of the following "monotonicity lemma."

LEMMA 2.1. For every 3 and any r >= r,,, FFD 3-, r3-*,,,] <= m.
Proof. We first show that FFD[3-, r,,3"*,,] <= m for every 3-. Suppose, to the

contrary, that 3 is a set for which FFD[3", r,,3-*,,] > m. Consider the application of
the FFD algorithm to 3-with capacity C or.r,,g/,,. Each time the algorithm places a
particular item in a bin other than the first bin, this is because the size of that item
would have caused the total size in each lower-indexed bin to exceed C by some
positive amount. Let 6 be the least such excess over all items and all such
"unsuccessful" attempted placements. Then, for every capacity C’, C_-< C’<
C + 6, exactly the same packing will be obtained with bin capacity C’ as with C,
and hence FFD[3-, C’] > m. However, by the definition of r,, we know that there
exist ratios r arbitrarily close to r,, for which FFD[3-, r3-*] <= m. Choosing such an
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r with r-,,* < C + 6, we obtain a contradiction to the assumed counter-example,
proving that FFD[-, r,.-*.,] <-m.

Now suppose that, for some and a > 1, FFD[-, ar,.-*m] > m. We shall use
to construct a set for which FFD[, r,.*..] > m, contradicting what we have

just proved. Consider any optimal packing of - into m bins of size -*m. Enlarge
the capacity of each optimal bin to a-*., and augment - to form - by adding new
items, each smaller than the smallest item in -, so that every enlarged bin becomes
completely filled. Thus we have that *., a*.,. Furthermore FFD[-, ar,,,*.,,] >
m because the (m + 1)st bin will be started before any of the new items are placed.
But then we have FFD[, r,,,’*m] > m, which is the desired contradiction. The
lemma follows.

Thus rm is indeed the desired minimum "expansion factor" and every
capacity greater than r,.-*,, will also work, so that we need not be concerned about
possible anomalies, By determining the values of r,., m => 2, we will therefore be
obtaining general answers to the question "how large does C have to be, in terms
of _or* 9"

Table 1 gives the best upper and lower bounds we have discovered for r,. As
can be seen, we know the exact value of r, for 2 <= m _<- 7, and our upper and lower
bounds are quite close for m => 8. Since r4 rs r6 r7 , and the best lower
bound we have been able to find for m > 8 is also 20

iv, we conjecture that in fact
2Orm r for all m >= 4.
The proofs of the lower bounds cited in Table 1 are straightforward, since all

that is required is an example such that FFD(, C) > m whenever C< (lower
bound). *,*,. These lower bound examples for m 2, m 3, and m->4 are
illustrated in Figs. 1, 2, and 3. In each case the items are represented by rectangles
which are labeled by their sizes, and the bins by stacks of items.

The proofs of the upper bounds for m <= 7 involve case analyses which grow
more and more complicated as m increases. These proofs have been omitted at
the suggestion of the referees, but a full version of this paper containing them is
available from the authors. We shall limit ourselves here to proving the general
1.220 upper bound, which in fact holds for all m => 2. The proof will be postponed
until 4 and 5, however, so that we may first see how we incorporate FFD into a
scheduling algorithm, and how we use the values of r,, to bound the worst-case
behavior of that algorithm.

TABLE
Bounds on r,,

15Upper bound on r.,

15Lower bound on r,.

4, 5, 6,

20
--q 1.220

20 20 1.176.17 17

3. The algorithm MULTIFIT. In the light of the results described in the
preceding section, one might propose the following scheduling algorithm: Given

" and m, set C=rm" *m and run FFD on and C. By definition of r,,,
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)FFD[’ C] will be made up of m or fewer sets, and hence will correspond to a
valid schedule for - and m with finishing time C r,, -*,,, or less, which would
certainly be "near-optimal" in light of our bounds on r,,.

Unfortunately this approach depends on knowing the value of .-*,, in
advance, and it is just as difficult to determine * as to find an optimum schedule.
A second idea would be to make repeated trials with FFD and different values of C
until we find the least C for which FFD[, C] <- m, and take the schedule resulting
from this bin capacity. If we assume that all tasks have integer lengths, there are
two natural ways to attempt this. One would be to try each integer C in turn,
starting from some obvious lower bound on *, until we found one for which
FFD(, C)<-_ m; this would be the desired minimum value of C. Unfortunately,
this procedure might require a large number of repeated trials of FFD and would
be very costly in terms of running time. A common way of reducing the number of
trials in such a search is to use binary search: Start with known upper and lower
bounds on C, and at each step run FFD for a value of C midway between the
current upper and lower bounds. If FFD[, C] > m, C becomes the new lower
bound and we continue; if FFD[-, C] <- m, C becomes the new upper bound. At
each step we thus halve the potential range and so we should narrow in on the
minimum value of C quite rapidly.

Unfortunately, binary search will only be guaranteed to do this if for every
C1 < C2, FFD[Sr, C1] rn implies FFD[3-, C2] m. Although this general
monotonicity property does hold for rn 2, it fails for rn _-> 3. Figure 4 demon-
strates that there exists a list 3- such that FFD[3-, 60]= 3 but FFD[3-, 61] =4.
Thus binary search is not guaranteed to find the least C such that FFD[3-, C] <-_ m.
However, recall that Lemma 2.1 tells us that binary search will be guaranteed to
narrow in on a capacity C_-< r,,3-*,,. Therefore, binary search can still be used to
find a near-optimum schedule, and this is the approach taken in our algorithm
MULTIFIT.

44i

24

___l

P P2

17 17

44

P PI PZ P5

FIG. 4. 3-suchthatFFD[, 61]>FFD[3-, 60]

We begin our description of MULTIFIT by specifying the initial lower and
upper bounds, CL and Cu, used in the binary search. These are given in the
following two lemmas.
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LEMMA 3.1. Let CL[gr, m]=max{(1/m)l(), maxi{/(T/)}}. Then for all
C< CL[r, m], FFD[-, C]>m.

Proof. This follows from the obvious fact that *,*, => CL[T, m ].
LEMMA 3.2. Let Ct[’, m]=max{(2/m)l(T), maxi {/(T/)}}. Then for all

C >= Cer[T, m ], FFD[Sr, C] <= m.
Proof. Suppose C-> Ctr[-, m] and FFD[, C] > m, and assume without loss

of generality that/(T1) >/(T2) >. >_- l(T,), that is,- is indexed in nonincreasing
order by item size. Let T/be the first item to go in bin P,,+I under FFD. Clearly we
must have ] >= m + 1. If (T/) > C/2, then since is indexed in nonincreasing order
(T)> C/2, 1 =< _-< m + 1. This implies

mC mCu[5r, m]
t(o’)>

2 2
I(-),

a contradiction. If on the other hand l(T,.)-< C/2, then by the fact that T, did not fit
in any of the first m bins, each must have contained items whose total size
exceeded C/2, and we again have/(-)> mC/2 and a contradiction.

We are now prepared to give a precise description of MULTIFIT. MUL-
TIFIT takes as input a task set -, a number of processors m, and a bound k on the
desired number of iterations. Its first step is to put - into nonincreasing order, so
that all subsequent applications of FFD will not have to reorder themselves. It
then proceeds by binary search for the desired number of iterations as follows:

1. Set CL(O) CL[’, m];
CU(O),- Ct,[r, ml;
I1.

2. If I> k, halt.
Otherwise, set C [CL(I- 1)+ CU(I- 1)]/2.

3. If FFD[, C] <- m, set CU(1) C;
CL (I) CL(I- 1);
II+1;
and go to 2.

4. If FFD[-, C] > m, set CL(I) C;
CU(I) CU(I- 1);
II+1;
and go to 2.

The final value CU(k) gives the smallest value of C found for which
FFD[-, C] <- m. Either the corresponding schedule has been generated along the
way (and could have been saved, storage space permitting), or else it has not yet
been generated because CU(k)= Ct[5r, m ]. In either case, the schedule can now
be generated by a single additional application of FFD, and this schedule is the
output of MULTIFIT.

Before beginning our analysis of the worst case behavior of MULTIFIT, let
us first examine how long it takes to run.

We first note that the application of FFD referred to in steps 3 and 4 need not
be run to completion if FFD[-, C] > m, but can be halted as soon as the first item



8 E. G. COFFMAN, JR., M. R. GAREY AND D. S. JOHNSON

enters bin P,,+a. This, plus the fact that is already in decreasing order, means
that each application of FFD need only take O(nrn) steps (and can actually be
implemented to take O(n log rn) steps using techniques described in [5]). Thus
the total time for MULTIFIT, including the initial sorting of - by size and the k
iterations of FFD is O((n log n)+ knrn)or O((n log n)+ (kn log rn)), depending
on implementation. This is to be compared to the time required to run the LPT
algorithm of [2], [3]. LPT involves the same initial sorting step, followed by a
packing procedure which is quite comparable to one execution of FFD’s packing
procedure, and also can be implemented to run in either O(nm) or O(n log rn)
time. Thus LPT does have a slight advantage over MULTIFIT in timing when
k > 1. However, as we shall see, there is apparently no reason to choose k > 7 in
applying MULTIFIT, and thus for large values of n, both algorithms will have
execution times dominated by the time for the initial sort, and hence will be
comparable. Of cours,e, for small values of n both algorithms are so fast as to make
matters of relative timing purely academic.

We now turn to the question of how the two algorithms compare as to the
quality of the schedules they produce. We have already presented in 1 the main
result about the worst-case behavior of LPT. For MULTIFIT, our main result is
presented in Theorem 3.1, where MF(k) stands for the version of MULTIFIT in
which k is the specified number of iterations.

THEOREM 3.1. For all m >-2, k >-O, R,,, (MF[k])-< r, + (1/2)k.
Proof. Suppose m and k are such that Rm(MF[k])> r,, + (1/2)k. Recall from

the definition of Rm(A) in 1 that this means there exists a - such that when
MF[k] is applied to Y and m, the resulting schedule has finishing time exceeding
(r,, + (1/2)k). ff,. Since this finishing time cannot exceed the final value CU(k), we
thus have

(3.1) CU(k) >- (r,,, + (1/2)").
Consider the final value CL(k ). By the process of binary search, CU(k)- CL(k )
(1/2)k. (Cuff, rn]--CL[, m])<--(1/2)k" *,,, since Cuff, m]=<2CL[", m] and
CL[T, m] =< if*,,. Thus we must have

(3.2) CL(k)>-r,. -*,,.

But then, since r,, > 1 for rn ->2, this means that CL(k)> CL[-, m]. This implies
that FFD must have been performed with bin capacity CL(k) at some point during
the operation of the algorithm, and yielded FFD[5r, CL(k)] > m. However, this is
impossible as, in light of (3.2), it violates Lemma 2.1. I3

Combining Theorem 3.1 with the bounds on r,, presented in Table 1, we
present in Table 2 a comparison of the worst case behavior of MF[k] and LPT for
various values of m and k. The lower bound on R,,(MF[k]) for all k which is
presented in the last row of the table follows from the same examples (Figs. 1, 2,
and 3) used to provide lower bounds on r,,.

From the table it can be seen that MF[5] has better worst-case behavior
than LPT for all rn => 3 and MF[6] and MF[7] are better for all m _-> 2. Further
improvement is possible by choosing larger values of k, but for k 7 the bound is
already quite close to the limiting value, except for the cases where rn -> 8 and our
bounds on r,, are not tight. If our conjecture that r,, 7 for all m -> 8 is true, then
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TABLE 2
A comparison ofworst case bounds

R,.(LPT)

Rm(MF[5]) <-

R,(MF[6I) <-

R,(MF[7]) <-

R,(MF[k]) >_-

4

1.167 1.222 1.250

1.174 1.185 1.208

1.158 1.169 1.192

1.151 1.162 1.184

1.143 1.154 1.176

1.267

1.208

1.192

1.184

1.176

1.300

1.251

1.236

1.228

1.176

1.327

1.251

1.236

1.228

1.176

the upper bounds on R,,(MF[k]) for m 10 and m 50 would be the same as
those for m 4 and m 5.

We remind the reader that the figures in Table 2, attractive as they are, are
only worst-case bounds. In practice the algorithms can be expected to do much
better. To get a feel for how much improvement might be expected, and how the
algorithms might compare as to average-case behavior, three limited simulation
tests were run, each covering 10 task sets with m 10. In Test 1, each task set
consisted of 30 tasks with sizes chosen independently according to a uniform
distribution between 0 and 1. In Test 2 each task set again consisted of 30 tasks,
this time with sizes being the sum of 10 independent choices from the uniform
distribution, to simulate a normal distribution. For both these tests CL[, m] was
taken as an estimate of ff*, and since this could well have been an under-estimate,
the values for FA[’, m]/*,, might be somewhat inflated. To circumvent this
difficulty, in Test 3 we generated our task sets so that * was known in advance.
We started with 10 tasks of size 1, divided each independently into 2, 3, or 4
subtasks, whose relative sizes were also randomly chosen. consisted of the
approximately 30 subtasks so constructed, and we automatically had if1*0 1. (As
a matter of curiosity, we might note that in no case did any of the algorithms
reconstruct an optimum schedule, though all came close.)

Our results are summarized in Table 3, which for each test gives the average
value of FA[-, m]/-*m( or our possibly inflated estimate of it) for LPT, MF[7],
and MF[7]’, where the last-named algorithm is the earlier and inferior version of
MULTIFIT described in [4].

TABLE 3
Average values OfFA[, m]/

TEST

LPT
MF[7]
MF[7]’

1.074 1.023 1.051
1.024 1.023 1.016
1.033 1.065 1.021



10 E. G. COFFMAN, JR., M. R. GAREY AND D. S. JOHNSON

Due to the limited and somewhat arbitrary nature of these simulations, one
should not be prepared to draw far-reaching conclusions from them. However, we
might note that, although MF(7) and LPT came out in a dead heat in Test 2, the
improvement provided by MF[7] over LPT is clear in the other two tests, where in
fact MF[7] found a better schedule in 19 out of the 20 cases, the remaining case
being a tie. It also might be noted that MF[7] always found its ultimate schedule by
the 6th iteration, so that MF[6] could just as well have been used, for a slight
saving in running time.

4. Upper bound proofs: Preliminaries. The problem of proving an upper
bound on r,, is considerably simplified if we can focus our attention on a
"normalized" situation. In this section we show how this can be done, and thus set
up a framework for such proofs. We illustrate this framework by using it directly to
prove an easy upper ,bound of r, _-< 5/4 1.250 for all m _-> 2. In the next section
we show how more sophisticated analysis can yield a 1.220 general bound. The
same basic framework can also be used as a starting point when proving the exact
upper bounds for m <_-7 summarized above in Table 1.

In what follows we shall be dealing primarily with sets ff of items which are
ordered by size. It is therefore convenient to define formally a list to be an ordered
set ={T1, T2,’", T,} such that l(T)>-_l(T2) >-.. .>=l(T,). For any pair of
integers p _-> q, we define a (p/q)-counterexample to be a list and number M of
bins such that

FFD(-, p)>M>= OPT(, q).

Thus, though it is possible to pack the items of into M bins of capacity q, FFD is
unable even to pack them into M bins of the larger capacity p. It is easy to see that
r, > p/q implies the existence of a (p/q)-counterexample with M- m.

A minimal (p/q)-counterexample consists of a list - and number M of bins
such that all of the following hold:

(a) - and M form a (p/q)-counterexample;
(b) For all lists " satisfying (a), I"1 >--I’[;
(c) For all m, 1 <-m < M, r,, <-p/q.

Thus a (p/q)-counterexample is minimal if there exists neither a (p/q)-
counterexample for the same number of bins having fewer items nor a (p/q)-
counterexample for a smaller number of bins. It is not difficult to see that the
existence of a (p/q)-counterexample implies the existence of a minimal (p/q)-
counterexample. It follows that if r,, >p/q, there must exist a minimal (p/q)-
counterexample having M_-< m.

In a normalized proof of an upper bound r on r,, we assume the existence of a
minimal (p/q)-counterexample, for convenient p and q satisfying r-p/q, and
derive a contradiction from that assumption. In such proofs we will be able to use
many general properties which must be obeyed by such a minimal counterexam-
ple. We now turn to the task of deriving some of these properties.

We shall assume for the rest of this section that the list - and number m of
processors provide a minimal (p/q)-counterexample. Our first observation is an
immediate consequence of the definitions.
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LEMMA 4.1. " and m must satisfy the following:
(a) FFD(, p)= m + 1 and OPT(, q)- m;
(b) All items on -, except the last, are assigned to the first m bins by FFD.
In all that follows, we shall let (P1, P2," , Pro+l) be the FFD packing of- into bins of capacity p and * (P*, P2*," ’, P*) be the optimal packing of

into bins of capacity q. For subsets X and Y of if, we shall say that Xdominates Y
if there is a 1-1 mapping f: YX such that/(y)-</(f(y)) for all y Y. Using this
concept and the following lemma, we can draw some interesting conclusions about

and .*.
LEMMA 4.2 (cancellation lemma). Let I, J

_
{1, 2,..., m / 1} be such that

III= IJI k > O. Then the set X ixPi cannot dominate the set Y iJP.
Proof. Suppose X dominates Y, and let f: YX be the mapping involved.

Consider the list -’=-X obtained by deleting the items of X from ff while
retaining the same relative ordering of the remaining items. Since we have deleted
exactly those items which were contained in the bins P, /, the FFD packing of
if’ will be identical to that for except that those bins will be missing. Thus
FFD(’, p)= m-k / 1. Now consider the packing *, and construct a new
packing ’ by interchanging each item y Y with its image f(y). Since /(y)-<
/(/(y)), we thus must have l(P)<-_ l(P*i) for all i J, 1 _-< _-< m. Moreover, bins P,
j J, contain only items of X (although they may have/(;)> q). Thus by deleting
all elements of X from ’, we obtain a packing of 3" into at most m- k bins of
capacity q. Hence OPT(3", q)<-_ m k, and since m k < m, this contradicts the
presumed minimality of 3- and m. 71

LEMMA 4.3. 1*1>_-- 3, l<_--i<_--m.

Proof. Suppose first that P {x}. Let/" be such that x Pi. Then Pi domi-
nates P*, contrary to Lemma 4.2. Suppose next that P* {x, y }, where x precedes
y in the (decreasing) ordering of if’. Suppose x Pi and y Pk in the FFD packing.
If k, then Pi dominates P*, a contradiction. Suppose/" < k. Then the fact that y
went to the right of the bin containing x, even though l(x)+/(y)-<_q <p, means
that Pi must have contained a second item z, in addition to x, when y was assigned.
Thus z preceded y in 3" and so (z ) >-_ (y ), and Pi dominates P*, again a
contradiction. Finally, suppose > k. Then, since y follows x in 3-, it cannot be the
first item to go in Pk call that first item z. Since z is the first item in a bin to the left
of the one containing x, z must have preceded x in 3" and hence l(z)>-_l(x).
Therefore Pk dominates P/*, giving us our final contradiction.

LEMMA 4.4. ]Pil>-_ 2, 1 _-< -< m.
Proof. Suppose P={x}, for some i, l<-i<-m. Then we must have

l(x)+/(T)> p, where T, is the last, and hence smallest, item in 3. But this means
that l(x)+/(y)> q for all y s 3, so if P’ is the optimal bin containing x, [P’[ 1,
contrary to Lemma 4.3.

The next lemmas obtain bounds on the item sizes. Let a l(T,) denote the
size of the smallest item.

LEMMA 4.5. a > (m/(m 1))(p q).
Proof. For 1 =< <- m, since Tn did not fit in P, we have l(P)+ a > p. Hence

(Pi) + ma > rap.
i=1
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However, since all items are contained in m bins of capacity q in *,

Z l(Pi)+t <mq.
i=1

The lemma follows. E!
LEMMA 4.6. For all T , (Ti) <- q 2a.
Proof. This follows immediately from Lemma 4.3, which implies that T must

be in a bin with at least two other items in *.
At this point, we can already illustrate the use of these lemmas by proving an

easy upper bound on r,,,.
THEOREM 4.1. For all m >-2, rm <-_ 5/4.
Proof. Suppose - and m provide a minimal (5/4)-counterexample. By

Lemma 4.5, l(T,,) a > 1. Thus no optimal bin can contain more than three items.
By Lemma 4.3 this means that [P*[ 3, l_<-i_-<m, and hence I-[ 3m. By
Lemmas 4.1 and 4.4, this means that there must be a Pi, 1 _-< _-< m, with [Pi[ 2. Let
Pi {x, y}. Since Tn did not go in P, we must have l(x)+/(y)+ a > 5. Thus by
Lemma 4.3 we must have

5 < 2(q 2a)+

This implies a < 1, a contradiction. El
In order to prove stronger results, we will need to take a more detailed look at

the FFD packing of our minimal (p/q)-counterexample. Let us label the items
of according to their assigned locations in as follows: If Ie, I- k, then the
elements of Pi are denoted by P[j], 1 <-j <-k, in the order in which they were
assigned to P. P 1] is the first item assigned (the earliest in the ordering of ), and
so on. A bin P, 1 =< -< m, is a k-bin if it contained exactly k items when first an
item was assigned to a bin to its right (i.e., when P/I[1] was assigned). This is in
distinction to a k-item bin, which is merely a bin Pi, 1 =< <= m, with Ie, I- k. The
base level b(Pi)of a k-bin Pi is defined as Y--1 l(Pi[j]), whereas the final level, or
simply level, is just l(P). If P is a k-bin, we call the items P[j], 1 <= j <= k, regular
items, and all P[j], j > k, are called fallback items. A fallback k-bin is a k-bin Pi
such that [P] > k, that is, one that contains fallback items. A regular k-bin is one
which contains no fallback items. (Observe that none of these definitions applies
to bin Pm/, a bin which, being last, is atypical and will not enter very strongly into
our arguments.)

The final lemma of this section gives a list of properties that follow from these
definitions and the manner in which FFD operates.

LEMMA 4.7. In (P, P2, ", Pro+l),
(a) IfP[j] is a regular item, then it precedes in all Pi,[j’] with < i’ <= m + 1

and 1 <-_ j’ <-]Pg’I, and all P[j’] with j < j’ <-]P
(b) If 1 <= k < k’, all k-bins are to the left of all k’-bins.
(c) If {P: s<=i<=t} is the set of k-bins, then b(P)>=b(P/) >-.. ">=b(Pt)>

(k/(k + 1)) p.
(d) For each k > 1, all regular k-bins are to the left of all fallback k-bins.
Proof. Parts (a), (b), and (c) are all straightforward consequences of the fact

that - is ordered by decreasing item size. We derive (d) from (b) and (c) by
contradiction. Suppose P is a fallback k-bin, Pi is a regular k-bin, and j > i. Then,
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since Tn, the smallest item, went in a bin to the right of Pj, we have b(Pj)+ l(Tn)=
l(Pi)+l(T,)>p. But we also have l(Pi[k + 1])=>/(T,) and, by (c), b(Pi)>=b(Pj).
Thus l(P)>=b(P)+l(P[k + 1])>=b(Pi)+l(T,)>p, a contradiction. V1

We conclude from Lemma 4.1, Lemma 4.4, and Lemma 4.7, that if is the
FFD packing for a minimal (p/q)-counterexample, it consists of a (possibly
vacuous) sequence of fallback 1-bins, followed by a (possibly vacuous) sequence
of regular 2-bins, followed by a (possibly vacuous) sequence of fallback 2-bins,
followed by a (possibly vacuous) sequence of regular 3-bins, and so on, with the
last nonempty bin P,,/I containing the single item T,, which is the last and hence
smallest item on .

In 5 we expand on this picture, using information derived from the
particular values of p 122 and q 100 to derive a general bound r,, <-1.220.
More specific arguments, using values of rn as well as those of p and q, are required
when proving the exact upper bounds of Table 1.

5. The general upper bound.
TI-IEOREI 5.1. Rt <= 1.22 for all rn >-2.
Proof. Suppose the theorem is false. Then there exists a minimal (122/100)-

counterexample, provided say by -= {T1, T2,""", Tn} and m. We first derive
some constraints on the sizes of the items in -.

By Lemma 4.5, we know that for some A > 0,

(5.1) /(T.)= 22 +A.

Since T, is the smallest item, this means that all items are at least this large.
Furthermore, by Lemma 4.6 we can conclude that

(5.2) /(T)<= 56-2A, l<-i<=n.

Our final observation gives us an upper bound on A. Suppose A > 4. Then every
item must have size exceeding 26, and so no bin in *, with its capacity of 100, can
contain more than 3 items. By Lemma 4.3, this means that all bins in * contain
exactly 3 items, and n 3m. On the other hand, if a bin P in , 1 =< i-< m,
contained two or fewer items, we would have (Pi) + T, ) -<
2(56-2A)+(22+A)= 134-3A<122, which would violate the FFD packing
rule. Thus every one of the first rn bins of contains at least 3 items and so
n => 3m + 1, a contradiction. We thus conclude that

(5.3) 0<a-<4.

The remainder of the proof consists of a weighting argument in which each
item is assigned a "weight" based on its size and where it was placed in the FFD
packing . This weighting will have the property that each P, 1-< <= m, will
contain items whose total weight is at least 100- A. In addition, except for a very
limited number of bins, in the optimal packing* each bin will contain weight no
more than 100- A. A conservation-of-total-weight argument will then allow us to
contradict the assumption that we had a counterexample.

We group the items of - into seven classes based on the structure of as it
was described at the end of the previous section. Since all items have size less than
56 by (5.2), there are no fallback 1-bins in . Since all items exceed 22 in size by
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(5.1), there are no bins in which contain more than 5 items. We classify items as
to which of the remaining possible bin types contain them, and as to size. The
observations made concerning item sizes will follow from the fact that is an FFD
packing, and/(Pi)> 122-/(Tn)= 100-A for all i, 1 -<i -<m.

The two items in each regular 2-bin, except the last (rightmost) such bin, both
exceed (100-A)/2 in size, and are type-X2. If both items in the last regular 2-bin
exceed (100-A)/2 in size, they are also type-X2; otherwise they are both type-Z.

The two regular items in each fallback 2-bin must total at least 2(122)/3 in
size, by Lemma 4.7(c), and are type-Y2.

The three items in each regular 3-bin, except possibly the last one, all exceed
(100-A)/3 in size and are type-X3. If all three items in the last regular 3-bin exceed
(100-A)/3 in size, they are also type-X3; otherwise all three are type-Z.

The three regular items in each fallback 3-bin must total at least 3(122)/4 in
size, and are type-Y3.

The four items in each regular 4-bin, except possibly the last one, all exceed
(100-A)/4 in size and are type-X4. If all four items in the last regular 4-bin exceed
(100-A)/4 in size, they are also type-X4; otherwise all four are again type-Z.

The remaining items are all of size at least 22 + A and are type-Xs. These
consist of Tn, all the fallback items in fallback 2- and 3-bins, and all the items in
5-item bins.

Now we are prepared to define our weighting function. The weight of an item
depends on A, the item’s type, and the item’s size. These dependencies are
described in Table 4, where denotes the size of the item.

TABLE 4
Item weights w Ti

Item type 0<A=<12/5

A
50---

2

100 A

3 3

25-A/4

22

12/5<A--<4

A
50---

2

100 A

3 3

25-A/4

25-A/4

Observe from the table that

(5.4) w(T) -< I(T), for all T e ft.

Moreover, for any fixed range of A, the weight of a type-Xi/ item never exceeds
the weight of a type-X item, 2-< -< 4, and all items have weight at least 22.
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For any set S of items, let w(S)= YT,s w(T). We first show that w(Pi)>=
100-A, 1-<i-<m. Clearly this holds for bins with two type-X2 items, three
type-X3 items, or four type-X4 items, and for all 5 item bins. Also, the (at most)
three bins composed solely of type-Z items have this property since the sum of the
item sizes in such a bin, as with all the other Pi, 1 <- <= m, must exceed 100-A, and
each type-Z item has weight equal to its size.

This leaves just the fallback 2-bins and 3-bins to be accounted for. A fallback
3-bin contains three type-Y3 items and one type-X5 item, since the three type-Y3
items total at least 3(122)/4 in size. Thus the total weight of such a bin is at least

3(122)
3A+22=l13.5-3A>100-A,

4

since A =< 4 by (5.3).
A fallback 2-bin contains two type-Y2 items whose total size is at least

2(122)/3 and hence one type-X5 item. If 0<A -< 12/5 the total weight of such
a bin is at least

2(122)
2A+22 =310-2A>100-A.

3 3

On the other hand, if 12/5 < A <--4, the total weight is at least

2(122) 2A+25---=A 319 9A>100 A.
3 4 3 4

Thus w (Pi) -> 100- A, 1 <- <- m, and in fact we can conclude that

(5.5) w(-)_-> (100- A)m + w(T,).
Next we consider the optimal packing *. We first claim that no optimal bin

containing a type-Y2 or type-Y3 item can exceed 100-A in total weight. This is
clear since the weight of such an element is A less than its size, by (5.4) no other
item weighs more than its size, and by definition l(P* )<- 100, 1 <= <- m.

Next we consider the possible optimal bins that contain only type-X2, -X3,
-X4, and -X5 items. Recall that the sizes of such items are at least (100-A)/2,
(100--A)/3, (100--A)/4, and 22+A, respectively. Clearly no optimal bin can
contain more than four of them and, by Lemma 4.3, each optimal bin must contain
at least three items. Table 5 presents a partial enumeration of the conceivable
configurations, for each stating whether it is permitted by the size constraints, and,
if so, the maximum possible weight for such a bin. A configuration is not listed if its
total size clearly exceeds that for some listed configuration which is "impossible,"
due to the size constraints, or if its total weight is trivially dominated by that for
some permissible configuration already listed. In the table, a ,,m,, in a configura-
tion stands for any type-X item, 2 -< --< 5.

In no case does the maximum total weight for a permissible configuration
exceed 100-A. Thus any optimal bin whose total weight exceeds 100-A must
contain at least one of the (at most) 9 type-Z items. By (5.4) the total weight of any
such optimal bin is at most 100, giving an "excess" weight of at most A. Since there
are at most 9 such bins, we thus have

(5.6) w(3) <- (100- A)m +9A.
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TABLE 5
Upperbounds on w(P)for bins with all type-Xi items

Configuration

X2m

0<A--< 12/5

Impossible

100-A

IO0-A

Impossible

Impossible

h+2
0lO0-----( <h_- 1/4)

Impossible (1/4 <A -< 12/5)

100-A

12/5<A-<4

Impossible

100-h

100-A

Impossible

Impossible

Impossible

100-h

Combining (5.5) and (5.6), we obtain

(5.7) w(T,)-< 9A.

For 0<h<= 12/5, (5.7) implies that

w(T,,)<= 9A<_ 108/5 < 22,

a contradiction. When 12/5 < A _< 4, there can be only 5 type-Z items, as the four
items in the last regular 4-bin must all exceed 22 + A _>_ 25- A/4 and hence are
type-X4 rather than type-Z. Thus in this case we must have

w(T,,)_-< 5A =< 20 < 22,

again a contradiction.
Having obtained contradictions in all cases, it follows that a minimal

(122/100)-counterexample cannot exist, proving the theorem.
The reader may have noted that there is a certain amount of slack left in the

arguments of this proof, suggesting that better bounds could be proved using
much the same methods. This is indeed the case, but all that seems possible is a
very slight lowering of the bound--not enough to reduce it to 1.21, for instance.
Since we conjecture that the right answer is 20/17 1.176. , we have settled
for the 1.22 bound, judging that the additional effort and complication that might
be introduced by an attempt to obtain such a slight improvement would not be
justified.
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MINIMEAN MERGING AND SORTING: AN ALGORITHM*

R. MICHAEL TANNER"

Abstract. A simple partitioning algorithm for merging two disjoint linearly ordered sets is given,
and an upper bound on the average number of comparisons required is established. The upper bound is

(n+mm)1.06 log where n is the number of elements in the larger of the two sets, m the number of the

smaller, and =(n + m)!/(m!n !). An immediate corollary is that any sorting problem can be

done with an average number of comparisons within 6% of the information theoretic bound using
repeated merges; it does not matter what the merging order used is. Although the provable bound is
6% over the lower bound, computations indicate that the algorithm will asymptotically make only 3%,
more comparisons than the lower bound. The algorithm is compared with the Hwang-Lin algorithm,
and modifications to improve average etticiency of this well known algorithm are given.

Key words, merging, algorithm, sorting, average, bound, insertion, probability, information

Introduction. Given two disjoint linearly ordered sets or lists, A and B, with
elements

AI<A2<" "<Am,

B1 <Bz<’’ "<Bn,

we are interested in merging them into one ordered set with m + n elements by
making pairwise comparisons between an element of A and an element of B.
Since such a comparison can yield at most 1 bit of information, the noiseless

coding theorem of information theory gives log. as a lower bound on the

number of comparisons required to perform this task, assuming that a priori all
possible combinations of the elements in the final set are equally likely. This
model is appropriate for the merges of a merge sort of a random list. In this paper
we give an algorithm, which we will refer to as fractile insertion, whose
average number of comparisons or work, (m, n), is upper bounded by

1.06 log The fractile used to achieve this is the median.

The noiseless coding theorem will be a central facet of our argument, and its
relevance warrants some review and explanation. In its standard form [ 1, p. 37], it
states that if a source emits symbols from an alphabet S,..., S with prob-
abilities p, , p respectively, then the average length of any binary code used
to encode the source must be greater than or equal to the source entropy,
H(p,... ,p)=p log (1/p). In the present context we can regard each
possible permutation of the elements as being a symbol, and for each merging

* Received by the editors April 13, 1977.

" Board of Information Sciences, University of California, Santa Cruz, Santa Cruz, California
95064.
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problem nature chooses one of the combinations with uniform probability=

(n +ram)-1. Since the result of a comparison of two elements can be coded as a 0 or

1, the outcomes of the comparisons specified by any given algorithm constitute a

(n+mm)binary code for the source; therefore, the entropy, log must be a lower

bound. But more importantly, the additivity of the entropy function on condition-
ally independent distributions enables it to serve as an effective measure of the
quality of a comparison. A perfect comparison gives one bit of information; the
average number of comparisons will be close to the lower bound if each of the
comparisons yields close to one bit. In particular, our algorithm calls for the
insertion of one element in the smaller list into the larger list, thus decomposing
the problem into two smaller problems. For example, suppose A is inserted
into B. Let the probability that At is less than all B be po, that it is greater than B
but less than B2 be pl, and so forth. We could write a recursion relation for the
average number of comparisons required by the algorithm as

Ws(m, n) (Average number of comparisons required to insert At)

(1) + p,(Ws(f- 1, i)+ Wf(m -f, n -i)),
i=0

since after locating At between B and B+I, the conditionally independent
problems of merging f- 1 into and rn -f into n remain.

On the other hand, determining the correct merging can be regarded as the
two step process of first encoding the location of Af in B, and then encoding for the
two remaining subproblems. This interpretation permits the grouping property of
the entropy function to be used to give a recursion for the information theory
bound on Wf(m,n) which closely resembles (1) (see [1, p. 8]). Let qi, ]=

1,’", (n+mm), be the probability of the ith merge order in an exhaustive list

arranged such that qr,/,""", qr,/l are associated with the merge orders which
have At between B and B/I. Since all merging orders are assumed equally

likely q 1
n m

for all ]. By definition of the p, p ,..___,+q,

ro 0, r,,+ The group property then permits the entropy of the
rn

complete merge to be written as the entropy of the partitioning induced by
insertion ofA plus the weighted sum of the entropies remaining in each partition:

Let

n+m H(po, Pl,H(ql, q(,’,, P")+
=o p,n’d’q’+l

I(m, n H n rn
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be the information theory lower bound on the number of comparison needed to
merge m into n. The equation then can be rewritten as

(2) I(rn, n)=H(po, pl,’",p,)+ p,[I([-1, i)+I(m-f,n-i)].
i=0

In other words, the total entropy is sum of the entropy of the distribution of At in
B plus the weighted sum of the entropies which remain, given the position ofA

This identity, (2), stands independent of any algorithm and, recalling that the
definition of p, 0, , n, depends on f, holds for any f. The proof of the bound
relies heavily on the close similarity between the bound identity (2) and the
recursion relation (1)" the essential ingredient is showing that the insertion of a
fractile element At can be done in very little more than H(po, pl,"" ,p,)
comparisons on the average.

An algorithm: Fractile insertion. Without loss of generality, m is assumed
less than n. An element At is compared with a sequence Bk, of elements from B
until At has been located in the B order. The algorithm is then applied to the two
smaller problems of merging A 1, , At-1 into B1, , B and At+l, ,
into B+I, ,B,, where B <At <B+I. If At >B, then =n and only the first
problem remains. If At<Bl, then =0 and only the second remains. The
sequence of subscripts k is given as follows"

1. Let kl In f/(m + 1)]. Let a [1/2 log2 (n(1 +n/m))- 1.3]. Let A= 2’.
2. If At>B, then continue to set k+ =k +A until either k+a>n or
At <B,+. If k+ > n, binary insertAt in B,+a, , B,. Otherwise binary
insert At in B,+I, , B,+_x.

3. If At<B, then continue to set k+x=k-A until either k+1<1 or
At >B, If k+ < 1, binary insertAt in B 1, , B,_1. Otherwise binary
insert At in B,+, ., B,_a.

Briefly, the first test is at the proportional position of At in B. The test position
makes hops of size A, either up or down, depending upon the outcome of the first
test, until At’s location is known within A or less. FinallyAt is binary inserted. (See
Fig. 1.)

Af
,:,i,,,

ist 2nd 3rd

Bkl Bin(]ry
insertion

FIG.

When implemented as a recursive procedure, fractile insertion will require
fewer than IX] pointers to record the subdivisions, where X satisfies m (f/(m +
1))x 1. Note that for f [m/2], X [logz rn ]. Similarly, the amount of active
store needed will depend on the particular fractile chosen.
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As a simple example, suppose f [m/2]
A ={1, 3, 8, 11},

B {2, 4, 5, 6, 9, 10, 12, 16, 17, 19}.

Then k [10. -] 4, a [1/2 log2 35-1.3] 1, z 2. A2 (" 3) is compared to
B4 (= 6); then B2 (--4). Since decreasing the B index by 2 again gives 0, A2 is
inserted by comparing with B1 (= 2). The two subproblems which remain are {1}
into {2}, and {8, 11} into {4, 5, 6, 9, 10, 12, 16, 17, 19}.

As heuristic motivation for the form of the algorithm consider the probability
distribution of the location of At in the B list. To make the previous notation for
the insertion probabilities more explicit, let pt(0; m, n) be the probabilityAt <B1,

pt(n m, n) the probability At > B,, and pt(i m, n) the probability B <At <Bi+I
for 0 < < n. Then

(i/---11)(n m-fi+m-f)
(3) pt(i; m, n)= O <=i <=n.

(n+m)m
By simple reorganization of the factorials, this can also be written as

(4) pt(i. m, n)= + (m (7)
+n-l"

For any fixed m, as n oo, the distribution converges in law to a continuous Beta
distribution of the form

p(X)
rn X[- (1 X)"-t,

(f -1)!(m-f)!

which can be seen most easily by observing that

(i+f-1)’.. (i+l)(n-i+m-f)... (n-i+l)
(n +m)... (n + 1)

1 (i +f/2 ]{n-i +[(m-f)/2]}’-’n + m/2 --72] n + m/2
When n -+ oo with m/n fixed, the distribution converges in law to a Gaussian with
mean ((f-1)/(m- 1)) n, and variance 1/4n(1 +n/(m- 1)). This can be derived
either from the continuous Beta or directly from (3) using Gaussian approxima-
tions to the binomial distribution. In any event, the key to the success of the
algorithm is that the search interval, A, is pegged to the standard deviation of the
underlying distribution of At(A-o). Consequently, for large n, the initial
comparisons are as efficient as on the smaller n cases, and the later comparisons
are basically perfect binary insertions. As the latter begin to constitute the
majority of the comparisons, over-all efficiency of each insertion becomes closer
and closer to one.
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Within this basic scheme there is some leeway in choosing the ratio of the
search interval to the standard deviation. The term 1.3 in the expression for c was
determined empirically to give the best balance between overshoot and under-
shoot for different n.

We will now show that whenf Ira/2], representing the median, the average
number of comparisons required by this algorithm is within 6% of the information
theory bound. Hereafter, p(i; m, n) denotes p rm/21(i; m, n). It is perhaps worth
noting that, trivially, the optimum algorithm for merging one into two requires
5.2% more than the information theory bound. Thus, in a limited sense, no
significantly tighter bound on all problems is possible for any algorithm. The
actual worst case for the median insertion occurs at m 1 and n 65, where the
average is 5.8% over the bound.

Since the proof is based on an intricate scaling argument, it is inconvenient to
deal directly with the discrete distribution, (3). Instead we regard p(i; m, n) as a
function continuous in both and n, but not rn, by interpreting combinatorials of

the form (x ;)- in (3), x real,, integer, as simply

]!

By considering the number of comparisons the algorithm makes to insertA r,,,/21 in
position to be defined for all real e [-1/2, n + 1/2], the average number of compari-
sons, c(m, n), required by the algorithm to locate A r,,,/-I can be viewed as a
function continuous in n. The theorem is then proven based on the scaling
properties of c(m, n) and h(m, n), the entropy of p(i; rn, n).

To validate the analytical proof for the actual discrete distribution, three
types of potential error due to approximations implicit in this approach must be
bounded. The first is approximation of the type

p(i;m,n)I_ p(i;m,n)di

which arises when a discrete sum over is replaced by a continuous integral over
in calculating c (rn, n) and h (rn, n). The second is the possible interpolation error
that occurs when the values of c (rn, n) and h (rn, n), computed only for integer n,
are interpolated to define both for continuous n. Finally, there is the machine
round-off and function error in the computation of the table for Region I (see
proof of theorem). The first two sources of error are treated at the end of the
proof. The third is deemed negligible, being of the order of 10-s smaller than the
margins allowed in the proof.

TF.Ol. Let Wma(m, n) be the average number ocomparisons required by

algorithm to merge m into n assuming all-(n + m. possiblethe median insergon
!

combinations are equally likely. Then Wa(m, n) <- 1.06 log
m

Pro@ The verification of the inequality has been carried out by dividing the
table of values Wma(m, n), m >- O, n >- O, into three regions. The first is a basis set
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where the average number of comparisons and the efficiency of the insertion
process can be evaluated numerically.

Region I: m -< 40, n -< 100. Using the above notation, (1) can be rewritten

Wmed(m, n)= p(i; m, n)(comparisons made to locate A[m/2] in position
i=0

"[- Wmed( I’m/2] 1, i) + Wmed(m [m/2], n -i)).

This equation, along with Wmed(0,/’/) "-0 for all n -> 0, defines Wmed(m, rt). An
ALGOL W program was written to calculate Wmed(m, n), as well as the entropy of
the p(i; m, n) distribution and the average number of comparisons required for
the insertion. The results, when combined with the proofs used for Regions II and
III, give the 1.06 I(m, n) bound. For most m and n this region Wmed(m, n)
1.03 I(m, n ).

Region II: m _--< 40, n > 100. For fixed m we extend the bound by induction on
n. Having calculated the efficiency of the remaining merges to be within the 1.06
bound, we need only show that the insertion efficiency satisfies

c(m, n’)
h(m, n’)

1.06

for all n’ > 100. The inductive strategy is to show for any n there exists an n’ 2n
such that efficiency for n implies efficiency for n’. Since we are allowing n to take
on real values, this is equivalent to showing that for any n’ there exists a
corresponding n. Having computationally established the 6% bound for 40-< n -<
100, repeated use of this argument establishes the bound for all n’> 100.

We begin by comparing p(i; m, n) with p(i’; m, n’) chosen to make the latter
very closely the former scaled by a factor of 2.

Let i’= ((f- 1)/(m 1))n’ + 2(i-((f- 1)/(m 1))n),

d p(i" m, n) -1 1 "- 1
DI-"-- In ,)-- Ep(i’; m,n +k k=l n-i +k

f--1 1-y
=11 f-1

(5)

k
-(n’-2n)+i+-
2m-1 2
"- 1
+Y gk=l 1 m-f(n,_2n)+n_i +-

2m-1 2

d2

D2 a p(i m, n) f-1 1 "- 1
=-ln ,)- ) )p(i’; m, n (i + k (n -i + k

’- 1+ .
’= ( m-

-1
(n’-2n)+i +)

,,,-t 1+Z
2k=l( m--lrn--f(n’--2n)+n--i+)
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By making n’ sufficiently large, it is clear that this second derivative, D2, can be
made negative. This will assure that the maximum of the ratio is achieved near the
peaks of the distributions, where the first derivative, D1, will be zero. The best
comparison will be obtained by finding the smallest n’ for which the second
derivative is still negative for all i.

An upper bound to the second derivative can be obtained using an integral
approximation to the sums. Specifically

i+i+ 1 -1 1 1
---dx=+ i2 2

di--1/2+e X i+1/2+e i-1/2+e +2ie +e -1/4

If e > 1/(8i) the integral is less than 1/i 2" if e =0 it is greater than 1/i 2

Consequently

f--1 1E (i +k)2>k=l - dx dx
j=" Jj=1/2/e X Ji=/e X (i+f -1/2+e)(i+1/2+e)

for e > 1/(8(i + 1)), the largest value necessary for each of the parts. This bound
can then be applied to the four sums in D2.

m-f 1
k=aE (n-i +k)2

m -f a--Bz(n -i),

)( 1 )-n-i +-- 8(n-i + 1) n-i +m-f+-- 8(n-i + 1)

(6)
f--1 1
k=l

m L i (n’-2n)+i +-

(1 f-1 +1]1 f-1 )- mL1 (n’-zn)+i 4/\2m’i (n’-zn)+i+
aB (i)3

k=l m
(n’-2n)+n-i+k/2

m-1

m-f
i< l’m-f(n,_2n)+n_i + 1 m-f(n,_2n)+n_i +m-f+\-m’l m-1 2

a=-Ba(n -i),

D2 < BI(i) +B2(n i) +B3(i) +n4(n i).
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Leaving aside the cases m 1, 2, and 3 for later attention, we now consider m => 4.
The sum of the four right-hand sides in (6) is a bound on D2. The behavior of this
bound is most easily discerned by grouping thef- 1 terms, B1(i) and B3(i) and the
m -f terms, B2(n -i)+Ba(n -i). The form of Bl(i)+B3(i) is

ai+b
Bl(i)+B3(i) wherecl(i)-i4.

1(i)

(The reciprocal correction terms have been temporarily suppressed, since they
do not affect the important behavior.) Similarly

B2(n -i)+B4(n -i) =c(n -i)+d where c2(n -i)(n _i)4
c2(r/--i)

Because of the O(i4) and O((n _i)4)terms in the denominators, IBl(i)+B3(i)l>
IB2(n-i)+B4(n-i)l for <=((f -1)/(m -1))n whereas IB2(n-i)+B4(n-i)]>
IB(i)+B3(i)l for i>=n/2. Consequently, by making Bl(i)+B3(i)<=O for i<=n/2
and B2(n -i)+B4(n -i)<=O for =>((f- 1)/(m 1))n, the sum, D2, will be nega-
tive for all i.

For n’ sufficiently large, all the numerator coefficients, a, b, c, and d, will be
negative. For smaller n’, n’> 2n, a and c are positive while b and d remain
negative. It follows that if Bl(i)+B3(i)<=O at i=n/2, it is negative for <n/2.
Likewise, B2(n i) +B4(n i) <= 0 for ((f- 1)/(m 1))n implies that it is nega-
tive for > ((f- 1)/(m 1))n.

Equating the denominators of BI(i) and B3(i) in (6) for n/2 gives the first
required condition for n’:

1 1 f-1 (n’-2n)+i+
1 1

(n’-2n)+i+- 1 ---m-1 m-

( 1 1 )( 1 1 ) n
--> i++8(i+1) i+f-+8(i+l) at/=.

The denominators of B2(n i) +B4(n i) give second condition

( m-
-f(n’-2n)+n -1 +)( m-

-f(n’-2n)+n -i + m2-f+)
=> n -i ++8(n _i + l). n -i +m -/++8(n _i + l).

f 1
at/= ,,-

m-1
no

Substituting in the value of and simplifying, the first becomes

l(n +l)(n +m)=> n+l n+m+(’7)
4

for rn odd, and n’=(n"-2n)(m-f)/(2(f-1)) +2n, where n" satisfies

(8) l(n,, + 1)(n,,+m_l)>(n + l+n)( + 1)n+m-1 n
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for m even. The second inequality requires that

(9)
m-1 m-1 >= n+l+ n+m+n’-

2
n +m-l+

2

Note that this is virtually identical to the n’ required to double the search interval
A.

For m odd, then, the maximum of the ratio, (p(i; m, n))/(p(i’; m, n’)), must
occur at =n/2, i’= n’/2. For m even, the maximum occurs very near
((f- 1)/(m 1))n, as can be seen by consideration of the zero of the first derivative
in (5). Rather than seeking the exact maximum, we wish to show that must be less
than (p(n/2; m, n))/(p(n’/2; m, n’)). This is even a possibility only because,
for even m, when n/2, i’= ((f- 1)/(m 1))(n’- 2n) + n < n’/2. Of course, as
m becomes large, the slight asymmetry becomes less important.

Let i" (n ’/n )i. Let

p(i;m,n)
R (m, n, n’) max

p(i’; m,n’)"

Now

p(i;m,n) p(i;m,n) f-1at/= n.
p(i"; m, n’) p(i’; m, n’) m 1

Furthermore

d2( p(i;m,n! )di
In

p(i"; m, n
In R (m, n, n’)

f--1 1 f-1 1 "- 1
(i /k (n/n’))

2 kZ"l (i +k)2+k (n +k (n/n’))2- 1

kl (n i+k)>0"

Since this difference achieves a minimum of virtually zero near i=
((f- 1)/(m 1))n, it is not too dicult to show that it is positive at n/2. us

R(m, n, n’) < p(/2; m, n)
for both even and odd m.

To evaluate R (m, n, n’) is now quite easy. Starting from (4), we have

m + n’ n/2 kn’/2+- I
R(m,n,n’)<

kn/2+- 1] n’/2
Feller [2, pp. 179-182] gives a bounded approximation to the central binomial
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coefficient, namely

(10)
n/2

1 1 1 1
with < e < .----q

20n 3 360n 34n 4n

Using this for the coefficients in the above inequality, we obtain

m+n’/n+m-ln [(1 1 1 1 ) ]R(m,n,n’)<
rn +n 4n;m- 1 4-exp - +6

n n n+m-1 n’+m-l

where 161< 1/(5n 3) and can be neglected for n >= 40. This holds for m odd. For m
even the right-hand side must be multiplied by a factor less than ((n’+ 1)/(n’+
2))((n + 2)/(n + 1)), to compensate for the slightly noncentral evaluation of two of
the coefficients. For rn odd (7) and (9) are the same. Using equality in (7) to define
n’in the bound above gives

rn + 3 1/2
m - 2nR(m,n,n’)<2(1 (n +m 1)(n +1)) 1+ n(n+m+1/2n)

exp +
n n+rn-1 n +rn-1

Over the region rn =< 40, n -> 40 this evaluates to

R(m,n,n’)<2(1.O08).

For rn even the upper bounding is slightly less tight because of the additional
factor but still gives

(11) R(m,n,n’)<2(1.022).

We thus have a very close comparison between p(i; m, n) and the scaled distribu-
tion 2p(i’; m, n’). Because of the negative second derivative (6), we know that
p(i; m, n)-2p(i’; m, n’) is positive in an interval containing n/2, negative in
the tails and at most a probability of 1/2(0.022) moves from the central region to the
tails.

If the scaling were perfect, and the search interval A’ corresponding to n’ were
exactly 2A, both the entropy and the average number of comparisons would be
increased by one, implying perfect incremental efficiency. Our next object is to
show that the actual case is not sufficiently different to destroy the 6% bound.

Let w(i;m, n) be the .number of comparisons made by the algorithm in
locating A r,,,/21 in the ith position in B. In what follows we will assume that for the
n’ defined by (7), (8), and (9), A’= 2A, so that w(i’; m, n’)- w(i; m, n)+ 1. This
will be the case at all but a few n’ near the discontinuities in A as a function of n.

A simplified expression has been used in the algorithm for defining a and A. This leads to
discrepancies of less than in the location of the discontinuities of 11’/2 and 11; they can be accounted
for within the framework of interpolation of the computed values of c (m, n).
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Consider the first variation of c(m, n)-h(m, n), labeled 6V, due to an
additive variational function 6p (i):

6VA f d
pp[(w(i; m, n)+ log2 p(i m, n))p(i m, n)] 6p(i) di,

f (w(i; m, n)+logEp(i; m, n) +log e) p(i)V= di,

6V< Jpi)>o pi>omaX (w(i’, m, n)+log2p(i’, m, n)+log2 e) 6p(i) di

+Is min (w(i" m,n)+log2p(i" m,n)+log2e)6p(i)di.
p(i)<0 p(i)<0

Since any 6p(i) which preserves a probability density satisfies

f 6p(i) di O (implying I 6p(i) di + I 6p(i) di O),
p(i)>O p(i)<:O

6V<I 6p(i) di[ max (w(i" m,n)+log2p(i" m,n)
p(i)>0 p(i)>O

(w(i" m, n) +log2 p(i" m, n))].min
p(i)<0

The 6p(i) of interest are those which carry p(i; m, n) into 2p(i’; rn, n’). By the
previous analysis the region 6p(i) > 0 is in the tails, whereas 6p(i) < 0 is an interval
about the center of the distribution. Using the upper bound

+ 2 + log2 A

for w (i; m, n) in the maximum and the lower bound

m+l
n

+ 1 + log2 A

in the minimum yields

6V< p(i)di 1+ max +logp(]’m,n)-
p(i)>O --k (f/(m+ 1))n

--log2 p(k m, n))].
Because (d2/di2)(-log2 p(i; m, n)) increases monotonically from its central value
as goes to the tails, the growth of -log2 p(i;m, n) is greater than quadratic.
Consequently,

(12) 6V< 6p (i) di 1 + max 3’]
p(i)>0 j>0
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where , is (dZ/di2)(-logzp(i; m, n)) evaluated at the central point. The max-
imum occurs at ] 1/(TA) and has value 1/2(1/(’yA2)). Using a convex variational
path of the form p,,(i;m,n)=(1-o)p(i;m,n)+a2p(i’;m,n’), 0<-a_-<l, will
guarantee that, from the sums in (5) as bounded in (6),

y>16 n’(n;- n) + 1
log2 e.

Now A A >-1/2(1/4.93)/n’(n +m)/m. Substituting into (12) with n > 100 we
find that

(13) 6V<
16(1og2 e) m 1 \ 100]

Using (11) we obtain

(14) 6V< 1/2(0.022)(2.44) < 0.03.

This is sufficient to enable completion of the proof for this region.
The assumption m _->4 can now be removed as follows" For m 1 the

distribution is uniform for all n and thus by setting n’= 2n + 1, perfect scaling is
achieved. For m 2, we set n’= 2n +. Since i’ 1/2n’+ 2i 2

p(i;m,n) n+l-i (n’+ ])(n’+ 2)(n +1/4)(n +1/4)
p(i’; m, n) (n + 1)(n + 2) n’+ 1 -i (n + 2)(n + 1)

a constant, for [-1/2, n + 1/2]. Compared to perfect scaling, a probability less than

(n+)(n+1/4) 1] 3 1

2- + 1) ) 1 1-- (n + 1)(n + 2)

has been moved to the region i’ e [2n +, 2n + 2]. For m 2, -n/A < 10, and so
the most this could increase the average number of comparisons for n _-> 40 is

3 1
16 (41)(42)

=0.0011

which is stronger than the 0.03 of (14). Finally, for m 3 the general argument
holds but the tighter 1.008 figure applicable for m odd must be used in (14) (see
(11)). Specifically, (14) becomes

1 (m,m(3V < (0.008)
1

1 .008)( .44) 0.03.2.44) =(0 2 <

We have shown that for any 1-<m-<40 and any n[40, 100] there
exists an n’, the minimum n’ satisfying (8) and (9), which gives almost perfect
scaling by a factor of 2. From the computed values of h (m, n) and c (m, n), for the
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corresponding n’

c (m, n’) c (m, n) + 1.03
h(m, n’)- h(m, n)+ l

< 1.06.

However, the relationship between n and n’ is continuous, monotone, and
invertible. Consequently for any 100 < n’ < 200 there exists a corresponding n
and the above inequality obtains. All bounds used grow tighter as n increases, and
therefore, by repeated use of the same scaling argument

c(m,n)
h(m,n)

1.06 for alll_-<m_-<40, n>100.

Since the insertions are all adequately efficient, it follows immediately from
recursive formulas for the work and the information theory bound, (1) and (2),
that Wr,.,,/21 < 1.06 I(m, n) for all 1 _-< m =< 40, n -> 1.

Region III: n -> m > 40. Again we need only show that all insertions which
have not been computed are efficient. For this region the underlying principle is
very simple: for any merge in this parameter range, p(i; m,n) is effectively a
Gaussian distribution; the efficiency of the insertion is affected only by the ratio
between the search interval A and the standard deviation, r, of the Gaussian
distribution. In computing the cases m 39 and 40, 40_-<n =< 100, we have
exhausted all possible ratios allowed by the definition of A, as well as seeing the
maximum effect of the m even asymmetry. Thus to understand an insertion with
parameters m’ and n’, we need only look at the m 39 and 40 cases with the same
A/r ratio.

The form of the proof is basically the same as that for Region II, although
here, rather than using an induction with each step adding a scale factor of 2, we
make the comparison directly with the computed case, using whatever power of 2
is necessary to give correct scaling down to the computed range. Specifically, for
any 40 < m’ _-< n’ we find a 40 _-< n -< 100 and an integer k -> 0 such that

(15)
(m’+ n’- 1)(n’+ 1)

n+l+
=4t

(m’- 1) (m-l)

with m 39 or 40.
This amounts to finding a computed case with O"2=4ko"2. Note that, by

choosing k properly, an n in the range 40 to 100 satisfying (15) can always be
found. In almost all cases this leads to A’ 2k A. (As before, at the discontinuities
of A as a function of n, interpolation of the computed data is required.)

We then wish to show that with i’= ((f’- 1)/(m’- 1))n’ +
2k (i-((f- 1)/(m 1))n)

p(i;m,n) 2,"
p(i’; m’, n’)
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The derivation is exactly analogous to that for Region II"

d 2

p(i;m,n)-i:z In
p(i m’, n’)

i++8(i+1) +f--+8(i-l)

n-i++8(n_i+l) n-i+rn-J’++8(n_i+l)

71, f-1 1 -1 f-1
2’ ---ln m-ln+i+ 2 rn’-ln -m_ln+i+

--7n’- n +(n-i)+ 2 -,7n’- n +(n-i)- 2rn -1 m-1 rn m-1

Again we choose n’ large enough to guarantee that the sum of the [- 1 term and
thef’- 1 term is negative for <- n/2, and the sum of the rn -f term and the rn’-]"
term are negative for i>-n/2.2 (Note that because f’>-f and m’-f’>-m-f, the
constant terms in the denominators of the primed terms must be relatively larger
than in the Region II proof, which has only the effect of making the entire second
derivative more negative off center.) Substituting n/2, we need

f’--

++8(n/2+1) -+f--+8(n/2+l) 2k m’-ln +
2k m’-ln +

(n’+l)(n’+m’-l)
4

n+l n+m-l+

rn -1 rn-1

where we have assumed 2(f-1)= m- 1 and 2(f’-1)= m’-1. The m-f and

m ’-f’ lead to the same inequality. With equality, this is, of course, equation (15).

z For simplicity we will deal explicitly only with m’ odd in this region. The even cases require
minor adjustments analogous to those for Region II. As the effect there was greatest at m 4, it is here
much smaller and, in any event, less than the m 40 asymmetry.



32 R. MICHAEL TANNER

The central ratio again gives a bound on the amount of probability moving
from the center to the tails. From (4) and (10),

p(n/2; m, n)
<

m

p(n’/2; m’, n’) m + n

m’+n’ f-1 n/2 n’/2+f’-l]
m’ m n+rn-l ]

m

m+n

[( 1 1 1 1 1 1 )J\qexp + -t
m-1 n n+m-1 m-1 n n +m-l

Terms less than 1/(20 m 3) in the exponent have been dropped. Equation (15) can
then be used in the first factor.

m /n+m-lm’-I m’+n’
m+n /m-l /n m’ m’+n’-i /n + i (/n’ + l /m’ +n’-

=2km ((n +m- 1)(n +m-l+ 1/(2n)))l/2(n+l+ 1/(2n)) /2m+n n

m’-i m’Wn’ f. n’
m’ m’+n;--l n’+l

With m 39 the ratio can be made largest by letting m’, n’, and n go to infinity.

p(n/2; m, n),)<_ 2k(1 +p(n’/2;m’,n m 1
exp -4(re_l). -< 2k 1-

3 1 ) 24m-l =< (1.02).

The variational argument leading to (12) again holds. Here

(m- 1)log2e A>(n(n h- m))/2 1
"y > 4

(n + 1 + 1/(2n))(m +n- 1 + 1/(2n))’ m 4.93"

The bound (14) becomes

1 [ (4.93)_______z (n +1+ 1/(2n))(m +n-l+ 1/(2n)) m ]<-(0.02) 1 +
log2 e 4n(n + m) m 1

1
< (0.02)(3.2) 0.032.

This is the maximum amount of waste over perfect scaling that occurs for any rn’
and n’. Thus

c(m’, n’)-h(m’, n’)<c(39, n)-h(39, n) +0.032.

For all 40 _-< n _-< 100 the right side is less than 0.256. Since the n corresponding to
m’ and n’ lies in the range 40 to 100, c(m’, n’)-h(m’, n’)<0.256 for all
40 < m’ _-< n’. We have actually computed all cases rn _-< 50, n _-< 100. All unverified
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cases have h (m ’, n’) > 4.35. Therefore

c(m’, n’) < 1.06 for all 40< m’ =< n’
h(m’, n’)

and, moreover, since the entropy goes to infinity as n’ goes to infinity,

c(m’, n’)
""1.

h(m’, n’)

As before, this implies that

Wr,,/21 (m, n) < 1.06I(m, n) all 40 < m =< n.

The only remaining detail is the use of p(i; m, n) as continuous function of
both and n when it is actually discrete. For any fixed m and n the error is
bounded using a Taylor series expansion in the ith interval

max p(i; m, n)p(i;m,n)- p(j m,n) <-’i-1/2<j<i+l/2--1/2

Now

-tzp(i;m,n)=p(i;m,n) lnp(i;rn, n)+ lnp(i;m,n)

Because this second derivative is negative in the center and positive in the tails, the
effective central ratio for the actual discrete distributions is slightly larger than for
the continuous approximation. However, using the expressions in (6) and recog-
nizing that at the center (d/di) In p(i; rn, n) 0, the error in the ratio is less than

1 d 2

--p(n/2; m, n)-t z In p(i m, n)

p(n/2;m,n)

for all unverified cases.

m-1i=n/2 < < 0.003
4n(n+m)

Similarly, in implicitly defining an n, 40-< n =< 100, which corresponds to a
larger n’ we have tacitly assumed that the values of c(m, n)- h (m, n) computed
numerically for integer m and n can be accurately interpolated in n. By bounding
(02/0n2)(c (m, n) h (m, n)), the interpolation error in any interval can be shown
to be less than /--/((n + rn)n), again negligible. This completes the proof.

In essence, the large subdividing insertions are done very efficiently, and they
require only a small fraction of the total number of comparisons to be made.
Consequently the algorithm’s over-all performance is really determined by
performance on the short merges, and this has been calculated.

Discussion of the result. Our concern here has been with an average number
of comparisons measure. Although the demonstrated upper bound is within 6%
of the information theory lower bound, for most problems the average number
required is within 3% of I(m, n). By the very nature of the measure, there is every
reason to believe that the true asymptote is about 3%. Since any large problem
gets broken into a spectrum of smaller problems, there is a blending and
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smoothing effect which will utimately eliminate fluctuations in performance.
While establishing this tight bound on the average number of comparisons is

of interest by itself, additional insights into the problem is provided by the method
used:

First, large problems can be done with the almost same efficiency as small
problems. Thus if some specialized hardware or a super algorithm were developed
to give excellent speed on merges with say, m < 10, our algorithm enables that
speed to be reflected in problems of arbitrary size.

Secondly, large problems can be done well only if small problems can be done
well. Although it may seem trivial, this converse statement is in some ways more
subtle than the original. Conceivably, any algorithm that decomposes the problem
from the beginning is subdividing the tree of possibilities in a way that prevents
"the perfect algorithm" from working. However, our technique breaks the
problem down to problems of m =k using a fraction roughly equal to
(1 +1/2 log k)/k of the total work. To make m 2000 requires only 0.003 of the
total comparisons. Even ignoring the fact that the number of bits of information
gained is virtually the same as the number of comparisons, this is so small as to be
almost negligible. Therefore, given that this decomposition information is essen-
tially free, "the perfect algorithm" has to be able to do m 2000 problems well or
it cannot do larger problems well either.

Although for the sake of proving the bound the median element, A r-,/21, was
inserted, any fractile element can be used. The insertion technique is effective
when the distribution is normal with variance -1/4n(1 +n/m). Using Gaussian
approximations to the binomial coefficients in (4), it can be shown that this is the
variance of the limiting distribution of every fractile. The only problem is when the
element to be inserted is too near the end of the list for the normal approximation
to be accurate. The first comparison ofAt should be withBk, k In f/(m + 1)].
So long as

min (kl, n -kl) >
3(n + m)

the insertion should be very efficient. Near the ends, the distribution is more
accurately given by an exponential, requiring a slightly different testing strategy.
The discussion of the Hwang-Lin algorithm will return to this question.

As with any sophisticated technique that aims at minimization of one
measure, there is the danger that the computation of the best next step dbminates
the useful computation. There is some leeway in the choice of a and A
that should help this problem, however. Rather than calculating a=
[1/2 log2 (n(1 + n/m))- 1.3] and A= 2’, one can instead straightforwardly set

A ROUND \-4-m ]

and, if convenient, use a binary insertion procedure that favors the middle. This
combination has been shown by computation to be as good and perhaps better on
small problems, and its asymptotic properties should be similar. It should also be
noted that A is computed only once for every 2 + a comparisons on the average.
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Even though the number of comparisons required by the fractile insertion
algorithm can vary from problem to problem, the average measure used here by
no means represents an unnaturally skewed weighting of the comparison tree
nodes. For example, the assumption that bothA andB have elements drawn from
a uniform distribution on [0, 1] should not greatly affect the efficiency of the
algorithm in performing the merge. On the other hand, the algorithm is not very
good if the minimax (minimizing the maximum number of comparisons required)
criterion is used.

Minimax properties. An exhaustive investigation of small problems reveals
that the maximum number of comparisons required by the fractile insertion
algorithm can be as much as 25% to 30% over the information theory bound. In
contrast to the Hwang-Lin algorithm, the region where the difference is most
pronounced is near n m. The explanation for this weakness on approximately
equal lists is easily found, however. It is known that for m => 6([4, 5.3.2]),

M(m, m +d) 2m +d- 1, 0_-<d _-<4

where M(m, n) is the lower bound for the best minimax algorithm merging m into
n and it is conjectured that the equality holds for any fixed d as m o. If this is
true, then there is no difference in the maximum work that may have to be done if
an (m, m) problem is subdivided by the fractile algorithm into two balanced
problems or two slightly unbalanced problems. That is:

M([m/2] 1, [m/2])+M(m [m/2], m [m/2])

=M([m/2] 1, Ira/2] -d)+M(m Ira/21, m [m/2] +d)
for Idl _-<4.

Thus, in effect, the comparisons spent by the algorithm in determining the actual d
do it no good against the minimax criterion. On the other hand, the I(m, n)
function does have the necessary convexity and, relative to the average metric, the
same comparisons do pay off.

For unequal lists, the fractile insertion and the Hwang-Lin algorithms appear
to have about the same maximum number of comparisons.

Sorting. It is well known that binary insertion and straight two way merging
when used as sorting techniques are both asymptotically efficient, requiring only
n log2 n comparisons as n -. The underlying reason is that both are repeated
merging schemes designed so that all the merging problems encountered can be
done optimally by the associated merging procedures" Binary insertion is optimal
for large n; the standard "pop the top", or two way merge ([4, p. 160]), is optimal
when rn n. There may be times, however, when these list size constraints present
awkward data handling problems. The implication of our theorem, combined with
the noiseless coding theorem, is that any repeated merge sorting scheme based on
the fractile insertion algorithm will require less than 1.06 log2 (n !) comparisons
on the average to sort n elements. The proof is simply that every merge uses
less than 1.06 times the corresponding information theory bound; by the noiseless
coding theorem, the information theory bound for the whole problem is just the
sum of the bounds for each part. But the average number of comparisons is
likewise just the sum of the parts, and the result follows.
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The Hwang-Lin algorithm. The best merging algorithm previously known
for handling problems with ratios of m/n in the range between 0 and 1 is the
generalized binary algorithm introduced by F. K. Hwang and S. Lin [3]. It has
been shown to give minimax performance far superior to either straight binary
insertion or "pop the top" merging. To use our information theory bound
reference, the minimax upper bound is at worst only about 15% over I(m, n).
Although we have as yet been unable to prove a bound for arbitrarily large lists, on
small problems the Hwang-Lin algorithm appears to be about as good if not
slightly better than the fractile insertion algorithm even in terms of the average
measure. In a way, it is actually fractile insertion adapted to the ends.

Briefly, the steps of their algorithm are:
1. Assuming m _-< n, let a [log2 (n/m)l and x n -2" + 1.
2. Compare A, with Bx. If A,, > Bx, binary insert Am in Bx/1, Bn. Emit

elements ,,, By+l, , B,,, where By <A, <By/l, and apply the
algorithm to A 1, , A,, and B 1, , By.

3. If A,, <B, emit Bx, , B,, and apply the algorithm to A 1, , Am and
B1, ,Bx-1.

Given this recursive definition, it is easy to establish a recursion relation for the
average number of comparisons required. This function was evaluated by compu-
ter for m 25, n -< 100. To summarize the results of a comparison of this function
with the corresponding one for median insertion over the same region, neither one
is uniformly better. Median insertion is slightly better for some problems,
Hwang-Lin for others. On the average (that is, on a problem chosen at random),
the Hwang-Lin is about half a percent better. The unresolved question is whether
it continues to be so for large lists.

Suppose the fractile insertion algorithm were used with f m. The first
comparison would be between A,, and Bk,

k= n n 1- =n + l- [n/m] for largenandm.
m+l m+l

If A> [n/m] and the first comparison indicates A,, >B, A,, will be binary
inserted in B,,+I_t,/,a+,...,B,. Otherwise it will be compared with
B,,+l-t,/,l-a. It does roughly the same thing as the Hwang-Lin method.

A closer look at distribution of location of A,,, in B will show why this type of
algorithm should give good average results. Let p(0) be the probability B, <Am
and p(i) the probability B,_

p(i) m-1 (n-i +m-1) (n-i+l)

( (n-i- l+m- 1)... (n-i)

n-i+m

So long as << n, p(i)/p(i + 1)=(n + m)/n. Thus an excellent approximation to
p(i) is

p(i)=(1- n )(n nm)in+m +
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an exponential distribution. When n m, for example, p(0) 1/2. It is not surprising
that Hwang-Lin does well on equal length lists. Most of the comparisons are close
to perfect! In general the p.robability that a first comparison of A,, with B#_ will
show B,,-i<A,,, is q=.,k=oP(i)=l--(n/(n+m)), and the numbers of bits
thereby obtained is -q log2 q (1 q) log2 (1 q). Similar expressions involving
sums can be derived for the binary insertion comparisons. Although the a-
[log2 (n/m)J and x n -2 + 1 do a good job of balancing probabilities in most
cases, the efficiency of some comparisons can be as low as 80%. Indeed, an
improvement can be made by simplifying the algorithm" The first comparison
probability is bracketed by

<q<l-1 n +m +

The lower sequence as n m, 2m, 3m, is

and the upper is

1-1x,1-x/-/9,...1-1/w/7

1-1/2, 1-4/9,... -+ 1-1/e.

Except at extremely large ratios, the second sequence stays closer to 1/2. The first
comparison will be more efficient if the index in the B list is closer to n + 1 (n/m)
than n + 1 (n/2m).

Also it should be noted that a unique property of an exponential is that it is
meaningful to talk about a "half-life". In the present context, the critical "half-
life" is that of the probability distribution, and as we have seen, its value is
approximately A n/m. But the implication is that if the first comparison is
efficient and Am <B,,+l-a, the next test may as well be at Bn+I-2A. This suggests
the following modification to the Hwang-Lin algorithm:

1. Assuming m -< n, let A ROUND (n/m) and x n + 1- A.
2. Compare A,, with Bx. If A,, >Bx, insert A= in B,,/I,’’ ", B, using a

binary procedure that favors the larger index values. (If n -x is odd and
the middle element is unique, use it; if even, use the middle with highest
index in B as the comparison point.) Emit Am, By+l,"" ,B,, where
By<A,<By+I, and apply the algorithm to A1,’’’,Am-1 and
B1, ,By.

3. If Am < Bx, emit B, , B,,, set n x 1 and then set x x A. Return
to 2.

The linear testing pattern of fractile insertion is very naturally appropriate here.
Quite precisely, this is fractile insertion with a A adjusted to the tail distribution.
Unless there is some difficulty in implementing the more general binary insertion,
this modified version should run faster on the average than the original Hwang-
Lin algorithm. Not only does it eliminate the taking of a base 2 logarithm and the
exponentiation, it should actually make fewer comparisons. In addition, A will be
calculated less than half as often.

Unfortunately, because the comparisons prescribed by the Hwang-Lin
algorithm are not uniformly efficient, it appears difficult to prove the asymptotic
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quality of its performance on the average. A proof by scaling, similar to the one
given for Region II, would seem to be the path of least resistance. On the other
hand, the modified version is better balanced, and it appears that a 6% bound
could be established based simply on the efficiency of the worst comparison.

Conclusions. We have exhibited a merging algorithm based on fractile
insertion which requires on the average less than 6% more comparisons than the

information theoretic lower bound, log Moreover, log is not

even the tightest lower bound (See [4, p. 194]). Given the tightness of the upper
bound the algorithm establishes, any algorithm which is noticeably more efficient
than fractile insertion (or the modified fractile insertion-Hwang-Lin algorithm
above) will most probably be impractically complex. Indeed, at one point in our
study, we calculated the performance of a very sophisticated median insertion
algorithm; it actually computed the sequence of testing points that would best
balance the tree. The reduction in the number of comparisons was unimpressive,
less than 1% for a typical problem.

As we have mentioned, our result implies that it is possible to sort with an
average number of comparisons close to the optimum. While this was known
previously, there is now the additional freedom of knowing that the order of
merging does not substantially affect the required number of comparisons.

Finally, the fractile insertion algorithm provides a highly efficient technique
for decomposing a large merging problem into many separately processable
smaller problems. As such it may make possible efficient parallelism in merging.
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SIMPLE GDEL NUMBERINGS, ISOMORPHISMS,
AND PROGRAMMING PROPERTIES*
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Abstract. Restricted classes of programming systems (G6del numberings) are studied, where a
programming system is in a given class if every programming system can be translated into it by
functions in a given restricted class. For pairs of systems in various "natural" classes, results are given
on the existence of isomorphisms (one-to-one and onto translations) between them from the
corresponding classes of functions. The results with the most computational significance concern
polynomial time programming systems. It is shown that if N then every two polynomial time
programming systems are isomorphic via a polynomial time computable function. If N this
result points the way to the possible existence of "natural" but intractable computational problems
concerning programming systems. Results are also given concerning the relationship between the
complexity of certain importiant and commonly used properties of programming systems (such as
effective composition of programs) and the complexity of translations into the systems.

Key words. G6del numberings, translations, complexity of translations, optimal G6del number-
ings

1. Introduction and preliminaries. Rogers (1958) first defined and
characterized acceptable G6del numberings (programming systems). He did this
in terms of the ability to translate arbitrary programs effectively between such
systems. The primary result of this work was the isomorphism theorem, which
states that between any two acceptable G6del numberings there is an effective,
one-to-one, and onto translation. Rogers’ work was purely recursion-theoretic in
spirit, with no regard for the computational complexity of translations or for
program syntax (save the requirement that the set of valid programs be recursive).
Subsequently, techniques for studying computational complexity and program
syntax have been developed.

Schnorr (1975) has studied programming systems into which all programm-
ing systems can be translated effectively with no more than a linear growth in the
G6del numbers of the programs (i.e. by adding no more than a constant amount to
the length of programs); he calls such systems optimal G6del numberings. His
main result is an isomorphism theorem which states that between any two optimal
G6del numberings there is an effective, one-to-one, and onto translation giving at
most linear growth in the G6del numbers of programs translated in either
direction. Though this clearly represents an extension of Rogers’ work, no
attention was paid to the computational complexity of translations. Of special
interest in Schnorr’s paper are constructions (therein credited to the referee) for
obtaining one-to-one translations into any acceptable programming system from
an s] function for that system, and for obtaining isomorphisms with no greater rate
of growth than those of the original (one-to-one) translations, a considerable
improvement over Rogers’ construction.

Hartmanis and Baker (1975) have defined and studied complexity classes of
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programming systems" if C is a class of computable functions, they define the class
GNC to consist of all those acceptable G6del numberings into which every G6del
numbering can be translated by some function in C. Thus they consider GNPrefix,
GNReg, GNLBA as the classes of acceptable programming systems into which all
programming systems can be translated by prefix, regular, LBA-computable
functions, respectively. Also, for any total computable function they define
GNCt to be the class of programming systems into which translations can always
be made by functions in the complexity class Ct (functions computable within
resource bound t(x) for all but finitely many x). The results given by Hartmanis
and Baker and the questions they raise about classes of programming systems are
of two general types" the first concerns the complexity of isomorphisms between
members of a given class, the second concerns the complexity of certain important
programming properties (such as fixed point functions as in the recursion
theorem) in systems of a given class.

With regard to the existence of isomorphisms between acceptable G6del
numberings, Hartmanis and Baker show that between any two prefix (postfix)
programming systems there is an isomorphism given by a particularly simple type
of regular mapping, which they call restricted regular maps. They also show that
for any complexity measure there are arbitrarily large total recursive functions
such that GNCt is the closure of any member of GNC, under the isomorphisms in
Ct" between any two systems in GNC, there is an isomorphism in C,. They then
raise the question of whether any "natural" classes of programming systems have
such a closure property. Specifically, they conjecture that the classes of restricted
regular, LBA, and polynomial time computable programming systems are closed
under isomorphisms of the appropriate type, but that the class of regular systems
is not. They also state a result, which they credit to R. Constable, that the class
GNEXP of exponential time programming systems which they call GNPTIME
(translations computable in time 2 for some constant c for programs of length n)
is closed; they indicate a proof using the isomorphism construction from Rogers
(1958). However, as we shall see in Proposition 2.3, the indicated proof cannot be
correct.

In 2 we give additional results on isomorphisms between programming
systems, "almost" establishing all of Hartmanis’ and Baker’s conjectures as well
as giving a correct proof of the result mentioned above on GNEXP (which they
call GNPTIME). There is a restricted regular isomorphism between any two
restricted regular programming systems, but uninterestingly so because every
restricted regular G6del numbering is in fact a prefix G6del numbering. GNReg is
not closed under regular isomorphisms, but GNLBA and GNEXP are closed
under LBA and exponential time computable isomorphisms, respectively. And
finally, between any two polynomial time programming systems there is an
isomorphism computable in polynomial time from a set in W.

With regard to the complexity of certain programming properties such as s
functions and fixed point functions for recursion in systems of a given class,
Hartmanis and Baker (1975) have shown that a programming system is a member
of one of the natural" classes which they consider if and only if it has an Sl
function in the corresponding class of computable functions. They have also
shown that if a programming system is a member of one of the "natural" classes,
then that system has a fixed point function (as in the recursion theorem) in the
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corresponding class of computable functions. Their first result expands on the
well-known result, implicit in Rogers (1958), that a universal programming
system (one with an effective universal function) is acceptable if and only if it has
an effective s function; the second employs a standard construction of a fixed
point function from an sl function. Hartmanis and Baker go on to show the
existence of arbitrarily complex optimal G6del numberings, and as a corollary to
the first result above, the existence of optimal G6del numberings with only
complex sl functions. Using a different proof, they show the existence of optimal
G6del numberings with only complex fixed point functions. If there were a proof
that any universal programming system with an effective fixed point function is in
fact acceptable, then standard complexity-theoretic techniques would have prob-
ably shown the result as a corollary to the existence of complex optimal G6del
numberings. But as we shall show in Theorems 3.6 and 3.9, there is no such proof
because a universal programming system can have an effective fixed point
function but not be acceptable, and arbitrarily complex acceptable programming
systems can have very simple fixed point functions.

The Hartmanis and Baker construction of complex optimal G6del number-
ings uses a diagonalization technique; in 3 we give an alternative "complexity-
theoretic" construction and proof which yields a slightly stronger result, and also
gives a rather different intuitive approach to this type of question. In 3 we also
give results which show that a universal programming system is acceptable if and
only if it has an effective function for program composition and which in addition
relate the complexity of the system to the complexity of the function for composi-
tion. These results strongly suggest that it is both more natural and more
reasonable to define acceptable programming systems as universal programming
systems with an effective function for composition.

We now give some basic definitions and notation which we shall use in this
paper. We shall generally consider programs to be natural numbers represented in
binary, though all the results and most of the proofs in this paper hold equally well
if programs are considered to be finite strings over a finite alphabet (with at least
two letters). In those few cases where it makes a slight difference we shall point out
how to handle both notions. Similarly, we shall think of programs as operating
either on binary integers or strings, whichever is more convenient. If x is a binary
integer or a string, Ix will denote its length. Strings will be assumed to be ordered,
first by length and then lexicographically among those of the same length. Since in
the general case it is always taken that the set of valid programs is recursive, and in
practical cases valid programs are recognizable in less than cubic time, we shall use
the convenient fiction that all integers or strings are valid programs by using the
simple convention that any string or integer which is not a valid program is
deemed to compute the empty (nowhere-defined) function.

We assume the reader is familiar with standard notation and terminology of
recursive function theory, and we direct the reader to Rogers (1967) as a reference
in this regard. We also assume some familiarity with abstract computational
complexity theory, for which Hartmanis and Hopcroft (1971) is an appropriate
reference.

Following Rogers (1958), we define a Gidel numbering (programming
system) o to be a function from the set of programs onto the partial recursive
functions of one argument; we denote the image of the program under such a
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mapping by qi. Note that there are very simple coding and decoding functions
which make it possible to interpret arbitrary strings or integers as n-tuples of
strings or integers, respectively, and so such a mapping also induces mappings of
the set of programs onto the partial recursive functions of n arguments for each
positive integer n; we shall generally take these induced functions for granted. A
programming system q is universal if the partial function such that (i, x)=
qi(x) for all and x is a partial recursive function. A universal programming
system 0 is acceptable if there is a total recursive function such that qt( for
all programs i, where O is some chosen standard G6del numbering such as one
based on Turing machines or ALGOL 60 programs.

If o and are programming systems, then a total function is a translation of
q into if q 6t(g) for all programs i. Thus a universal G6del numbering is a
programming system which can be translated effectively into our standard pro-
gramming system, an,d an acceptable G6del numbering is a universal programm-
ing system into which our standard programming system can be translated
effectively.

Following Hartmanis and Baker (1975), for any class C of total recursive
functions we define GNC, the set of C-computable programming systems, to be the
set of all acceptable programming systems into which all acceptable programming
systems can be translated by functions in C. A prefix function is one which simply
appends a given prefix to any argument; similarly for postfix. A regular function is
one computed by a deterministic finite state machine which either has one symbol
lookahead or has a special endmarker appended to every input string; note that
such an assumption is necessary to get a reasonable notion of regular mappings. A
restricted regular map is a regular function which on every argument either
appends a given prefix to the argument or deletes another given prefix from the
argument. A function is LBA-computable if it is computed by a deterministic
Turing machine operating in space (tape) bounded by a linear function in the
lengths of inputs. A function is computable in exponential time if it can be
computed in any of the standard models of computation (such as Turing machines)
in time bounded by 2 for a constant c and all inputs of length n. And a function is
polynomial time computable if it can be computed in any of the standard models in
time n + c for a constant c and all inputs of length n. Then GNPrefix, GNPostfix,
GNReg, GNRReg, GNLBA, GNEXP, andGN will stand for the prefix, postfix,
regular, restricted regular, LBA-computable, exponential time computable, and
polynomial time computable programming systems, respectively.

Let q be a universal programming system. A total function s of two
arguments is an s function for q if for some acceptable G6del numbering q2 of
the partial recursive functions of two arguments we have p 2(x, y) o s(i,x)(y) for all
i, x, and y. It is well known that a universal G6del numbering is acceptable if and
only if it has an effective s function. As Hartmanis and Baker (1975) have
observed, if s is an s function for q then translations of programming systems into
q can always be gotten by functions of the form t(i) s(e, i) for some fixed e, and
if q is in GNC then q has an s function gotten by composing a function in C with
a function which is prefix in its second argument. Thus for all classes C which are
closed under composition with prefix functions, every programming system in
GNC has an s function in C (when considered as a function in its second
argument).
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Finally, for the sake of completeness we close this section by giving the
construction from the paper by Schnorr (1975) for obtaining one-to-one transla-
tions into programming systems as instances of an s function. Let q be an
acceptable G6del numbering with recursive s function s, and let be any total
recursive function. With a standard application of the recursion theorem, we can
effectively find an e such that for all and x

qgs(e,i)(X e(l, X

(0,(i)(X)

if s (e, ]) s (e, i) for some/" < i,

if s(e, ]) s(e, i) for all j < and

s (e, ) s (e, i) for some </" -< x,

otherwise.

For any such e, s(e, i) is one-to-one as a function of i, because if for some k the
set Sk {i: s(e, i)= k} would contain more than one element then we would have
0 (s(e,j)(i)-- (s(e,i)(j)-- 1 for min Sk and j Sk with j. It follows that
(s(e,i) qt(i) for all i.

2. Complexity of isomorphisms. We begin this section by establishing two of
the conjectures on closure under isomorphisms made by Hartmanis and Baker
(1975). The first is that there is a restricted regular isomorphism between any two
restricted regular programming systems, but uninterestingly so because in fact:

PROPOSITION 2.1. Every restricted regular G6del numbering is a prefix G6del
numbering.

Proof. The proof exploits the fact that there are prefix programming systems
in which there are arbitrarily long, simple, and "meaningless" prefixes which can
be added to programs. Specifically, let q2 be any acceptable G6del numbering of
the partial recursive functions of two arguments, and define q0 (the empty

2function) and 1o9(X) qi (I, x) where is a natural number, j is an integer written
in binary, and 10ij is the result of prefixing a 1 and O’s to/’. Then it can easily be
verified that q s GNPrefix and that there are infinitely many such that for all j,
qj q10,i. For example, to see the latter let 02(j, x)= qi(x) for all j and x. Then
there are infinitely many such that q/2 02, and for each such

o (j, x)= x)=

for all ] and x.
Let 4’ GNRReg and let be a restricted regular translation of q into 4’; that

is Ot0)= qi for all j. Let d be the prefix deleted by t, let a be the prefix added by t,
and let be such that i>ldl and o. qlo,j for all j. Then t(10j) a lOi], for
otherwise t(10//") would not be a binary integer. Let 7r be any acceptable
programming system and let p be a prefix translation of 7r into q; i.e. qoJ r. for
all j. Then

TI’j (pj (lOipj t(lOip.i) talOipj

for all ], and thus a 10p is a prefix translation of rr into 0. Therefore q is in fact a
prefix programming system.

If we consider programs to be strings over a finite alphabet E then the proof is
similar, but even simpler. Let 0 GNPrefix and define 0cx Ox for all c E, then



44 MICHAEL MACHTEY, KARL WINKLMANN, AND PAUL YOUNG

0 GNPrefix. Let GNRReg and let be a restricted regular translation of 0
into with d and a as above. If the first letter in d is b then t(cx)= acx for all c b
in Y_, and all x. Then if 7r is any acceptable programming system and p is a prefix
translation of 7r into q we have

for all c # b in ,V_, and all x. Thus acp is a prefix translation of 7r into i !"1
Next we show that regular G6del numberings need not be isomorphic under

regular mappings. In fact, we shall show that no postfix programming system can
be translated onto a prefix programming system by any function from an even
wider class. Let us say that a function t from programs to programs is front-to-
back if there is a functionf from natural numbers to natural numbers such that for
all n and programs x, the first n characters of t(x) are determined by the first f(n)
characters of x; clearly all regular maps are front-to-back.

PROPOSITION 2.2.1 NO postfix Giidel numbering can be translated onto a prefix
Giidel numbering by a function which is front-to-back.

Proofi The proof is a formalization of the intuition that in a postfix system the
"meaningful" part of long programs can be at the end, while in a prefix system the
"meaningful" part of some long programs is at the beginning; thus any front-to-
back, onto function must necessarily take some "meaningless" code from the
beginning of some postfix programs to some incorrect, "meaningful" code for
some prefix programs.

Let q GNPrefix and GNPostfix. Let p and q be such that qpi(x)= 0 and
4iq (x) 1 for all and x; p and q exist since by Hartmanis and Baker (1975) o and

have s functions which are, respectively, prefix and postfix in the second
argument. Let be any onto front-to-back function and let f be such that the first n
characters in t(x) are determined by the first ]’(n) characters in x. Take any such
that f(Ip[)<IYl and t(])=pi for some i; since t is onto, infinitely many such ]’s
must exist. Then t(fq)= pk for some k and we have

tPjq (0)= 1 # 0 q,k (0)=

and thus cannot be a translation of O onto q.
The same techniques can be used to show the existence of two simple regular

programming systems such that neither one can be translated onto the other by
any front-to-back mapping.

While Rogers (1958) showed that all acceptable programming systems are
isomorphic, the isomorphism construction given there can produce very complex
isomorphisms between very simple G/Sdel numberings. The problem arises when
the one-to-one translations to which the construction is applied have very long
"cycles" in their composition which force the isomorphism to take on very large
values. This phenomenon is exhibited precisely in the proof of the next proposi-
tion.

p. van Emde Boas (private communication) has independently established that GNReg is not
closed under regular isomorphisms, but via a weaker result than this proposition.
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PROPOSITION 2.3. Them are two exponential time computable G6del number-
ings and one-to-one translations of each into the other computable in exponential
time such that the isomorphism constructed by Rogers’ method cannot be bounded
by any elementary function.

Proof. In fact, a single programming system which can be chosen to be both
LBA and polynomial time computable is used which is constructed by taking a
prefix programming system and "spreading" it out to contain infinitely many large
gaps filled with the empty function. The translations constructed are permutations
which are the identity on the original programs, and which infinitely often map the
new programs in the gaps in such a way that the composition of the permutations
contains very large cycles. This is done in such a way that the isomorphism
constructed by Rogers’ method ends up mapping some relatively short programs
in these cycles to very much longer programs.

Specifically, define the function f by setting f(0)= 0 and

=f22y+a + 1 if f(n)+ 1 22y for y >0,
f(n + 1) {[f(n)+ 1 otherwise.

Let q GNPrefix and define fir(i) qi for all and ffj (the empty function) for
all not in the range of f; note that 2 is not in the range of f for all y ->_ 2. Since f is
computable in linear space and squared time, GNLBA (3 GNU. Let g be an
increasing function such that if y => 2 then g(2y) 2 for some z > y + 1. We now
use g to construct two permutations, s and t, which are the identity on the range of
f. For infinitely many "widely spaced" and "easily recognized" values of y of the
form y 22z for some z _-> 2 the definition of s and on x such that y =< x _-< g2y+2(y)
is given below (g" stands for the n-fold composition of g with itself; g(z) z); let
the widely spaced and easily recognized values of y be given by some huge honest
function such that if y’ and y" are’successive values of y then g2y,+2(y,)< y,,. Let
y 22z with z >= 2 be one of our chosen values and let x be such that y <-x <-
g2y/2(y); s and on x are defined below:

x- 1 if y <x =<2y,
g(x) if X g2i (y) with 0 <_- _-< y,

s(x)= g-l(x) if x gE+l(y) with O< i_<- y,
2y if x g(y),
x otherwise;

g(x)
t(x)= g-(x)

x

if x g2i+l (y) with 0 <-i <- y,
if x g2y with 0 < _-< y + 1,
otherwise.

Figure 1 illustrates the essential features of this definition. We see that if x 6 range
f then s(x)= t(x)= x, as claimed, and therefore s and are both one-to-one
translations of into itself. An examination of Rogers’ (1958) isomorphism
construction shows that if p is the isomorphism given by that construction for the
two injections s and and y is one of our chosen values, then

p(2y) gy+X(y)> g2y (2y)
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and

p-a(2y) gZy+Z(y)> g2Y(2y).

Finally, if we take g(x)= 2 then we get that s and t are both computable in
exponential time but that p and p-1 are both not bounded by any elementary
function.

y y + 2y g(y) g2(y) g2y+l(y) g2y+2(y)

FIG.

The same type of construction yields similar results for other classes of G6del
numberings. For example, if we take g(x)= x 2 then we get that s and are both
LBA and polynomial time computable but that p is neither LBA nor polynomial
time computable. [3

The isomorphisms constructed by the techniques in Schnorr’s paper (1975)
do not suffer from the same rate-of-growth flaw as Rogers’; in fact a careful
inspection of the construction yields that the isomorphisms will always be
elementary in the translations from which they are constructed. However, it
does not seem that these isomorphisms are necessarily computable in the time and
space bounds desirable for GNLBA and GNEXP; the problem stems from the
fact that the original translations might be translating very long programs in one
system to very short ones in the other.2 Thus one possible route to a solution is to
insure the existence of length-increasing, one-to-one translations, and one way to
do this is to construct padding functions within the appropriate class of functions.
Call p a padding function for the programming system 0 if for all programs x,
qx O,x) and Ix < P (x)l,

PROPOSI:ION 2.4. (a) Every LBA G6del numbering has an LBA-computable
padding function; and

(b) every exponential time G6del numbering has exponential time computable
padding function.

Proof. The proof uses repeated translation into and padding within a prefix
programming system, with careful counting and bounding to insure that the
computation succeeds, and does so within the required resource bounds. Specifi-
cally, let O GNLBA and let q GNPrefix be as in the proof of Proposition 2.1;

o (1, x) with 0 an acceptable G6del numbering of the partialthat is q lo’ (x)
2 2

recursive functions of two arguments. For this system there is a q 10 such that

There is implicit recognition of this technical problem in a recent paper by Hartmanis and
Berman (1976) on a somewhat different topic.
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qx qqx for all x and a p 10 which is a prefix translation of 0 into o (O op for
all x) such that </’; note that q kx py for all x, y, and k. Using the technique from
Schnorr’s paper given at the end of 1, let be a one-to-one LBA-computable
translation of o into O, and let n be such that [t(x)l-< nlxl for all x.

Now suppose that we are given a program x. We wish to find a program y such
that 4,x Oy and Ixl < lyl, and to have y LBA-computable from x. If we consider
the programs px, qpx,... qllpx then we have [x + 1 distinct programs in the
system o, each of which is equivalent to x and each of which has length less
than or equal to Ixllql+lpl+lxl<-clxl for some constant c. Then t(px),
t(qpx), t(qllpx) are Ix]+ 1 distinct programs in the system O, each of which is
equivalent to x; call them Xo, Xlxlo If we are lucky, one of these will have
length greater than Ixl, Suppose we are not lucky; then {qUpxv" 0<= u, v
contains (Ixl + 1) distinct programs in 0, all equivalent to x and all of length <-clxl,
and therefore {t(qUpxv): 0 <= u, v <= Ixl contains (Ixl + 1)2 distinct programs in O, all
equivalent to x. If none of these has length greater than Ix then we can repeat the
process of translating them all into q and padding each one up to Ixl many times
and then translating back to O to get (Ixl + 1)3 distinct programs all equivalent to x,
and so on. Since 2"= m "/(lg’, by the time we have repeated this process
Ix i/(log Ix t) many times we must get a program equivalent to x which is longer
than x.

The argument we have just given shows that there exist integers 0 <

il, ij -< Ixl with 1 =</’-< [x[/(log Ixl) such that if

y t(q ijpt(q i’-lpt(.., t(q qpx)... )))

then Ox 0,, Ixl < Irl and
It(qi"pt( .t(q ipx) ))[-<

for all 1 -< m </" and

Iq’pt(" t(q’lpx) )1 <- c[xl

for all 1 < m <]. Therefore, given the integers il, ij we can compute y in
space less than or equal to nclxl. Since il, i can be written in space -<21xl, an
LBA operating in space 2nclxl can simply search through all possible sequences
il,"’, i and give as output the y from the first such sequence which it
encounters which meets the conditions stated above. This gives an LBA-
computable padding function for O.

To prove part (b), suppose that O e GNEXP. Then exactly the same construc-
tion as was given above will work; will be computable in exponential time,
allowing all of the other computations to be performed in exponential time as
well. 1-1

We now use this proposition to establish closure of GNLBA and GNEXP.
THEOREM 2.5. (a) Between every two LBA Gidel numberings there is an

LBA-computable isomorphism; and
(b) between every two exponential time computable Gidel numberings there is

an exponential time computable isomorphism.



48 MICHAEL MACHTEY, KARL WINKLMANN, AND PAUL YOUNG

Proof. Let p GNLBA and let s be an LBA-computable s] function for p;
that is, for each e, s(e, i) is LBA-computable as a function of i. Let p be an
LBA-computable padding function for q, and for all e and i, define t(e, i)=
pJ (s(e, i)) where f is the least natural number such that 1i1 < Ip(s(e, i))1. Then is
also an LBA-computable s function for q, and moreoever, is length-increasing
in the sense that for all e and i, li[<lt(e, i)1. Now for any other acceptable
programming system 4, we can use the technique from Schnorr’s paper given at
the end of 1 to get a one-to-one, length-increasing, LBA-computable transla-
tion of ff into 0; note that for such a translation, an LBA can check whether a
given program is in its range, and if it is the LBA can compute the program’s
inverse image under the translation.

Now suppose that q and O are both LBA programming systems, and let s and
be one-to-one, length-increasing, LBA-computable translations of each into the

other. Then we simlly define the function [ (as in the proof of the Cantor-
Bernstein theorem)as follows:/(x)= s(x)if there is an such that (s-lt-1)i(x) y
for some y and y is not in the range of t, and/(x)= t-(x) if there is an such that
t-a(s-t-)i(x) y for some y and y is not in the range of s (i.e. otherwise). Then it
is easily seen that is an LBA-computable isomorphism between q and ft.

The proof of part (b) is the same, with "LBA-computable" replaced by
"exponential time computable." Indeed, the methods in the proofs of Proposition
2.4 and Theorem 2.5 show closure for any class of programming systems defined
from a class of computable functions which is closed under composition and
"exponential searches" of the type performed in these proofs. Thus these
methods show closure for virtually all classes of programming systems defined
from "natural" complexity classes which include the LBA-computable
functions.

With the previous theorem, we have now proved all but one of the con-
jectures on closure made by Hartmanis and Baker (1975), as well as having given a
correct proof of closure for GNEXP. The remaining conjecture on closure made
by Hartmanis and Baker concerns polynomial time programming systems. Just as, the class of problems solvable in polynomial time, is the class which theoretical
computer science currently has to work with which comes closest to being the class
of practically solvable problems, the class of polynomial time programming
systems, GNU, is the class which the theory of algorithms currently has to work
with which is of greatest interest to practical computer science" it certainly
includes all systems which are used in practice; it leaves leeway to account for
program syntax (since all context-free languages can be recognized in less than
cubic time); and it is invariant over a wide variety of formal models of computing.

The techniques used to prove Proposition 2.4 and Theorem 2.5 also yield
results about polynomial time and "nondeterministic" polynomial time computa-
ble programming systems. For the purposes of this paper, we shall use a "con-
servative" definition of what it means for an arbitrary function to be computable
nondeterministically in a given resource bound. A function ]" is computable
nondeterministically in time if there is a nondeterministic computation system
(e.g. Turing machine) which always runs in time t(n) on inputs of length n, which
for every argument x has some computation which yields [(x), and which for every
argument x has no computation which yields a value other than f(x). It is worth
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noting that using techniques from Baker, Gill and Solovay (1975) there is a
straightforward proof that if =A then every function computable
nondeterministically in polynomial time can be computed deterministically in
polynomial time.3 We let GNAC stand for the class of nondeterministic polyno-
mial time programming systems.

THEOREM 2.6. (a) If then between any two polynomial time G6del
numberings there is a polynomial time computable isomorphism.

(b) If oV is closed under complemention then between any two
nondeterministic polynomial time Giidel numberings there is an isomorphism
computable nondeterministically in polynomial time.

(c) In any case, between any two nondeterministic polynomial time G6del
numberings there is an isomorphism computable (deterministically ) in polynomial
time from a set in oV (i.e. from an oracle ]:or a set in ).

Proof. Parts (a) and (b) follow directly from part (c). We shall employ the
methods of Proposition 2.4 and Theorem 2.5, but we cannot be quite so direct in
our approach. Let GNY and let s’ be a nondeterministic polynomial time s
function for ft. Let q be the prefix system from the proof of Proposition 2.1; let p
be a prefix translation of ff into p, and let q be a padding prefix for p, both as in the
proof of Proposition 2.4. Also let be a one-to-one nondeterministic polynomial
time computable translation of q into . For each x and y we define S(x, y) to be
a set of possible values of a length-increasing s function for if; specifically,
we define S(x, y)= {s’(x, y)} if [yl < Is’(x, y)[, and

$(x, y)= {z t(qiJpt( t(qilps’(x, y))’’’ )):

1 _-< j _-< lyl/log lyl, 0_<- il, ii --< lyl,

lyl< Iz I, and for all 1 -< m < j,

[t(q’.pt( t(qps’(x, y))...

if Is’(x, y)l--< lyl. By the proof of Proposition 2.4, S(x, y)is always nonempty. For
each x, the set of possible pairs, PPSx, defined by

PPSx {(y, z): z S(x, y)}

is a set in Ac. We define s(x, y) to be the least element of S(x, y) for all x and y;
then s is a length-increasing s function for .

We now make a slight extension of the technique at the end of 1. Let f be
any total recursive function. With a standard application of the recursion theorem
we can effectively find an e such that for all x and z

ts(e,x)(Z)’-

()(z)

if S(e, y) f’) S (e, x) for some y < x,
if S(e, y) f’) S(e, x) for all y < x and

S(e, y) f) S(e, x) for some x < y -< z,
otherwise.

Valiant (1974) has independently and previously obtained similar results. Others have also
made essentially the same observation.
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It is easily seen that S(e, x)f3 S(e, y)= for all x y, and thus that s(e, x) is one-
to-one as a function of x and Ps(e.x 6r(x for all x. Therefore for any acceptable
programming system there is an e with Se (X) S (e, x) such that Se is a one-to-one,
length-increasing translation of that system into 6, such that PPSe , and such
that $(e, x) and $(e, y) are disjoint for all x y.

Now let p and p be any two nondeterministic polynomial time programming
systems. Let s and t be one-to-one, length-increasing translations of each into the
other as above, and let $ and T give the pairwise disjoint sequences of sets as
above such that PPS {(x, y): y S(x)} and PPT= {(y, x): x T(y)} are both in. Then we define an isomorphism f between p and from s and in the same
way as in the proof of Theorem 2.5. We claim that f is computable (deterministi-
cally) in polynomial time from a set of ; note that a set computable in
polynomial time from finitely many sets in is also computable in polynomial
time from one set in using standard "joining" techniques. Define the set of
possible elements of the range of s to be PRS {y: (x, y) PPS for some x}; define
the set of nonminimal elements in the possible range of s to be NMS=
{z: y, z S(x) for some x and some y < z }; and define the set of "bounding" pairs
for s to be BPS {(z, y): y T(x) for some x < z}. Define PRT, NMT, and BPT
similarly. Then all six of these sets are also in.

We now show how to compute f in polynomial time from the eight sets PPS,
PPT, PRS, PRT, NMS, NMT, BPS, BPT in V. For any y, if y PRT and
y NMT then y is in the range of t. If y is in the range of t, then an oracle for BPT
and binary search will locate t-l(y) in approximately lyl many steps. Similarly,
using PRS, NMS, and BPS we can determine whether any given x is in the range of
s, and if so we can find s-l(x) in about Ixl steps. Thus for computing f(x) we can
determine which case in the definition of f to apply in about Ix steps, and if the
proper case is f(x)= t-(x) we will have the value of f(x) already. In the case that
f(x)= s(x), we compute the value as follows: using the polynomial bound on the
original s function, s’, we compute a bound on Is(x)l, Then a binary search using
oracles for PPS and NMS will locate s(x) in a number of steps about equal to the
bound on Is(x)l. E]

It is worth noting about this proof that if we define a system in GNAFf9 to have
degree n if every acceptable programming system can be translated into it by a
function computable nondeterministically in time bounded by a polynomial of
degree n, then the isomorphism between two systems in GNA; of degree n will
be computable in time bounded by a polynomial of degree at most max (n, 2) from
a set in W. From this it follows that if W then there is a small constant c
(which is certainly at most 10) such that between every two polynomial time
programming systems of degree n there is an isomorphism computable in time
bounded by a polynomial of degree at most n + c.

The proof of the previous theorem is one of many illustrations of the
awkwardness caused when one is forced to talk only in terms of nondeterministic
computations of sets and time-limited computations relative to sets (characteristic
functions). Moreover, some computational problems, such as the one considered
in the previous theorem, only make sense in terms of arbitrary functions. These
difficulties are eliminated if the notions of ,, polynomial degrees, etc. are
extended to apply to arbitrary partial functions, and this can be done in a very
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straightforward manner (see Capka and Machtey). Using such extensions, we
would conjecture that there are (nondeterministic) polynomial time G6del num-
berings such that any isomorphism between them must be rig’S-hard (i.e. every
function computable nondeterministically in polynomial time is computable from
it in polynomial time). Though this conjecture seems very likely, we have not yet
succeeded in proving it. Note that if #2g’ then the strong version of our
conjecture, that there are polynomial time programming systems such that any
isomorphism between them must be 2g’-hard contradicts the conjecture of
Hartmanis and Baker (1975) that the polynomial time systems are closed. Finally,
we close this section by raising the question of whether Theorem 2.6 provides the
tightest possible bounds for isomorphisms between systems inGN or inGN.

3. Programming properties and acceptable programming systems. Implicit
in Rogers (1958) is the well-known result that a universal programming system is
acceptable if and only if it has an effective s function. Hartmanis and Baker
(1975) expand on this result when they observe that a programming system is a
member of one of the "natural" classes which they consider if and only if it has an
s function in the corresponding class of computable functions; they also show that
in any case an acceptable programming system is no more complex than its s
function, and that it has an s function no more complex than the composition of a
prefix (s ) function with the translation of a prefix programming system into it.
These results raise the questions of which commonly used programming prop-
erties of acceptable programming systems imply that any universal programming
system with that property is in fact an acceptable programming system, and what
the relationship is between the complexity of such properties and the complexity
of the acceptable programming systems. In this section we give several results
which answer questions of this type.

Hartmanis and Baker (1975)constructed arbitrarily complex optimal GSdel
numberings using a diagonalization technique. In the proof of the next proposi-
tion we give an alternative "complexity-theoretic" construction which yields a
slightly stronger result, but also gives a rather different intuitive approach to this
type of question.

PROPOSITION 3.1. For any acceptable G6del numbering q and total recursive

function f, there is an optimal G6del numbering such that
(a) (Hartmanis and Baker) 0 cannot be translated into by a function in Ct,

and
(b) has no paddingfunction in C, where the complexity class Ct is taken with

respect to any given Blum complexity measure.
Proof. Let r(i) be the remainder when is divided by 2, let k be any total

recursive function mapping the natural numbers into {0, 1} such that k(2/)=
k (2/" + 1) for all/’, let [x stand for the largest integer less than or equal to x, and let
0 be any optimal G6del numbering. If we define the programming system by

Oi O[i/2J if k(i)= r(i),
( & if k(i) # r(i)

then 0k is an optimal G6del numbering, and our intuition tells us that Ok can be
made arbitrarily complex by taking k to be sufficiently complex. Basically, this is
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because anything which enables us to effectively find an infinite recursive set of
programs in ffk, none of which compute , thereby enables us to "fairly easily"
compute k on infinitely many arguments. We shall make this intuition more
precise below. Because of the somewhat repetitive nature of this proposition, and
because of the very standard nature of the complexity-theoretic arguments we
shall use, the proof will be left a bit sketchy. The reader is referred to Hartmanis
and Hopcroft (1971) and other literature in "abstract complexity theory" for
details.

To prove part (a) of the theorem we show that there is a recursive operator
not depending on k such that if p can be translated into ff by a translator in Cg
then k can be computed within complexity [g] on an infinite set T of arguments.
Then for all k that are of complexity higher than [/] almost everywhere q
cannot be translated into k by any translator in C.

Let A be an infinite recursive set of programs in q such that pi for all in
A and pi pj for all and/" in A. Then t[A]={t(a): aA} is an infinite set of
programs in ff and T= {t(a): a A and t(a)= max {t(a’): a’ A and a’-< a}} is
an infinite recursive subset of t[A]. Then there is a recursive operator not
depending on k such that T has a characteristic function in Cetgj. Furthermore
k(x)= r(x) for all x in T and hence k can be computed within complexity [g]
on arguments from T, where is another recursive operator not depending on k.
Taking proves part (a) of the theorem.

Part (b) is shown in a very similar way. There is a recursive operator 6e not
depending on k such that if ff has a padding function p in Ca then k can be
computed within complexity 6e[d] on an infinite set P of arguments. Then any k
with complexity higher than 6e[f] almost everywhere satisfies part (b).

To see that such an operator 6e exists we may assume without loss of
generality that ff . Then k (x) r(x) for all x in P {p (1): -> 0}. Clearly P is
infinite and there is a recursive operator 3- not depending on k such that P has a
characteristic function in Crta. Taking 6e= with the same as above
proves part (b)of the theorem.

Part (a) of the previous proposition asserts that any translation of p into p
must have complexity greater than on infinitely many arguments; it is natural to
ask whether this can be strengthened to require translations with complexity
greater than f on all but finitely many arguments. The answer is "no". Let
p GNPrefix and let ff be any programming system. Let p be a prefix such that
ppx for all x, and let y be such that y . Then p can be translated into ff by
functions which map the set p. {0, 1}* to y, and such translations will require
constant time and zero space by an (off-line) Turing machine. If we wish to make
the translations one-to-one, a slightly more complicated construction will do so,
making the translations computable infinitely often in time n log n and space log n
by a Turing machine. If p is any acceptable programming system with s function
s, then by the proof of Proposition 2.4 p has a padding function which is
elementary in s. It follows that there is an elementary recursive operator such
that [s] is the characteristic function of an infinite set of equivalent programs in
q, and therefore p can be translated into any acceptable G6del numbering by
functions which are constant on this set of programs.

As is well known, standard elementary recursion theory uses an s function in
a simple construction of a total recursive function c for the effective composition
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of programs (i.e. pi pj pc(i.j)); inspection of this construction shows that c is the
composition of two instances of the s function, and hence the complexity of c
need be no more than that of such a function. Thus for any "natural" class of
programming systems, GNC, c will be in C. The next theorem shows that a proof
of the converse is fairly easy: for any function f, let us define an iterate of f on
argument n to be the n-fold composition of f with itself evaluated on some fixed
argument (i.e. f" (k) for some constant k).

THEOREM 3.2. Any universal G6del numbering with an effective function for
composition must be an acceptable G6del numbering, and the complexity of
translations into the system need be no more than the complexity ofan iterate of (an
instance o[) the composition function.

Proof. Let p be a universal programming system, c a total recursive function
for composition in g,, and h an effective pairing function (mapping pairs of natural
numbers one-to-one and onto the natural numbers). Let e andf be programs such
that (e (X) h (0, x) and qt(h (x, y)) h (x + 1, y) for all x and y. Define d(x)
c(f, x) and t(x)= d(e) for all x. Then pt()(y) h(x, y) for all x and y, as may be
easily verified by induction on x. Finally, define s(i, x)= c(i, t(x)) and p/2(x, y)=
pi(h(x, y)) for all i, x, and y. Then p2 is a universal programming system and for all
i, x, and y

Ps(i,x)(Y) (#i (,(x)(Y) pi(h(x, y))- /2(x, y).

Therefore any acceptable programming system can be translated into 0 by an
instance of s, which is essentially an iterate of an instance of c. (Actually, it is quite
easy to verify directly from the definitions that p2 is in fact an acceptable G6del
numbering, and hence s is an sl function for p.) l-1

The reason for labeling the previous theorem a "theorem" rather than a
"proposition" was not so much its technical intricacy as what we believe are its
implications for defining acceptable programming systems. From a programming
point of view, a function c to effectively compose programs is certainly more
natural and fundamental than an sl functions s for the "insertion of constants".
Thus it would not be counterintuitive if s turned out to be significantly more
complex than c, within the limits set by Theorem 3.2. The next proposition verifies
this by showing there can be no significant improvement in the complexity bound
given by Theorem 3.2. For these reasons we believe that the natural definition of
an acceptable programming system should be a universal programming system
with an effective function for the composition of programs.

PROPOSITION 3.3. There is an acceptable G6del numbering for which some
translations into it must require exponential time to compute (infinitely often), but
which has a regular composition function.

Proof. Let o s GNPostfix and define g,., oi for all and g,i 3 for all j not
of the form 2 for any i. Because q s GNPostfix, 0 has a postfix s function and
therefore there is a p such that rpiv (x)= for all x and i. Then if is any translation
of o into g, we must have t(ip)>-_ 2 for infinitely many i. For each i, let pi be a
postfix for composition with (i in o; that is, (4i Oj Ojp for all ]. Then for all j
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But 2 ip’ is the binary string l(02P’)iO’. It is thus easily verified that there is a total
recursive composition function c for 4’ such that for all x, c(x, y) is a regular
function of y.

As we have mentioned, Hartmanis and Baker (1975) showed that any
acceptable programming system has a fixed point function (as in the recursion
theorem) which is not much more complex than an s function for the system, and
that there are optimal G6del numberings with only complex fixed point functions.
Rogers (1958) gave an example of a universal programming system which is not
acceptable. By inspection, one sees that the system has an effective padding
function but no fixed point function (in fact it does not even satisfy the weakest
form of the recursion theorem). Friedberg (1958)constructed a universal pro-
gramming system in which every partial recursive function has exactly one
program; such a system satisfies neither the recursion theorem nor the padding
lemma. These results raise the question of what "dependence" relationships exist
among the properties of having effective s, fixed point, and padding functions in
universal programming systems. Our next two theorems complete the answer to
this question. We summarize the answer now as

COROLLARY 3.4. (a) Universal G6del numberings with effective s functions
are acceptable G6del numberings and hence have effective fixed point and padding
[unctions.

(b) Them are universal G6del numberings without effective s [unctions which
have effective fixed point [unctions or effective padding [unctions in any of the [our
possible combinations.

Prool Part (a) is implicit in Rogers (1958), and is well known. Two of the
possible combinations in part (b) are in Rogers (1958) and Friedberg (1958), as we
mentioned above. We prove the existence of the other two possible combinations
in Theorems 3.6 and 3.7. [3

If the previous corollary (specifically Theorem 3.6) were not true and every
universal programming system with an effective fixed point function were accept-
able, then we might expect there to be some bound on how much more complex an
acceptable programming system could be than its fixed point function. But in view
of the previous corollary, it is reasonable to guess that an acceptable programming
system can be arbitrarily more complex than its fixed point function. The final
three theorems of this paper verify this guess by giving the complexity theoretic
version of Corollary 3.4, which we state now as

COROtARY 3.5. (a) Them is a recursive operator such that for any total
recursive function [, if an acceptable G6del numbering has an s [unction in the
complexity class C then it has fixed point and padding [unctions in Ctl.

(b) For any total recursive [unction [, there are acceptable G6del numberings
with regular fixed point and padding [unctions, or regular fixed point ]unctions, or
regular padding [unctions, but with no s [unctions, or no s and no padding
[unctions, or no s and no lxed point [unctions, in C, respectively.

Proo] Part (a) follows from the well known uniform constructions of fixed
point and padding functions from s functions. Part (b) will follow from our
Theorems 3.8 through 3.10.

The remainder of this paper is devoted to the proofs of the theorems needed
to establish Corollaries 3.4 and 3.5. In the proofs of these theorems it will be a
convenient notation to write q (x, y) for q(y) on many occasions.
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THEOREM 3.6. There is a universal Ggdel numbering which has prefix fixed
point and padding functions, but which is not an acceptable G6del numbering.

Proof. Let q GNPrefix and let 0 be the G6del numbering constructed by
Friedberg (1958) in which every partial recursive function has exactly one
program. Define the system 0 by

Oi Iq(i,O)

for all i; then 0 is a universal programming system since both q and 0 are. Notice
that if qi oj then 0i 0, and so a padding prefix for 0 is also a padding prefix for
0. Let n be a fixed point prefix for q; that is, if (Oi is total then

(9 q(i, ni) (9ni.

Let p be a prefix translation of 0 into . Then if 0i is total, so is qpi, and since

(O q(pi,npi (Onpi

we have

00(i, npi) 0 tp(pi, npi) Onpi

Therefore, np is a fixed point prefix for 0. Notice that for all partial recursive
functions f , {i: Oi =} {i: qi(0) c} for some constant c, by the choice of 4’;
hence {i: 0i f} is recursively enumerable. From this it follows that 0 is not an
acceptable programming system. I-I

THEOREM 3.7. There is a universal Gdel numbering which has a prefix fixed
pointfunction, but which does not have an effective padding]unction (hence it is not
acceptable).

Proof. For notational convenience we shall work (mostly) over {a, b}*, and
we let e denote the empty string. Let S be a simple nonhypersimple set with
De, Da, Db, a canonical enumeration of pairwise disjoint finite sets, each of
which intersects the complement of S and such that the union of all the Dx’s is
{a, b}*. Let Sx be the set consisting of the first x elements in some recursive
enumeration of S, and let O be any acceptable programming system.

We now define the system q: for all x and y and >_-0 let

q (a Y) undefined"

qg(ai+lbx’ Y)= qg(q(aibx’ ai+lbx)’ y) if x Sy
undefined if x s Sy;

O(z, y) if x sDz and
(bx, y)=

undefined otherwise.

Since this construction is effective, q has an effective universal function. For every
z, since Dz intersects the complement of S, there is some x such that 0z qb. Thus
q is a universal programming system. If is total then x must be of the form a ibz
for some _-> 0 and z e S, hence (ax, y) ( (x, ax), y) for all y. Thus a is a fixed
point prefix for q.

It remains to show that q has no effective padding function. Let ] be such that
qi , and let k be such that k (X) / for all x; notice that k must be of the form
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a ibx for some => 0 and x. Then for all y

(o (k, ak), y) p (j, y) undefined or
o (ak, y) undefined,

and hence by induction on i, p(a ik, y) is undefined for all y and all -> 1. It follows
that if a’by k a bx is another program equivalent to k, then x y. Suppose,
for the sake of a contradiction, that T is an infinite, recursively enumerable set of
programs equivalent to k. Then every member of T is of the form a ibx with a
different x, and {x: a ibx T} is an infinite, recursively enumerable set which must
therefore intersect $. But if x $, then for all i, o (a gbx, y) is undefined for all but
finitely many values of y, and thus a bx cannot be equivalent to k. Therefore there
can be no infinite, recursively enumerable set of programs equivalent to k, and so
0 has no effective padding function. I-1

THEOREM 3.8. For every total recursive function f there is an acceptable Giidel
numbering with a prefix padding]unction but which has no sl orfixedpoint]unctions
in Cr.

Proof. For notational convenience we shall work (mostly)over {a, b}*.
Suppose that we define o(ax, y)= q(x, y) for all x and y in {a, b}*. Then the
system 0 will have a as a padding prefix, and we are left with the task of defining
the rest of 0 to meet the following two requirements" p must be an acceptable
programming system, and 0 must have no s or fixed point functions in Cr. We
insure the first by constructing tO so that there is a total recursive translation of
some given acceptable G6del numbering O into p. Let gt be a recursive operator
such that if an acceptable programming system has an sl function in Cr then it has a
fixed point function in Cm, and let g max (f, gt [f]). Then if 0 has no fixed point
function in Cg it can have no sl or fixed point functions in Cr. Without loss of
generality, we can assume that the class Cg is recursively enumerable, with

C ={to, h,’" "}.
We define 0 (e, y)-- e and q (b, y)= b for all y, and the definition ofq for all

x e is described as a construction which proceeds in stages. In part (A) of the
stages we insure that there is a total recursive translation of the given acceptable
programming system ff into 0. In part (B) of the nth stage we insure that t, is not a
fixed point function of o. Note that when part (B) of the nth stage of the
construction below is entered, 0z has been defined for at most 3n + 3 values z
which do not begin with an a.

Stage n. (A) Let y be the least string bx such that q has not been defined,
and define qy 0n; go to part (B).

(B) Compute tn on 3n + 4 arguments of the form bx such that pbx has not yet
been defined; at least one of the following two cases holds--use one of them:

(a) tn(i) aktn(]) for some i,/’, and k with 3/’; in this case define o(y) b
and pi(y)= e for all y and go to stage n + 1.

(b) tn (i) a kbx for some i, k, and x such that 0bx has not yet been defined; in
this case define q(y) b and 0x(y) e for all y and go to stage n + 1.

Part (A) of this construction yields a total recursive translation of 0 into 0,

making o an acceptable programming system. For some n, suppose that case (a) of
part (B) is used in stage n of the construction. Then o(t(i), y)= o(tn(]), y) for all
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y, but

and

(q(i, tn(i)), y)= q(b, y)= b

(j, (j)), y) y)

for all y. Thus in this case tn cannot be a fixed point function for . Suppose that
case (b) of part (B) is used. Then

and

q(t,(i), y)= q(bx, y)= e

((i, tn(i)), y)= 0(b, y)= b

for all y, and so t, cannot be a fixed point function for in this case either.
Therefore, q has no fixed point function in C, and the proof of the theorem is
complete.

THEOREM 3.9. For every total recursive function f there is an acceptable G6del
numbering with a prefix fixedpointfunction but which has no s orpaddingfunctions
in Cr.

Proof. The proof is very similar to that of the previous theorem, and we shall
only indicate the differences. Suppose that we define q (ax, y) q (q (x, ax), y) for
all x and y in {a, b}*. Then the system will have a as a fixed point prefix, and we
are left with the task of insuring that q is acceptable and has no s or padding
functions in Cr. Let be a recursive operator such that if has an s function in Cr
then it has a padding function in Ctr, and let g =max (f, [f]). We wish to
insure that q has no padding function in C,, and we assume that C, is recursively
enumerable with C, {to, tl, "}.

We define
given so far, 0 (a, y)= e for all y. The definition of 0bx for all x # e is described as a
construction in stages as in the previous proof; part (A) of the construction is the
same. Part (B) of the nth stage insures that tn is not a padding function for ; note
that when part (B) of the nth stage below is entered, qz has been defined for at
most 2n + 3 values z which do not begin with an a.

Stage n. (A) Let y be the least string bx such that qbx has not yet been
defined, and define qy 0n; go to part (B).

(B) Compute tn (b), t2,(b), t2/5(b); at least one of the following three
cases holds:

(a) ti(b)= t(b) for some and
(b) ti(b) a ktin(b) for some i, j, and k with # ] and k > O;
(c) tic(b) a kbx for some i, k, and x such that qbx has not yet been defined; in

this case define Obx(Y)= e for all y;
in any case, go to stage n + 1.

Part (A) makes q an acceptable programming system as before. If case (a) of
part (B) occurs at stage n of the construction, then t,, is obviously not a padding
function for q. Suppose that case (b)occurs at stage n. If qg(t(b), y)# 0(b, y)for
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some y then tn is not a padding function. If p (t(b), y) p (b, y) a for all y then

q(t(b), y)= p(akti(b), y)= q(q(ak-lt(b), akt(b)), y)

p (q (’’’ p (q (t(b), ate(b)), aat(b))... ), y )

q (q (... p (a, aat(b))... ), y) e

for all y, and so tn is not a padding function for p in this case either. Finally:
suppose that case (c) occurs at stage n. Then

o(ti,(b), y)= q(a bx, y)=p(o(a-bx, abx), y)

o (o (... q( (bx, abx ), aabx)... ), y )

q(q(. o(e, aabx)... ), y)= e o(b, y)

for all y. Therefore, has no padding function in Cg. 71
THEOREM 3.1 0. For every total recursivefunctionfthere is an acceptable G6del

numbering with a prefix padding function and a regular fixed point function but
which has no s function in Cr.

Proof. The proof is similar to the previous two, but a bit more complicated.
We work over {a, b, c}* and we let d(x) denote the string which results from x by
deleting all c’s. Suppose that we define q(x, y)= p(d(x), y) and p(ad(x), y)=
q(p(d(x), ad(x)), y) for all x and y in{a, b, c}*. Then the system q will have c asa
padding prefix and n (x)= ad(x) will give a regular fixed point function. We are
left with the task of defining the rest of p to meet the following two requirements:
q must be an acceptable programming system, and p must have no s function in

Cr. As before, we insure the first by constructing p so that there is a total recursive
translation of some given acceptable programming system 0 into p. Without loss
of generality, we can assume that the class Cr is recursively enumerable, with

Cr {to, tl, ’}. If q has an s function in Cr then there is a tn in Cr such that

q(tn(x), y)=
ax if y e,
e ifye;

note that such a tn must have the property that if #/" then d(tn (i)) d (tn (f)). Then
q will meet our second requirement if there is no tn in Cr with these properties.

We define q, (y)= e for all y, and the definition of qbx for all x in {a, b}* is
described as a construction which proceeds in stages. In part (A) of the stages we
insure that there is a total recursive translation of the given acceptable programm-
ing system ff into q. In part (B) of the nth stage we insure that does not have the
properties given above; note that when this part is entered, qbx has been defined
for at most 2n + 1 values of x in {a, b}*.

Stage n. (A) Let y be the least string bx such that q, has not yet been
defined, and define py 0n; go to part (B).

(B) Compute tn on its first 2n + 2 arguments; at least one of the following
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four cases holds:
(a) d(tn(i))= d(tn(])) for some i# ];
(b) d(t,,(i))= a k for some and k;
(c) d(t(i))= akbx and d(t(]))= a O’bx for some i, ], x, and k < m;
(d) d(t(i))= akbx for some i, k, andx such that bx has not yet been defined;

in this case define CPbx(Y)= e for all y;
in any case, go to stage n / 1.

Part (A) makes 0 an acceptable G6del numbering, and we are left with
verifying that no tn has the properties given above. If case (a) occurs in part (B) of
stage n then d t is not one-to-one. We claim that if cases (b), (c), or (d)occur,
then either tC(t(i),e)=e or o(t,(i),az)#e for some and z. In case (b),
d(t, (i)) a k and hence

o(t,(i), e)y q(a k, e)= q(q (a k-l, ak), e)

q(o(’’’ o(o(e, a), aa)...), e)

p((... o(e, aa)... ), e)= e.

In case (c), o(t,(i), a k+lbx)= q(a kbx, a k+lbx); if q(a kbx, a k+bx)= e then

o (t, (/’), e)= o(a"bx, e)= o((a"-bx, a"bx), e)

o((" o(o(akbx, ak+abx), ak+Zbx)’’’)a e)

(o(’’’ (e, ak+Zbx)’’’ ), e)= e.

In case (d),

q(t,(i), e)= q(a kbx, e)= q(q(.. q(q(bx, abx), aabx) ), e)

o(q(... o(o, aabx)... ), e)= e.

Therefore no t, has the properties given above, and so q has no s function in

We conclude by noting that the same basic construction as in the previous
proof produces an acceptable G6del numbering with a prefix padding function
and a regular fixed point function which has no s function which is bounded by f
almost everywhere.
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POLYNOMIALS WITH 0-1 COEFFICIENTS
THAT ARE HARD TO EVALUATE*

RICHARD J. LIPTON’

Abstract. We show the existence of polynomials with 0-1 coefficients that are hard to evaluate
even when arbitrary preconditioning is allowed. Further we show that there are power series with 0-1
coefficients such that their initial segments are hard to evaluate.

Key words, polynomial evaluation, 0-1 polynomials, preconditioning

1. Introduction. The well known results of Belaga, Motzkin, and
Winograd [1], [4], [7] demonstrate that a polynomial of degree n requires n/2
multiplications (divisions) and n additions (subtractions) when the coefficients of
the polynomial are algebraically independent. The model of computation they
employ allows the use of arbitrary additional complex numbers at no cost. The
selection of these numbersmcalled "preconditioning"mcan depend in any way
whatever on the original polynomial. In contrast to these results, as pointed out by
Paterson and Stockmeyer [5] and Strassen [6], most polynomials that one wishes
to evaluate have rational coefficients, not algebraically independent ones. The
known results on rational polynomial evaluation are as follows"

1. Paterson and Stockmeyer have shown that there are rational polynomials
that require ---,n nonscalar multiplications (divisions) when complex pre-
conditioning is allowed. When only integer preconditioning is allowed and no
division they show that there are 0-1 polynomials (polynomials with 0, 1 as
coefficients) that require -Vn nonscalar multiplications. (We use --.f(n) to mean a
function g(n) such that clf(n)<= g(n)<=c2f(n) for some cl, c2 >0.)

2. Strassen has shown that specific rational polynomials require ---n total
operations when complex preconditioning is allowed.

3. Lipton and Dobkin [3] have shown that there are 0-1 polynomials that
require -n/log n operations when finite preconditioning is allowed (that is, all
scalars used must lie in some fixed finite set).

In summary, Strassen has shown that a specific polynomial is hard to evaluate
when complex preconditioning is allowed. For weaker models (integer or finite
preconditioning) Paterson and Stockmeyer, and Lipton and Dobkin have shown
the existence of hard 0-1 polynomials.

As Strassen states [6], an interesting open question is the construction of hard
0-1 polynomials when complex preconditioning is allowed. In this direction it is
interesting to note that the coefficients of Strassen’s grow at double exponential
rate, so they grow very fast indeed. Essentially Strassen’s results are based on the
fact that while his coefficients are algebraically dependent they do not satisfy any
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relation with "small" degree or height. Clearly this method cannot be directly
applied to any 0-1 polynomial: The coefficients of a 0-1 polynomial satisfy a great
number of very simple relations.

The main results of this paper are a step in the direction of answering
Strassen’s open question. We restrict ourselves to proving the existence of hard
0-1 polynomials. Our main results are Theorems 5 and 7. Theorem 5 shows that
there are 0-1 polynomials that require .nl/4/log n nonscalar
multiplications/divisions when arbitrary complex preconditioning is allowed.
Theorem 7 addresses a related question:

Can one find a 0-1 power series i=0 aix such that each
initial segment Y--0 aixi is a hard 0-1 polynomial?

The motivation for this question is twofold. First, many interesting polynomials
that arise naturally are the initial segments of some power series. Second, could it
be that there are hard 0-1 polynomials of every degree while all power series are
easy? Theorems 7, 8, 9 show that this cannot be so. More exactly they show that:

1. There is a 0-1 power series whose initial segments require --nl/n/log n
nonscalar multiplications/divisions when arbitrary complex preconditioning is
allowed.

2. There is a 0-1 power series whose initial segments require .n 1/2 nonscalar
multiplications when integer preconditioning is allowed.

3. There is a 0-1 power series whose initial segments require --n/log n total
operations when finite preconditioning is allowed.

It is interesting to note that these results on power series suggest a number of
questions about the interplay between polynomial evaluation and language
theory. These are discussed further in 3.

2. I-lard 0-1 polynomials. Our model of computation is the standard one
based on "straightline programs." Suppose that p(x) is a polynomial with complex
coefficients. Then S1,’", $,, is a computation of p(x)over A where A

_
C

(C the set of complex numbers) provided for each step $ either
1. Si sA D{x} or
2. Si Sj Sk where/’, k < and s {+, -, , +}.

And
3. Sm=p(x).

The set A determines what type of preconditioning is allowed. The measure of
complexity used is either the total number of operations or the operations of some
specific type. A step Si Si Sk is a nonscalar operation provided is x and both
S and Sk are not in A, or is + and .Sk is not in A.

The proof of the existence of hard 0-1 polynomials is essentially two steps.
1. First, we show that "small" polynomials cc 0-1 polynomials. That is, the

evaluation of polynomials with small coefficients (in a sense to be made
precise) can be reduced to the evaluation of not too many (in a sense to be
made precise) 0-1 polynomials. Thus oc acts here as an analogy to
reducibility in the sense of automata theory.

2. Second, we show that there are hard small polynomials.
Of course, Theorem 5 is then a consequence of 1) and 2).



POLYNOMIALS WITH 0-1 COEFFICIENTS 63

The details of these two steps are now presented.
DEFINITION. Say (al,. , an) is a generalized O-1 vector provided for some

x all ai lie in {0, x}.
DEFINITION. Suppose that a (al,. , an) is a vector of natural numbers.

Then define d(a) to be

min {kl:! W1, Vk generalized 0-1 vectors with V +.. + Vk a}.

LEMMA 1. The function d(a) satisfies the following:
1. d(al, an)= d(bl, bn)ifal, anisapermutationofbl, bn.
2. d(al, an)<-d(bl, b,,) if{a1,..., an}{bl,"’, b,,}.
3. d(al+bl,. ", an +bn)<=d(al,’" ", an)+d(bl," ", bn).
4. d(al, an)<-d(1, 2, 3,"., t) where t=max (al,"’, an).
5. d(al, , an)-<log (n + 2)2 provided al, , an is an arithmetic progres-

sion.
6. d(al,"’, an)-log (t+2) where t=max (al,... ,an).

Proof. 1. If rr is a permutation of {1,..., n}, then define "rr(al,’’’, an)
(a,l),’’’, a,n)). Now let us assume that zr(al,..., an) (bl,""", bn) and also
that V +. + Vk (al, , an) for some generalized 0-1 vectors. Then since rr
is additive,

"n’(Vl) + + "n’(vk) ’rr(al, an) (bl, bn).

Therefore, it follows that d(a l, an) >= d(bl, , bn ); the same argument with
(al,’", an) and (bl,"’, bn) interchanged shows that d(al,..’, an)<=
d(bl, bn). Thus, d(al, an) d(bl, bn).

2. We need only prove that

d(al,. ,a,)<=d(al, ,a,,b)

in order to prove 2): it follows by 1) and induction on n -m. Therefore, suppose
that V +. + Vk d(al, , an, b) for some generalized 0-1 vectors. Then
clearly

W +’ + Wk (al," ’, a.)

where W is the projection of V into the first n coordinates. Hence,
d(al," ,a,)<-_d(aa, ,a,,b).

3. Suppose that (al,. , an) V +" + Vk and (bl," , bn)
W +. + W’. Then

(al+bl,’", an+bn) VI+ "+ Vk+ WI+ "+ W";

hence, d(al, +bl," ", a, + b,)<= d(al, ., a,)+ d(b, b,).
4. Clearly {a,...,a,}_{l,...,t} where t=max(al,...,a,); hence,

d(al, an) <-d(1, t) by 2).
5. Define f(n) to be the maximum value of d(al,..., an) provided

a 1, , an is an arithmetic progression. We first assume that n is a power of 2. Let

We use componentwise addition.
All logarithms are to base 2.
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ai =bi+c for i= 1,..., n. Then by 1),

d(ax, a,)<= d(ax, a3, a2m-1, a2, a4, a2m)

where n 2m. Moreover, by 3),

d(ax, a,)<= d(ax, a3, a2m-X, ax, a3, a2m-X)

+ d(O, O, O, c, c, c)

rn copies m copies

since a + c a2, , a2,-1 + c a2,,. By 2),

d(ax, a3, a2m-1, al, a3, a2m-1)-d(al, a3,""", a2,-1).

Therefore, d(ax,.’., a,)<= d(al, a3,’’’, a2m-1)-I- 1. Clearly al, a3,’’’, a2m-1
is an arithmetic progression of length n/2; hence,

f(n)<-f()+ l.

Since f(1)= 1, it follows that f(n)=<log (n + 1) provided n is a power of 2. Next
suppose that n is not a power of 2. Now f(k) is clearly a nondecreasing function of
k" this follows by 2) and the fact that any arithmetic progression of length k can be
extended to one of length k + 1. Thus f(n)=< [(n’) where n’ is the least power of
2 >= n; hence, f(n) <= f(2n) <= log (n + 2).

6. Clearly 6) is an immediate consequence of 4) and 5). 71
Let Cox(n) be the number of nonscalar operations required to evaluate any

0-1 polynomial of degree =<n over C.
LZMMA 2. For any natural numbers ao,’",a, it follows that

Cox(n)" d(ao, a,) is an upper bound on the number of nonscalar operations
needed to evaluate the polynomial

p(n)= f aix
i=O

over C.
Proof. Let d(ao,..., a,,)= m. Then there are generalized 0-1 vectors

Vx, , V such that V +. + V" (ao, , a,,). Let

ei(x)- f V’X
=0

where V= the/’th component of the vector Vi. Then

Z ei(x) Z Z V"x]
i=1 i=1

]=0 i=1.. xlai.
i=0
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Therefore, p(x)= Y.i=l Pi(x). The number of nonscalar operations sufficient to
evaluate p(x) is thus bounded by the total number of nonscalar operations
required to evaluate all the Pi(x) polynomials. Each Pi(x) is equal to bq(x) for
some scalar b and some 0-1 polynomial q(x)of degree -<n; hence, each Pi(x)can
be evaluated in Co(n) nonscalar operations. Finally, the upper bound on the
number of nonscalar operations for p(x) is

Col(n)" d(ao, a,).

LEMMA 3. There is a nontrivialpolynomialH(a1," , a,) ofdegree <-n 18 (for
n > no where no is some constant) such that ifH(a,. , a,)# O, then

aixi
i=l

requires at least n 1/4 nonscalar operations when arbitrary preconditioning is
allowed.

Proof. Following Paterson and Stockmeyer [5], we first observe that if p(x)
can be computed with <-n /4 nonscalar operations, then p(x) can be computed
by the scheme for some mii, rnii in C"

For r- 1,..., [21n/4J,

gr mr, Y’, m ,i
i=--1

where or is if r is odd and + if r is even. Finally,

L21n/4j
p(x) E mo,iPi.

r=l

The total number of operations--scalar and nonscalar--is

3 + (4r + 5) _--< 4n 1/2

r=l

for n > no where no is some constant.
We now proceed to apply the method of Strassen’s Theorem 2.5 to the

scheme with the parameters mii, m i considered as indeterminates. Viewed this
way, 9a computes (by Strassen’s Lemma 2.4)

q(fft)+ E qi(ffl)xi
i=1

for some polynomials3
qi where n is the vector of all the parameters rni, mi. In

q(r) need not be polynomials, but are rational.
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the notation of Strassen
18g n m <4n a/2

q n, s < 4n 1/2

d--n.

For n > n where n is some constant,

gq-m-2 n 18(n-44n-2)

n44-(44-+l)n

d,(m+l)q ’.
Now let H(al,..., a,) be the nontrivial polynomial of degree -<_g that exists by
Strassen’s theorem.4 Now suppose that al,. ’, a, are natural numbers such that
H(a l, , a, ) 0 and yet

p(x)= Z aix
i=1

can be done in <n 1/4 nonscalar operations; we will reach a contradiction. For
some complex parameters F the scheme computes p(x); hence,

p(x) qi(i)x + q(i).
i=1

Thus H(al,’", a,,)= H(ql(),’’’, q,()). But

n(q (), q, ()) 0

by the method of Strassen’s theorem; hence, H(al,..., an)=0. This is a
contradiction.

LZMMA 4. Suppose that q (x 1, , xk) is a polynomial of degree <=g such that
q (x 1," , xk) 0 for all natural numbers 0 <= xi <= g. Then q (x 1," , x) is identi-
cally O.

Proof. We will use induction on k. When k 1 the result is an immediate
consequence of the fact that a polynomial of degree =<g can have at most g zeros
without being identically 0. Now suppose that k > 1. Then

g

q(xl, Xk) E Pi(x2, Xk)X
i=0

for some polynomials P0, , Pg of degree _-< g. Assume that q (x 1, , x) is not
identically 0. Then there is a Pa(x2," , x) that is not identically 0. Then

:lO<--_xz<--g :lO<=x <-_g withPa(xz," ",x,)#O;

for otherwise by induction Pd(X2," ", Xk) is identically 0. Let x2," , x, be such
natural numbers. Then q(x,.x’2,.’., X’k) is a polynomial in x of degree <-g with

4 The field k of Strassen’s theorem is the complex numbers extended by the indeterminates
and m
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g + 1 zeros; hence q(x, x’,. , x’) is identically 0. This contradicts the fact that
ea(x, x) # O. [-]

We are finally ready to prove our main result.
THEOREM 5. There are 0-1 polynomials that require --n/4/log n nonscalar *

operations when arbitrary preconditioning is allowed.
Proo]’. Let H(al,..., a,) be as in Lemma 3. Let g n s, the degree of H.

Then by Lemma 4 there is a (a1,"., a,)such that H(a,..., a,)O and
0 =< ai -< g for 1, , n. By Lemma 3, with ao 0

i=0

requires n 1/4 nonscalar operations. By Lemma 2,

C01(n) d(ao, an)>=n /4.

Therefore, by Lemma 1 part 6),

Col(n)>=n/4(18 log n + 2).

3. Hard 0-1 lower series. In this section we study the complexity of the initial
segments to power series whose coefficients are 0-1.

DEFINITION. Let DA (a) be the number of nonscalar operations required to
evaluate

kp(x)= ao +" + akX

over A where a is a 0-1 string of length k + 1. Also we will say that p(x) is the
polynomial that corresponds to a.

LEMMA 6. For any O-1 strings a and

o,, + + 2 log I,, I+ -->
xpl,,I-x X-Itl-a I,lr(x)Proof. Let q(x)= z.i=o aix and r(x)= z.i=0 Six’. Then p(x)= q(x)+x

is the polynomial that corresponds to a/3. Now in order to evaluate r(x), the
polynomial that corresponds to/, proceed as follows"

1. Compute p(x).
2. Compute q (x).
3. Form g(X)x(x)-q(x ).
4 Compute
5. Form h(x)= g(x)/x I1.

The above computation clearly takes at most

DA (Ol[) +OA()" 2 log la l+ 2
nonscalar operations. Now g(x) xl"lr(x), and so h (x) r(x).

Suppose that Y=0 ax is a power series. Then the polynomials

aixi
i=0

are the initial segments of the given power series. The next theorem shows that

la[ length of a and a/3 is the concatenation of a and/3.
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there are power series with 0-1 coefficients such that their initial segments are
hard infinitely often.

TI-IEOREM 7. There is a O-1 power series whose initial segments of length n
infinitely often require --nl/4/log n nonscalar operations when arbitrary complex
preconditioning is allowed.

Proof. Let pk(X) be a 0-1 polynomial of degree 2k that requires

e2t,/4
k

nonscalar operations where e > 0; it exists of course by Theorem 5. Then let a
be the 0-1 string of the coefficients of p,(x). Also let

2
O--’O O

be the infinite 0-1 string formed by concatenating together all the a i,s. By Lemma
6 for all k,

DA(Ot’’" OZtC)+Da(Ot ’’" ak-a)+2 log la ... a-ll +2 >_-Da(a).
By the definition of a , Da(a) >= e2k/4/k. Thus,

e2/4
DA(otl t-l) "’’O )-->Ot +DA (o k

k

for large k and some e’> 0 since [a a. a-l[-< 2+. Thus either DA (O O t)
or DA(cz ... a t’-a) exceeds

e,2/4
2k

In either case we have shown that there is an initial segment of length between
2-a and 2/2 which requires ->m nonscalar operations. Since k was arbitrary
the theorem is proved. I-I

The same type of reasoning also yields"
TI-iort 8. There is a O-1 power series whose initial segments of length n

infinitely often require .n I/z nonscalar operations when only integer pre-
conditioning is allowed.

THiZOREM 9. There is a O-1 power series whose initial segments of length n
infinitely often require ---n/log n total operations when finite preconditioning is
allowed.

It is interesting to note in passing a connection between these results and
language theory. Let a be the 0-1 infinite sequence that is constructed in Theorem
7. Also let

L {a0, ", oili >-0}.6

By construction L is recursive. (Actually one must choose ai to be the lexico-
graphically smallest 0-1 string of length 2 such that the corresponding polyno-
mial requires the specified number of operations.) The exact complexity of L is of

6 a, is the ith symbol in a.
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some interest since it hopefully would help one understand what makes a 0-1
polynomial hard. In this direction we have

THEOREM 10. L cannot be context-free (Book and Lipton [2]).
Proof. Suppose that L was context free. Then a "pumping lemma" argument

shows that for some strings a and b with b nonempty,

ab L for all _-> O.

Now select any x L with Ixl lal, Then x must be the prefix of ab’ for some i" this
follows since there is exactly one string of each length in L.

Thus a is an ultimately periodic string. We will now show that the polynomial
that corresponds to any initial segment is easy to evaluate. In order to prove this it
is sufficient to show that for any string/3 the polynomial that corresponds to fln (/
concatenated n times) is easy to evaluate. Now this polynomial is equal to

which is in turn equal to

[ixkm+i
m=O i=O

( xkrn)(kl i)
m=O i=O

iX

This polynomial can be evaluated in log n + O(k) total steps; hence, L cannot be
context free. !-!
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SOUNDNESS AND COMPLETENESS OF AN AXIOM SYSTEM FOR
PROGRAM VERIFICATION*

STEPHEN A. COOKer

Abstract. A simple ALGOL-like language is defined which includes conditional, while, and
procedure call statements as well as blocks. A formal interpretive semantics and a Hoare style axiom
system are given for the language. The axiom system is proved to be sound, and in a certain sense
complete, relative to the interpretive semantics. The main new results are the completeness theorem,
and a careful treatment of the procedure call rules for procedures with global variables in their
declarations.

Key words, program verification, semantics, axiomatic semantics, interpretive semantics, consis-
tency, completeness

1. Introduction. The axiomatic approach to program verification along the
lines formulated by C. A. R. Hoare (see, for example, [6] and [7]) has received a
great deal of attention in the last few years. My purpose here is to pick a simple
’programming language with a few basic features, give a Hoare style axiom system
for the language, and then give a clean and careful justification for both the
soundness and adequacy (i.e., completeness) of the axiom system. The justifica-
tion is done by introducing an interpretive semantics for the language, rather like
that in [ 10] and [8]. These two papers also have outlined soundness arguments for
axiom systems, but for somewhat different language features, axioms, and
interpretive models. The completeness claim and argument presented here is new
(although completeness and incompleteness proofs inspired by an earlier version
of this paper [2] appear in [3], [11], [12], [13], and [14]). I have tried to choose the
axioms and rules of the formal system to be as simple as possible, subject to the
constraints that they be sound, complete, and in the style and spirit of Hoare’s
rules.

Donahue [4] presented a soundness argument for a similar axiom system, but
soundness was proved in terms of mathematical semantics in the style of Dana
Scott. This led to a rather different argument than that presented here.

Most of the complication in the present paper comes from handling proce-
dure statements. The rules for procedure call statements often (in fact usually)
have technical bugs when stated in the literature, and the rules stated in earlier
versions of the present paper are not exceptions. In the process of trying to prove
the soundness of these rules, I uncovered some of the bugs, and this led me to
believe a careful and detailed proof of soundness is necessary to have any
confidence that there are no further bugs. I have allowed procedure declarations
to have global variables (subject to some restrictions) and this has added to the
complications of the rules and their justifications.

In addition to procedure statements, the programming language used allows
assignment, conditional, while, compound, and block statements, but disallows
input/output statements, jumps, functions, and data structures.

* Received by the editors July 1, 1976, and in revised form March 31, 1977.

" Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A7.
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The programming language is specified in 2, the interpretive model appears
in 3, and the axiom system in 4. The soundness of the system is proved in 5,
and the completeness is proved in 6.

2. The language AI[’, .’2]. We do not want to specify the particular
primitive relations and operations used to form expressions in our ALGOL
fragment, so we assume these are the same as a given language ?1 for the first
order predicate calculus. For concreteness we could take ,1 ’N where nonlogi-
cal symbols inN are {<, =, +,., 0, 1}, but more generally any list {P1, P2," "} Of
predicate symbols and any list {fl, f2, "} of function symbols will do. In addition,
we assume we are given a predicate calculus language 2, an extension of
which will be used for assertions. In most examples, we will take 2 1

The programming language Alibi, 52] will be a modified subset of ALGOL
60, with the following objects.

Variables. The variables (identifiers) will coincide with the variables of 1.
All variables have the same (unspecified) type. In our example in which
we think of that type as "integer".

Declarations. a) Procedure declarations have the form

p(" t3) proc K

where p is the procedure name, ( 7) is the formal parameter list, and K is the
procedure body. and t5 are disjoint lists of distinct variables, and the variables
in v3 cannot occur to the left of any assignment statement in K, nor can they appear
as actual parameters to the left of the colon (:) in any procedure call statement in
K. The variables and 3 are considered local to the declaration. We allow global
variables in K (in addition to and ). However, the variables in and 7 cannot
occur globally in any procedure declaration for another procedure which could be
activated by executing K. Also note the restriction on procedure calls stated
below.

To avoid confusion over associating procedure names with procedure bodies,
we require that no procedure name can be declared more than once in any
program. In general we shall assume that some fixed procedure declaration is
associated with each procedure p.

We shall assume in this paper that no procedure is recursive. That is, there is
no chain of procedure namesp, , p such thatp p,,, and the procedure body
for p contains a call to p+l, 1 -< < n.

b) Variable declarations have the form

new x

where x is any variable. Both procedure and variable declarations occur at the
beginning of blocks. A variable can occur without being declared, in which case it
acts as an input to the program (it must have a value before the program is
executed). Also, a given variable can be declared in any number of blocks.

Expressions. a) A Boolean expression is any quantifier-free formula of 1.
For example, in the case of v, 0=0, x+l<y+l&z<x are Boolean
expressions.

b) Numerical expressions are terms of . For example, in the case of ,
(x + 1) (z + 1)+ 1, 0, 1 are numerical expressions.
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Statements. a) Assignment statements have the form x := e, where x is a
variable and z is a numerical expression.

b) Procedure calls have the form call p(t7:6), where a is a list of distinct
variables, 6 is a list of expressions containing no variable in a, and no variable in
(ti :6) occurs as a nonlocal variable either in the procedure declaration for p or in
the procedure declaration for any procedure which can be activated indirectly by
activating p. (Formal parameters are local to a procedure declaration.)

c) Conditional, while, compound, and block statements are as in ALGOL 60,
except we use fi and od to punctuate the end of conditional and while statements,
respectively, as in ALGOL 68.

3. The interpretive model. An interpretive model =[] for the pro-
gramming language Alia1, 2] is determined by giving an interpretation for the
predicate_calculus lan_gua_ge2 (of course also interprets the langu_age_.Cl). Thus

<D, P1, P,""", f, f2,’" ") where D is a nonempty domain, {P1, P.,"" "} are
the predicates on D interpreting the predicate symbols of 2, and {1, [2, "} are
the functions on D interpreting the function symbols of 2. As usual in predicate
calculus interpretations, the predicates Pi and the functions fi are assumed to be
total. In our example N, the natural interpretation is v, in which D is the set of
integers, and <, =, +,., 0, 1 are all given their standard meanings. If the function
symbol + is included in the language and it is interpreted as division, then some
value must be assigned to n + 0. One way to do this is to add an extra element
the "undefined" element to the domain D, and let n + 0 be i). In this case, all
function and predicate symbols must have their interpretations extended to be
defined at f, although their values at f could be f. In any case, during execution
of a program, all expressions which must be evaluated will have well-defined
values in D, so an undefined expression is never a cause for termination.

Notation. If E is a term or formula, tl, , tk are terms, and y 1, , Yk are
distinct variables, then

E tl tk

Y Yk

indicates the result of simultaneously substituting l, , tk for free occurrences
of y 1, , Yk, respectively, in E. In the definitions of P(s, ) and e (s, ) below, the
role of ti is played by s((yi)). The latter object is an element of D rather than a
term, so that strictly speaking a constant c should be introduced whose value
under the interpretation is s((yi)), and then

C1

’Ye(s, ,) el
However, the abuse of notation below is convenient and, we hope the intended
meaning is clear.

The set of registers t is the infinite set {X1, X2," "}. A state of[] is a total
map s t D. A variable assignment is a one-one partial map

: {variables of2} -’

with a finite domain. If P is a formula of2 with free variables y 1, , yk, and s is
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a state, 6 is a variable assignment to {yl,. ", Yk}, then

P(s, 6)- true
/

(false

if pS(6(y))’’’ S((yk))

otherwise.

is true in

Thus P becomes either true or false in o when its free variables are given values
according to s and 6.

If e is a term (i.e., numerical expression) with free variables y 1, , Yk, and 6,
s are as above, then

S((y)) S((yk)))e(s, 6) e
Yl Yk

Thus e (6, s) is that element of D which is the value of the expression e when the
free variables of e are assigned values according to s and 6.

A procedure assignment is a partial map

r: {procedure names} {procedure bodies} x {formal parameter lists}

such that r has a finite domain. Thus, if the procedure declaration p( :7) lroe K
occurs in a program, we will define or(p)= (K, ( iT)).

The heart of the model :g is the function Comp(A, s, 6, or), which assigns to a
statement A, state s, variable assignment 6, and procedure assignment zr, a finite
or infinite sequence (Sl, S2,’’ ") which represents the successive states of the
computation determined by the statement A when the initial state is s. This
computation is not defined unless 6 assigns a register at least to each free (i.e.,
global) variable of A and r assigns a procedure body and formal parameter list at
least to each procedure name associated with A which has no corresponding
procedure declaration. (In general, A will be taken from the interior of a block B,
and the declarations of B must be recorded in 6 and zr, as shown below.)

The function Comp(A, s, 6, zr) is defined below by giving one defining clause
for each of 8 possible forms which the statementA can take. The reader can check
that every legal statementA in Alia1, 2] fits one and only one of the 8 cases. The
definition is recursive, in the sense that Comp appears on the right side of the
clauses. This may appear ironic in a paper on program verification, since one of the
important issues in programming language semantics is interpreting recursively
defined procedures. However, one does not have to understand recursive proce-
dures in general in order to understand this specific definition. Suffice it to say that
we intend Comp to be evaluated by "call by name," in the sense that occurrences
of Comp are to be replaced successively by their meanings according to the
appropriate clauses in the definition. Simplifications are to be made using knowl-
edge about the model :g[o]. Of course the process may not terminate, in which
case an infinite sequence of states will be generated.

Notation. A* stands for a sequence A 1; A2; Ak, k -> 0, of statements of
AI[I, 2], and D* stands for a sequence D1; D2; ;Dr, >-0, of declarations
of Alia’l, ?2], and A is a statement of Alia1, 2]. The symbol indicates
concatenation. More precisely, C1 C2 is the concatenation of sequences C1 and
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C2, if C1 is finite, and C1 C2 is C1 if C1 is infinite. IfK is a procedure body, then

K
u, e

X, I)

indicates the result of substituting the actual parameters t2, for the corresponding
free (i.e., global) occurrences of the formal parameters $ and 3 (respectively) in K.
If any variable z in (ti, ) is declared locally in K and if the formal parameter
corresponding to z occurs within the scope of the declaration of z in K, then the
local variable z must be renamed in K before the substitution takes place, so that
no actual parameter gets "caught" by the declaration when it is substituted.

Out(A, s, 8, r) is the last state in the sequence given by Comp(A, s, , 7r),
when this is a finite sequence, and is undefined otherwise.

DEFINITION. Comp(A, s, , r)
Cases A: (The value of Comp appears to the right of the arrow for each of

the eight cases of the form of A given below.)

begin new x; D*; A * end (s)^Comp (begin D*; A * end, s, t’, r),

((y),
where ’(y) lXk+l,

if y X,

if y X, where Xk is the highest
indexed register in the range of

begin p ($" 7) proc K; D*; A * end --> (s)^Comp(begin D *; A * end,
s, 8, "rr’),

Tr(q), if q #p,
where zr’(q)

(K, ( "0)), if q p.

begin A 1; A * end--> Comp(A a, s, 6, r)^Comp(begin A * end,
Out(A 1, s, 8, r), 6, r).

begin end -- (s).

x := e --> (s’), where s’(X/)= e(s, ,),

call p(a ":.) --> (s) Comp --_, s, 8, where zr(p) (K, ( "0)).
X, 1)

s)^Comp(A 1, s, 8, 7r), if R (s, 8) is true,
if R then A else A2ti-

(s) Comp(A2, s, 8, zr), otherwise

Comp(A 1, s, 8, 7r) Comp(while R do A 1,

while Rdo A od- Out(A 1, s, 8, zr), t, zr),
(s), otherwise, if R(s, ) is true.

where is defined for all variables global in A and r is defined for all undeclared
procedure names in A.

Note that the clause defining the statement call p(a :) means procedures
have dynamic rather than static scope.
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4. The axioms and rules. The axioms and rules of inference of our deductive
system are basically those of Hoare [6], [7], with amendments due to Lauer [ 10],
Igarashi, London and Luckham [9] (among others) and modified so as to reflect
the structure of the recursive definition of the function Comp.

The basic object in the system is the formula P(A)Q, where P and Q are
formulas in 2 and A is a statement of Alia1, 2]. Informally, P(A)Q is true
(relative to our interpretation 3) iff whenever the assertion P is true before A is
executed, either A will fail to terminate, or Q will hold after A is executed.

DEFINITION. The free set of a statement A consists of all variables with
global occurrences in A, together with variables with global occurrences in the
procedure bodies of any procedures which might be activated by executing A. A
formal definition can be given recursively by considering each of the possible
statement types for A (as in the definition of Comp). We give four of the more
interesting clauses in this definition. The free set of begin new x; D*; A* end
consists of the union of the free sets of D* and A *, with x deleted. The free set of
begin p(: "5) proc K; D*; A* end consists of the union of the free sets of K, D*,
and A *, except : and t3 are excluded from the free set of K. The free set of x := e
consists of the variable x, together with all variables in e. The free set of call p(t2
consists of the variables in (t :), together with the free set of

u,e
K_---_,
x v

where K is the procedure body for p and () :3) are the formal parameters for p.
(Note that K and (: 7) are uniquely determined in any program by our conven-
tion of unique declarations, and see the remarks at the end of this section.)

Notation. P, Q, R, S stand for the formulas of 2.

indicates the rule: from the formula(s) c, 1,. , n, deduce the formula/3.
D, a
/’

where D is a declaration of some procedure p, indicates the rule

/’
with the understanding that all calls of p in a and/3 are according to D (see the
remarks at the end of this section).

The rules and axiom schemes of the system consist of 1) through 11) below.
1) Rule of variable declarations.

P-Y{begin D*; A * end}Qy--
x x

P{begin new x; D*; A * end}Q
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where y is not free in P or Q, and is not in the free set of D* or A*.
2) Rule ofprocedure declarations.

D, P{begin D*; A * end}O
P{begin D; D*; A * end}0

where D is any procedure declaration.
3) Rule of compound statements.

P{A}Q, Q{begin a * end}R
P{begin A A * end}R

4) Axiom ofcompound statements.

P{begin end)P

5) Axiom of assignment statements.

P e-{x := e}P
x

6) Rule of conditional statements.

P & R{a ,}O, P & -R{A2}0
P{if R then A else A2 fi}Q

7) Rule of while statements.

P & Q{A}P
P{while Q flo A od}P & Q

8) Rule of procedure calls.

p(Y :5) proc K, P{K}O
P{cali p(Y 5)}0

9) Rule of parameter substitution.

P{call p (.’ 5’)}0

P "";,{call p(a- )}oyu,; ’e

provided that no variable in ri (except possibly one in :g’) occurs free in P or O.
Here Y’ and 5’ are lists of distinct variables which may be, but need not be, the
same as the formal parameters ( :5) for the procedure p. We require, of course,
that the statements call p(’: 5’) and call p(ti :) be syntactically correct, which
means (for call p(ti :)) that the variables a be distinct and have no occurrence in
the expressions & and no variable in ti or (other than one in or 5) can be in the
free set of the procedure body K of p.

10) Rule of variable substitution.

P{call p(a
Po-{cali p(gt e)}Otr
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where

is a substitution of expressions for variables such that no variable in or f’ occurs
in the free set of call p(a ").

11) Rule of consequence.
PR,R{A}S, SDQ

P{A}Q

Note that in the rule of consequence, P DR and S Q are formulas of 2. We
assume they are correct (that is their universal closures are true in the model )
but the manner in which they are deduced is not the concern of this axiom system.
This point is discussed further in later sections.

It is worth pointing out that rules 9) and 10) could be replaced by the simpler
rule

Ka’IQp($’3) proc K, P/ $,----j
P{can

and soundness and completeness could be preserved (in fact the justification
would be much simpler). However, this rule is unsatisfactory because its use
requires a separate proof of the hypothesis

each time a call statement for the procedure p appears with different actual
parameters. In contrast, the present rule 8) requires the proof just once of a
general property P{K}Q of the procedure body, and rule 9) (with rules 10) and
11)) allows the deduction of suitable instances of the property for different sets of
actual parameters. (The use of rule 10) will come out in the completeness
argument in the last section.)

A second objection to the above alternative to rules 9) and 10) is that it spoils
the pleasing principle that no substitutions for variables are made in the program
text for the hypothesis of any rule.

The rules of our system are a little awkward in handling procedure declara-
tions. This is not a real issue for our particular programming language, since we do
not allow a given procedure name to have more than one declaration in a given
program. If more than one such declaration were allowed (as in ALGOL 60), some
device would have to be introduced in the rules to keep track of which declaration
applied to a given procedure call statement. One possibility suggested in Gorelick
[5], is to transform each rule

D*/a OnCI,’’’,Cn
into

D*/
so that the context of procedure declarations D* is made explicit at each rule
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application. The rule for blocks with procedure declarations would now become

D*; D/P{ben D’ a * end}Q
O*/P{ben D; O* A * end}Q

enabling us to "discharge" heretofore implicit assumptions about the context of
procedure declarations. Similarly, the rule for procedures would become

D*/P{K}O
D*; p(Y ) proc K/P{cali p(." ts)}Q

where p is a new procedure name. This would be a possible way of handling the
problem if one thought it were important to allow a given name to refer to two
different procedures. However, in practice, this flexibility would probably cause
more confusion than it would save. Furthermore, our definition of Comp would
have to be significantly more complicated, requiring that the map r store the
environment of the procedure body, as well as the body and formal parameters.
Therefore, we shall stick to our simplifying assumption, and our simpler rules.

5. The model satisfies the axioms and rules. Most of the rules and axioms
seem to be clearly valid, given the informal meaning for P{A}O stated above.
However, there is always a worry that some condition or possibility has been
overlooked. This is particularly true of rules 8)-10) for procedure calls, variations
of which have been stated incorrectly in the literature several times.

How can we be sure we aren’t omitting some restrictions on these rules or the
use of parameters that are necessary to ensure the validity of the rules? One way is
to prove that all the axioms and rules are true in our interpretive model /[3]. (At
least this ensures that the axioms and rules are correct, provided it is agreed that
the model is correct.)

Thus suppose we are given an interpretation 3 for , and hence a model
///[5] for our language Al[Cpl, ’2]. We say a formula P of ,2 is true in (or

in) if[ the closure of P is true in 5, where by closure we mean universal closure
(i.e., the result of prefixing to P universal quantifiers for all free variables in P).

DEFINITION. A formula P{A}Q is true in l (denoted by: tP{A}Q) iff
for all states s, s’, if P(s, ,3) is true in and s’ Out(A, s, 6, 7r), then Q(s’, 6) is
true in, where 6 is any assignment to the free variables of P, Q, and the free set
of A, and 7r assigns the proper bodies and parameter lists to all necessary
procedure names. The subscript on is sometimes omitted.

Lemma 4, at the end of this section, states that this definition of truth is
independent of 6.

DEFINITION. A formula P{A}Q is valid itt it is true in all models M[5]. A
rule

is valid itt/3 is true in every model in which al,. ", an are true.
Theorem 1 below states that all our axioms and rules are valid. However, they

are not sufficient in the following sense" It is usually necessary to use the rule of
consequence (rule 11)) to prove interesting formulas, and for this we need a
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method of establishing the truth of the (universal closures of) the formulas P R
and S O in 2. Hence we will need to supplement our rules and axioms by a
deductive system @ for deducing formulas in z whose closures are true in 5. Of
course must be sound relative to 5, in the sense that the universal closure of
every formula deducible in is true in 5. We should emphasize that the
soundness of has meaning only relative to 5, in contrast to our system , whose
rules and axioms are valid for all interpretations. Further discussion of the system

appears in 6.
THEOREM 1. Axioms and rules 1) through 11) ]:or the system are valid.
A formal proof in the system (Y, ) consists of a finite sequence of formulas,

each either of the form P{A}Q, or P, with P, O in z and A a statement in
AI[I, z]. Each formula is either an axiom of Y(, a formula deducible in @, or
follows from earlier formulas in the sequence by one of the rules of X. We use the
notation e. P{A}O to mean P{A}O is provable in this sense.

COROLLARY. If is sound relative to and -e.P{A}Q, then
sjP{A}Q.

The main tool in the proof of Theorem 1 is "induction on the definition of
Comp." This principle allows us to conclude an assertion of the form "for all A, s,, r, if the sequence Comp(A, s, 6, r) is finite, then it has a certain property
P(A, s, 6, or)." To make this conclusion, it is sufficient to prove, for each of the
eight cases in the definition of Comp, that if A takes the form of the case, then
Comp(A,s, 6, r) satisfies P (provided it is finite), assuming as an induction
hypothesis that Comp(A’, s’, 6’, r’) (and sometimes Comp(A", s", 6", r")) satisfy
P (provided they are finite), where the latter are the occurrence(s) of Comp that
appear on the right hand side of the case. The justification of this principle comes
directly from the definition of Comp, by a simple induction on the length of the
sequence Comp(A, s, 6, r). The principle is used in the proofs of Lemmas 1 and 3
below.

We will now prove Theorem 1 for rules 1), 9), and 10). The other cases are
straightforward. For the rest of this section, "true" means true in some arbitrary
model . Starting with rule 1, we assume the premise

(i) PY{begin D*; A * end}Q-y

where y is not free in P or Q, and is not in the free set of D* or A*.
In order to verify the conclusion of the rule, we assume P(s, 6) is true, where 6

assigns registers to all relevant variables. Now let s’= Out(begin new x; D*; A *
end, s, 6, r), where ,r makes the proper assignments to procedure names.
According to the appropriate clause in the definition of Comp, we have

(ii) s’= Out(begin D*’, A * end, s, 6’, r)

where 6’ agrees with 6 everywhere except at the variable x, to which 6’ assigns a
new register. Now if we define the assignment 6 by

6’(2) if z
6’(z)

6(x) ifz=y,
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then 6 is one to one (because 6(x) is not in the range of 6’), and furthermore
P(s, ,3) has the same truth value as

P-Y (s, 6
X

namely true. (This is because y has no occurrence in P, x has no occurrence in

and 6 (x) 6 (y).) By our premise (i), we conclude

OY--(s’1, tl)
X

is true, where

(iii) s Out(begin D*; A * end, s, 6, r).

LEMMA 1. g61 and 62 are two variable assignments which agree on thefree set
ofa statementA, and ifthe largest-numbered registers in the ranges of61 and2 are
the same, then Comp(A, s, 61, 7r) Comp(A, s, 62, 7r), provided the computations
are finite.

The proof is by induction on the definition of Comp. All clauses except that
for variable declarations are immediate, because 6 does not enter into the
definition, and the exception is also easily handled.

We notice that 8’ and 8 satisfy the hypotheses of the lemma for the statement
begin D*; A* end, (because by our assumptions on the rule 1) y has no free
occurrence in D* orA *), so that it follows from (ii) and (iii) that s’ s. Therefore

is true and hence Q(s’, 6) holds by the same reasoning that showed

PY--(s, Si)Cr>P(s, 6).
x

This establishes the conclusion of the rule 1) and completes the proof of the
validity of 1).

The rule 9) of parameter substitution is worth verifying in some detail.
Assume the premises to the rule hold, so that

(1) P{call p(.’: O’)}Q

Let us use the abbreviation

u, e(2) tr
X

and assume

(3) Per(s, 6)
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holds for some 6 which assigns registers to all relevant free variables. If we set

(4) s’= Out(call p(a :), s, 6, r),

and assume s’ is defined, and 7r(p) (K, (2 5)), then by the definition of Comp for
procedures we have

/ ti,
(5) s’ OuttK, , s, & Tr).
Suppose

(6) 2t=X Xm, U-’-Ul, ,Um P--V e el, , en.

In order to use our premise (1), we must find a new pair (sa, 6a) such that
a) s (6 a(z)) s (6 (z)) for all z (2’, 5’) if both 6 (z) and 6 (z) are defined,
b) sa(61(x))- s(6(u,)), 1,..., m,
c) sl(61(v))=e,(s, 6), 1,..., n,
d) Sl(Xml/i)=s(X,,/i), i= 1,2,’’’, where X,,1 (respectively X,,) is the

highest indexed register in the range of 61 (respectively 6).
Let us say (s 1, 61) is matched to (s, 6) relative to r if a)-d) are satisfied. There is no
difficulty in finding such an (s l, 61), since the variables in (2’, 5’) are all distinct.

LEMMA 2. I[ (Sir 61) is matched to (s, 6) relative to

U e

and R is an assertion (of ’2) and e is an expression (term of1), then

Rr(s, 6) R (s 1, 61), and (er)(s, 6) e (s 1, 61)

(assuming 6 and 61 assign registers to all the free variables of Rtr and err).
Proof. We have

Ro’(s, 6) =- R

and, using equations a)-c),

R (s, 61) =- R

s(6(u,))"" e,(s, 6)... s(6(z))

..s(6(u,)... e,(s, 6)... s(6(z))
..x; v; z

This establishes Rr(s, ) --- R (s 1, 61), and the equation in the lemma is established
in the same way.

LEMMA 3. Suppose (s 1, 61) is matched to (s, 6) relative to

u e

and s’=Out(Ar,s, 6, r), and s’l Out(A, sl, 61, 7r), where A is any statement
such that p("O’) lroe A could be a legal procedure declaration ]’or a legal
statement call p(a "). Then (s, 6a) is matched to (s’, 6) relative to r.

The hypotheses of the lemma imply that no variable in (ti, ) (except possibly
one in (2’, 5’)) occurs in the free set of A, and no variable in 5’ occurs on the left
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side of any assignment statement in A or to the left of the colon in any procedure
call statement of A. Also, no variable in ($’ 3’) occurs globally in any procedure
declaration of a procedure which could be activated by executing A.

We wish to apply the lemma for the case A is

g.

The hypotheses of the lemma are satisfied in this case because p ($ ") lroe K is a
legitimate procedure declaration, and both (a ") and ($" 7’) are legitimate sets of
actual parameters for p. These hypotheses were stated explicitly because the proof
is by induction on the definition of Comp, and it is important to check that the
induction hypothesis can be legally applied to the appropriate statement A’ in
each case. It seems that all hypotheses stated are necessary for one case or
another, in order to push the argument through.

For most cases in the definition of Comp the argument is straightforward. For
example, in the case of conditional and while statements, we can apply Lemma 2
to see that Rtr(s, 6)=-R (S l, 61), SO the same branch of the conditional and the
same case of the while definition will apply for both A and Ao’.

The case of a procedure call statement is more subtle. Suppose A is
call p’(a’ ’), where the procedure declaration for p’ is p’("" 3") lrOe K’. In order
to apply the induction hypothesis, we must verify that

satisfies the hypotheses of the lemma. First, the free set of A’ can have no variable
in (ti, ) (other than one in (’, 3’)), by the hereditary nature of the definition of
"free set". Second, no variable v in 5’ can occur either in t’ or globally in the
procedure declaration of p’, so by our restrictions on procedure call statements, v
cannot occur to the left of any assignment statement or to the left of the colon in
any procedure call statement in A’. Third, A’ satisfies the final hypothesis of
Lemma 3 because A does. Hence the induction hypothesis applies to A’. By
definition of Comp,

and

s’ Out(A, s 1, 1, 7r) Out(A ’, s 1, 6, 7/’)

s ’= Out(Ao’, s, 6, 7r)= OutK -,, 7, s, ,
Since no variable in $’ or ’ occurs globally in the procedure declaration for p’, it
follows that

Therefore

s’= Out(A ’r, s, 5, zr).
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Hence, by the induction hypothesis, (s, 61) is matched to (s’, 6) relative to o-. This
completes the case of procedure call statements.

In the case of an assignment statement, A is simply x := e, Ao- is xcr := eo’,

and

s(X,)
’(xi)

er(s, 6)

if 6 (xo’) # X,

if 6(xcr) X

sI(X/) if l(X)

[e(s1, 1) if 61(x)=X/.

To check condition a) for (s], 61), (s’, 6) we note that if z is not x then z is
unchanged by the assignment, so a) for the pair (s, 61), (s’, 6) follows from our
assumption a) for the pair (sa, 61), (s, 6). If z is x, then s[(6a(z))=e(s, 61)
e(s, 6) (by Lemma 2) s’(6(za)) s’(6(z)). Condition b) is proved similarly, but
it is necessary to use the facts that the u are distinct and that the assignment
statement A cannot be u := e, (unless ui is some x}) because no variable in (, 6)
(other than one in (’, 6’)) is global in A. To verify condition c), we note that v[ is
not on the left side of the assignment statement A, and no variable in ei is on the
left side of the assignment statementA by our restrictions that actual parameters
are not global in A and no u can occur in ei. Therefore the values of v[ and ei
remain unchanged by A and A, respectively. Condition d) is obviously
unaffected by the assignment statement.

The remaining troublesome case in the proof of Lemma 3 is that of variable
declaration in the definition of Comp. In this case, A is bennew x; D*; A *; end,
and we again assume (s 1, 61) is matched to (s, 6) relative to . We can assume that
the variable x being declared does not occur in (, 6), because of our convention
for renaming locally declared variables in A explained before the definition of
Comp. If x is in (’, ’), then let ’ be a with the substitution for x deleted.
Otherwise, let ’ . Note thatA A’, because x is not free in A. We claim
(s, 6[) is matched to (s, 6’) relative to ’, where 6 and 6’ are the variable
assignments determined from 1 and 6, respectively, in the first clause in the
definition of Comp. The claim is staightforward to verify, using in particular
condition d) from the definition of "(s a, 6a) is matched to (s, ) relative to ," to
verify condition a). From the claim and the easily verified fact that the induction
hypothesis applies to A’ ben D*; A * end we can conclude (s , 6 ) is matched
to (s’, 6’) relative to ’. From this we can conclude (s’, 6) is matched to (s’, 6)
relative to , where we must also use the fact that (s l, 6) is matched to (s, 6)
relative to and the contents of the register 6a(x) (respectively 6(x)) remains
unchanged during the computation ofA under 61 and s (respectivelyA under 6
and s). This completes the proof of Lemma 3.

Using Lemmas 2 and 3 it is easy to complete the proof of the validity of the
parameter substitution rule. We assume equations (1) to (6) hold, and select
(sa, 6) to match (s, 6) relative to . By Lemma 2 and our assumption (3) that
P(s, 6) is true, it follows that P(s1, ) is true. If we set

(7) s Out(call p(Y’ ’), sa, 61, ),
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then by our assumption (1), Q(s, 61) is true. On the other hand, by (7) and the
definition of Comp we have

(8) s Out K s1, 81,

If we now take A in Lemma 3 to be

and note that then

X, V

K U_ ’-e_ Acr,
X, V

it follows (using (5) and (8)) that (s, 81) is matched to (s’, 8) relative to tr. Hence
by Lemma 2, Otr(s’, ) is true..This establishes the truth of the conclusion of rule
9), and hence the validity of rule 9).

Let us now verify rule 10), the rule of variable substitution. This rule can just
as easily be verified in the more general setting

P{A}O
where tr

Po’{A }Otr’ 2

is a substitution of expressions for variables such that no variable in 2 or 5’ occurs
in the free set of A. The reason we selected a special case of this rule for rule 10) is
that this special case is precisely what is needed to prove completeness of the
system .

To verify the more general rule, assume the premise P{A}Q, and suppose
Pit(s, 8) is true for some state s and variable assignment 6. Let 2 z 1, , Zk and
2’= z ],..., z,. Let the state S be given by

s(6(y)) s(6(y)) for all y not in 5 for which 6(y) is defined,

Sl((Zi))-" Z;(S, 8), 1 =<i =<k,

s I(X-) s (X.) for all registers X. not in the range of 8.

Then (s 1, 8) is matched to (s, ti) relative to o-, in the sense defined before Lemma 2.
Hence by Lemma 2, P(sl, 8) is true. Let s’=Out(Ar,s, 8, zr) and S’l
Out(A, s 1, 8, 7r). Then the hypotheses of Lemma 3 are easily verified, so (s , ti) is
matched to (s’, ) relative tort. Since P(s1, t) is true andP{A}Q holds, Q(S’l, ) is
true. By Lemma 2, Qtr(s’, ) is true. Since Air A, this establishes the truth of
Ptr{A}Qtr, and hence rule 10) is valid.

All other rules can be verified directly from the corresponding clause in the
definition of Comp. This completes the proof of Theorem 1.

Using Lemma 3 we can give a short proof that the truth of a formula P{A}Q,
as defined at the beginning of this section, is independent of the choice of 6. Of
course it would have been more logical to prove this immediately after the
definition, and in fact Lemmas 1 through 3 could have been proven there.
However, Lemma 3 would have been very difficult to motivate.
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LEMMA 4. The truth of P{A}Q is independent of the choice of 6.
Proof. Suppose 61 and 62 both assign registers to the free variables of

formulas P and Q, and the free set of statement A, and 7r makes the proper
procedure assignments for A. Suppose for all states Sl and s, if P(Sl, 61) is true
and s’ Out(A, s 6 r), then Q(s’1, 1, , 61) is true. We wish to show the same can be
said with 61 replaced by 62. Hence let s2 be any state, and suppose P(s2, t2) is true.
Choose a state Sl such that (Sl, 6) is matched to (s2, 62) relative to the empty (or
identity) substitution ro. Then by Lemma 2, P(s1,61) is true. Let s=
Out(Atro, s2, 62, r) (note that Ao-o A). Then the hypotheses of Lemma 3 are
satisfied, since the lists , g, , are all empty, so (s l, 61) is matched to (s2, t2)
relative to tro. By Lemma 2 Q(s’, tl)Q(s2, t2), so Q(s’2, t2), is true. This
completes the proof of Lemma 4.

6. The question of completeness of the rules. The corollary to Theorem 1
states that if is a sound deductive system for the language 2 relative to an
interpretation ,9, and if -e, P{A}Q, then P{A}Q is true in ///[# ]. We turn now to
the converse question, and ask under what conditions every true formula P{A}Q
is provable in the system (Y(, ).

If we assume is an axiomatic deductive system, then the formulas P{A}Q
provable in the system (Xe, ) are recursively enumerable. On the other hand, the
formula true {A } false is true in dR[#] iff A fails to halt for all initial values of its
global variables. Therefore the true formulas cannot be recursively enumerable in
case 5’x, f’2 and # are such that the halting problem for AI[, ot’2] is recursively
unsolvable. In particular, we have

THEOREM 2. Ifo is (or +" i.e., without multiplication) and is an
axiomatic deductive system for 2, then (, ) is incomplete in the sense that there
is a formula P{A}Q true in d///[o ], but such that not -e. P{A}Q, where includes
the standard interpretation in the natural numbers ]’or 1.

On the other hand, one has a feeling that the axioms and rules 1)-11) (or
small modifications of 1)-11)) are complete in some sense, and the
incompleteness is probably due to the incompleteness of the system @. But there is
another way in which the system can fail to be complete, and that it is if the
assertion language2 is not powerful enough to express invariants for the loops.
Let us fix the language 1, 2 and the interpretation # with domain . Suppose
P2 and A is a statement of Alia1, ’2], and $ =(21,""" ,Xn) is a list of all
variables occurring either free in P or in the free set of A. Then we say the post
relation corresponding to P and A is the relation Q(Xl,’", x,) on D such that
Q(dl, , d,) is true iff there is a state s and variable assignment 6 to Xl, , x,
such that d s’((x)), 1,. ., n, where s’= Out(A, s, , r), P(s, ) is true, and
r is appropria_te to the context ofA in the program. The formula Q in2 expresses
the relation Q iff Q has free variables Xl,."", x,, and

<::>O(dl,""" ,d,)
Xl,

for all da, , d, O. We let ’post(P, A)’ denote a particular formula in oY2 (say
the one with the least G6del number)which expresses the post relation corre-
sponding to P and A.
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DEFINITION. The language ’2 is expressive (relative to ,91 andS) iff
(i) is in and receives its standard interpretation in

(ii) For every formula P in ,2 and statement A there is a formula O in ,2
which expresses the post relation corresponding to P and A.

LEMMA 5. N is expressive (relative to N, lV, and i).
Proof. Given P and A, then roughly speaking the post relation O is true of

numbers a 1, , a, iff there are initial values b 1, , b, satisfying P such that A
will terminate with these as initial values, and the final values of (xl,. ", x,) are
(al,. ", a,). Since A describes a partial recursive function and partial recursive
functions are expressible in N, the lemma follows.

We remark that / (i.e., N without multiplication) is not expressive
(relative to /, /, and /) because every recursively enumerable (r.e.) set is the
post condition corresponding to 0 0 and some A. On the other hand, truth in
is decidable (by Presburger’s result), so not every r.e. set is expressible in /.

Let us say that the proof system forO2 is semantically complete relative to
iff: a formula P of2 is provable in iff its universal closure is true under 5. Of
course by the G6del Incompleteness Theorem, no axiomatic system fi0 for number
theory can be semantically complete, but for the purpose of stating a completeness
theorem for Y(, we shall assume we have a complete nonaxiomatizable system.

THEOREM 3 (Completeness of Y(). Let 3-be a semantically complete proof
system for2 (relative to d) and suppose 52 is expressive relative to1 and. Then
-e,rP{A}Q whenever P{A}Q.

COROLLARY. Let 3- be a complete (noneffective) proof system for. Then
t--g,P{A}Q if and only if P{A}Q is true in d//[5v].

Proof of theorem. Given a statement A (part of a larger program) let A’ be
the result of substituting all procedure bodies, with formal parameters replaced by
actual parameters and local variables renamed where necessary, for procedure
calls repeatedly until no procedure calls remain. This process terminates because
of our outlawing of recursive procedures. The theorem is proved by induction on
the sum of the length of A’ and the number of procedure body substitutions
necessary to convert A to A’. If A is not a procedure call statement, then exactly
one of the rules 1)-7) can be applied nicely (sometimes with rule 11), the rule of
consequence) to prove A from previously proved statements. Rules 8), 9), and 10)
are needed for procedure call statements. We will discuss several of the more
interesting cases.

a) Compound statements. Suppose P{begin A; A* end}R is true in d/t[].
Let Q be a formula expressing the post relation corresponding to P and A. Then
by the definitions involved, it is easy to see that P{A}Q and Q{begin A * end}R
are both true, and so both are provable in the system (, 3-) by the induction
hypothesis. Therefore by rule 3),

i--e, P{begin A A * end}R.

The case P{begin end}Q is handled by using rule 4) and the rule of
consequence.

b) Assignment statements. Suppose P{x := e}Q is true. Then the universal
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closure of

must be true under the interpretation N, so

But

e,-Qe{x := e}Q
X

by axiom 5), and t-- Q Q, so e,rP{x := e}Q by the rule of consequence.
c) While statements. Suppose P{while R doA od}Q is true in d/t[ ]. In order

to apply rule 7), the rule of while statements, we must find a loop invariant P1 with
the properties that P1 & R{A }P1 is true, and (the universal closures of) P P1 and
(P1 & -nR) Q are true. The induction hypothesis can then be applied to assume
-ae,r) PI&R{A}P1, and by the completeness of -, PP1 and
t--r (P1 & R)Q. Hence by rules 7) and 11), e,rP{while R do A od}Q.

Let y l, , yn be a list of the variables in the free set of A, together with the
free variables in P, R, and Q. We will construct the loop invariant P1 with free
variables yl,..., yn such that Pl(d,"’, dn) holds iff there are initial values
d, d for Yl, ..., y such that P(d’l, d’,) is true, and after some finite
number of passes through the while loop (i.e. after A has been executed some
finite number of times with the condition R satisfied before each time) the values
of y 1," , y,, will be dl, , d,. More precisely, PI is equivalent to the infinite
disjunction Q v Q2 v..., where QI is P and Qi+l is post(Q & R,A), i=
1, 2, . The reader can easily verify that if such a finite P1 can be found, then the
conditions in the previous paragraph are satisfied. But in fact, P is just
::lZl ::iznP2, where P2 expresses the post relation corresponding to P and

while (R & (y Z V y2 7 Z2 V V Yn 7 Zn)) doA od,

and z 1, , zn are new variables. P2 is in the language 2, by our assumption that
2 is expressive. This completes case c).

d) Procedure calls. Suppose P{eall p(t :)}Q is true, where the procedure
declaration for p is p(Y :7) pro K. By definition of Comp,

is true. The naive argument, which only works if there are no variable clashes, is
the following. Since . & P-{K}O-

U U

is true, it is provable by the induction hypothesis. By the rule of procedure calls
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(rule 8)),

3 6 & P- {call p($ 7)} Q-_
u u

is provable. By the rule of parameter substitution (rule 9)), 6=
6 & P {call p(ti "6)}Q is provable. Finally P{cali p(t "6)}Q is provable by the rule
of consequence.

The difficulties with this argument are first, the formal and actual parameters
might have variables in common, and second, P and Q may have occurrences of
the formal parameters even if the first condition does not hold. To handle the
second problem, we let - be a substitution which assigns distinct new variables to
all variables in ($, t3) which do not occur in (a, 6). We will concentrate on showing
P-{call p(u’e)}Q" is provable, and then apply the rule of variable substitution.
Since the variables renamed by z do not occur in the free set of call p(t7 "6), and
since P{call p(a’6)}Q is true, it is intuitively clear (and follows formally from
Lemmas 2 and 3) that

(1’) P-{call p(a g)}O-.

To handle the first problem (along with the second problem) let f be a list of
the variables occurring in the expressions 6, and let f’ be a list of distinct new
variables of the same length, and let 6’ be the result of substituting these new
variables for the old in . By definition of Comp and (1’),

is true. We will show PI{K}Q1 is true, where

Plisg=’&Pr and QliSO’_

Suppose S1 and tl are state and variable assignments such that PI(S1, tl) is true,
and 61 assigns registers to the free set of K and the free variables of P1 and Q1, and
to no other variables. Thus t is not defined for any variable in (ti, ) unless that
variable is also in (, 3). Hence we can find s and 6 so that

A) s(6(z))=Sl(61(z)) for all variables z (:, 3), if 61(z) is defined,
B) s(6(u,)) sl(61(x,)), 1,. , m,
C) s(6(f))= s1(61(f’)) for each variable f in 6 and corresponding f’ in 6’,

and further, condition d), stated before Lemma 2, is satisfied. Hence (s l, 1) is
matched to (s, 6) relative to

u, e

x/)

[Condition c) is satisfied by condition C) above, and the fact that PI(s1, 1) is true,
and P1 includes the conjunct ’.] Thus by Lemma 3, (s, 1) is matched to
(s’, 8) relative tor, where s’= Out(Kr, s, 8, 7r) ands Out(K, Sl, 81, 7r). Nowby
comparing the values (s, 81) given to variables in P with those (s, 8) gives to the
variables in Pr, it is easy to see P’(s, ) is true. Since P’{Ko’}O" is true, it follows
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that O’(s’, 6) is true. Again by comparing values assigned to variables, and noting
property C) above holds when s and s are replaced by s’ and s respectively (since
K and Ktr leave the values of f’ and f unchanged), we see that O(s, 6 a) is true.
This completes the proof that Pa{K}Q1 is true.

By the induction hypothesis, Pa{K}Q is provable. By the rule of procedure
calls, P{cali p($ 5)}01 is provable. By the rule 9) of parameter substitution, we
can rename t3 by 5’ and rename $ by 2’ (these new variables are distinct from the
ones - assigns) to obtain that

5’ 6’ &P’ call p(Y’

is provable. Again by the rule 9) of parameter substitution and the substitution

we obtain that

t3’= ? & P-{cali_ p(.2’" tS’)}Q-r

is provable. Again by the rule 9) of parameter substitution and the substitution

u, e

X,

we obtain that

e e & P-{cali p(a’e)}Qr

is provable. Finally, conjunct can be removed by the rule of consequence,
and the rule 10) of variable substitution with substitution - can be applied to
prove P{cI p(a "6)}O.
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AN EXTENSION OF COMPUTATIONAL DUALITY
TO SEQUENCES OF BILINEAR COMPUTATIONS*

ROBERT L. PROBERT

Abstract. An extension of an earlier result on the computational duality of the problem of
computing sets of bilinear forms by a single bilinear algorithm is given to that of computing a set of
multilinear forms by a sequence of bilinear algorithms. Such problems are called piecewise bilinear
computations. It is shown that piecewise bilinear computations represented by dihedral permutations
of the dimensions of a multiple matrix product, for example, have exactly the same computational
complexity with respect to multiplication operations as the original multiple matrix multiplication
problem, and additive complexity given by the additive complexity of the original problem plus the
decrease in size of the new product matrix from that of the original product matrix. This result proves
that duality preserves arithmetic optimality even for algorithms developed by such local optimization
techniques as dynamic progrlmming. Finally, it is noted that since the result is constructive, it yields a
method for generating equicomplex new algorithms from a given one, even if the given algorithm is
nonoptimal or "approximately optimal".

Key words, matrix multiplication, additive complexity, multilinear forms, duality, analysis of
algorithms, dynamic programming, bilinear computations

Introduction. The discovery by Strassen [ 13] of an algorithm for multiplying
two matrices of order n using a number of arithmetic operations proportional to
n281 provided considerable impetus to the study of the arithmetic complexity of
straight-line computations of common functions. In particular, Strassen’s
algorithm belongs to a very simple class of algorithms called bilinear algorithms
[6]. These algorithms are allowed to use as multiplication steps products of only a
linear sum of elements of the left matrix by a linear sum of elements of the right
matrix. Since such algorithms are not able to exploit commutativity of multiplica-
tion, these algorithms may be implemented recursively to multiply matrices. As
well, there is at worst a linear increase in arithmetic cost of considering only
bilinear algorithms rather than more powerful algorithms which are able to
exploit multiplicative commutativity [2], [12], [14]. We will study only bilinear
algorithms and sequences of such algorithms in this paper.

Algorithms in this class are amenable to representation by an ordered triple
of directed acyclic graphs called computation graphs [11]. By utilizing simple
dihedral graph operations, i.e., operations equivalent to sequences of rotations
and reflections (as in dihedral permutations), it was shown that matrix multiplica-
tion problems represented by all permutations of a given triple of dimensions were
of equal multiplicative complexity to the original problem [3], [9], [10] and of
additive complexity equal to that of the original problem plus the decrease in
product matrix size [7], [ 11]. This result is known as the "computational duality"
or "symmetry" theorem for matrix multiplication problems.

In this paper, we study the specific problem of efficiently computing a given
product of several matrices by a sequence of products of pairs of matrices where
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Canada S7N 0W0. This work was supported by the National Research Council of Canada under
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each product is computed by a bilinear algorithm. A sequence of bilinear
algorithms for computing such a sequence of pairwise matrix products will be
called a piecewise bilinear algorithm. Our objective is to define dihedral transfor-
mations on such algorithms and to utilize these operations to prove an extension
of computational duality to sequences o matrix multiplications.

For example, consider the problem of computing A3xzBzxzC2x2 by a piece-
wise bilinear algorithm. There are two possible schemes for such algorithms,
namely compute (AB)C and compute A (BC). By computational duality applied
to lower bounds due to Hopcroft and Kerr as in 10], the computational complex-
ities with respect to multiplications of performing the piecewise bilinear
algorithms over say the integers are 22 and 18 respectively. Thus, the optimal
piecewise bilinear algorithm for computing ABC is to compute BC using Stras-
sen’s algorithm, and A (BC) using block multiplication. We say the piecewise
bilinear complexity of computing ABC is 18.

For a given multiple matrix multiplication problem, a dynamic programming
strategy such as in [ 1] can be used to find the optimal piecewise bilinear algorithm
for that problem, given the costs of optimal bilinear algorithms for all two-matrix
multiplication subproblems. For a problem of multiplying n matrices, the dynamic
programming method uses time proportional to n 3. The method used in [4] finds
an "approximately optimal" piecewise bilinear algorithm in linear time, i.e. an
algorithm whose cost for the given problem is no worse than twice that of an
optimal algorithm. We will show that optimality and approximate optimality are
both preserved by the duality transformations we define.

For a different class of algorithms for multiplying several matrices in which all
multiplication,steps involve elements from all matrices, computational duality has
been shown by de Pillis [5] and Dobkin [15].

Since piecewise optimization techniques cannot be applied to such
algorithms, from a computational viewpoint that class of algorithms may appear
somewhat unnatural. For example, four multiplications are required to compute
A2xlBlxlClxl if all multiplications must involve elements from each original
matrix. Only three multiplications are needed over piecewise bilinear algorithms
if some elementary optimization is performed, and the problem computed as
A(BC).

Basic definitions. More precise definitions of some of the terms below are
given in [ 10]; they are sketched here to make the results in this paper somewhat
self-contained.

An (m, n, p) product is the problem of multiplying two matrices with elements
belonging to a (possibly noncommutative) ring with unit, an m n matrix A by an
n xp matrix B, to yield an m xp product matrix, C.

A bilinear algorithm a for computing (m, n, p) products is a finite sequence of
steps fl, f2, such that

(i) for each k, f is an element of A or of B, orf -/] "op" f- for i, ] < k and
"op" e {"+", "-", "."}, orf, =r .f where i<k and re{O, 1,-1}, and

(ii) whenever f =1 f., f and/ must be linear forms (sums/differences)
in elements of A and B respectively, and

(iii) for each element z in C AB, there is at least one k such that f z.
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The classical algorithm and Strassen’s algorithm for computing (2, 2, 2)
products for example are both bilinear algorithms.

The problem of computing (m l, m2,"’, mn+l) products is the problem of
multiplying n matrices of dimensions ml m2, m2 m3, m, mn+l to yield a
matrix of dimension (m ran+l).

A piecewise bilinear algorithm a for computing (m,..., mn+x) products
is an algorithm which consists of n-1 successive bilinear subalgorithms
(a 1, , an-l) computing products of distinct pairs of matrices such that the final
subalgorithm, an-I, yields the correct ma mn+l product matrix.

A rotation of a given n + 1-tuple of matrix dimensions (ma, m,. ., ran+l)
yields a new n+l-tuple (mn+,ml, m2,’",mn). This is written as
(ml, m2, ran+l)R (mn+l, ml,""", mn).

Similarly, we define a reflection operation D on n+l-tuples as
(ml, m2, mn+l) (mn+a, mn,""",

A dihedral permutation of an n + 1-tuple is any permutation consisting of an
arbitrary sequence of rotations and reflections.

Finally, to simplify notation, we define a sequence of matrix dimension triples
to describe the sequence of pairwise matrix products that make up the given
piecewise bilinear algorithm. Let a be the algorithm given for computing
(ml, ", mn+l) products. Then, S (sl, $2,’’’, Sn-1) is said to be a subcomputa-
tion sequence for algorithm a where the order of appearance of the si’s reflects the
order of subcomputations of a, and for each i,

(i) Si (Pil, Pjl, Pkl) where Pil miz, Pjl miz, Pk mk2 and i2 <j2 < k2,
(ii) if si (mia, miz, mi3) and i2-il > 1, there is a unique j <i such that

Sj (rail, ink, mi2) and il < k < i2,
(iii) if si (mi,, mi, mi.0 and i3--i2> 1, there is a unique <i such that

Sl (mi, mq, mi3) and i2 < q < i3, and
(iv) if si (mi,, mi, mi3) and i3-il 2, there is no ] < such that s,

(m,, mil, ml) or si (m,, mi3, ml).
It is not hard to show that a subcomputation sequence S (s 1, , s,_) for

computing (m a,..., m,+) products has the following properties:
(a) for each m, 1 <j < n + 1, there is exactly one such that si (m,, m, ml),

and
(b) s,-1 (ml, mq, m,+a) where 1 <q <n + 1, (since S,_l isthe triple describ-

ing the final matrix multiplication, the triple of matrix dimensions must
begin and end with the dimensions of the product matrix, m and
respectively).

These properties together guarantee that any piecewise bilinear algorithm to
compute (ma,..., m,+) products can be stepwise described by a subcomputa-
tion sequence of n- 1 triples, and, in turn, any such subcomputation sequence
describes a valid sequence of matrix multiplications in the piecewise bilinear
computation of (m 1, , m,+l) products. Of course, several such sequences may
be computationally equivalent.

Computational duality of piecewise bilinear algorithms. In order to relate
computational duality for (m 1,’’" ,mn+l) products to that for simple
(m a, m2, m) products, we review the computational duality theorem for matrix
multiplication.
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LEMMA 1 (Computational duality) [ 10], [ 11 ]. Given a bilinear algorithm a ]:or
computing (ml, m2, m3) products using multiplication steps and a
addition steps, and any permutation @ on triples, there is a uniform
method o]’ constructing a dual algorithm c’ from such that ’ computes
(ml, m2, m3) =(ul, u2, u3) products in multiplication steps and (a +mlm3-
u u3) additions

In this paper, we wish to show that, given a piecewise bilinear algorithm a for
computing (ml, m2," ",m.+l) products using multiplication steps and a
additions/subtractions, and any dihedral permutation @ on n + 1-tuples, there is
a uniform method of constructing a dual piecewise bilinear algorithm
such that a’ computes (ml, m2, mn+l) (ul, u2, Un+l) products in t
multiplication steps and (a +mlm,+l-UlU,+l) additive operations. This result
is clearly a generalization of the previous result, since every permutation on triples
is a dihedral permutation.

The method involves transforming some of the subalgorithms into corre-
sponding dual subalgorithms, then combining, possibly in a different order than in
the original algorithm, the resultant new collection of subalgorithms to yield the
required dual piecewise bilinear algorithm.

We define operations of reflection and rotation on subcomputation
sequences, then show that from a sequence S---(S1, S2,’’’,Sn-1) for
(ml, m2," ", ran+l) products, given a dihedral permutation on n + 1-tuples, a
subcomputation sequence for (ml, m2,’’" ,m,,+l) products is obtained by
applying to S any sequence of rotations and reflections equivalent to the sequence
of rotation and reflection operations on n + 1-tuples which constitute @.

LEMMA 2. If S=(S1, S2, ",Sn-1) is a subcomputation sequence ]’or
19 19(ml, ",m,+l) products, then sD=(s,s2, ",S,-1) is a subcomputation

sequence ]:or (ml," ", m,+l)D (m,+l, m,, ., ml) products.
Proof. The proof proceeds by induction on n. The result holds trivially for

n 2. Assume the lemma holds for matrix products of up to n 1 matrices.
By the properties of subcomputation sequences, s,-1 (m l, ml, m,+l). By

the definition of a subcomputation sequence, there is a subcomputation sequence
S Sil, Sin_l) of length n for (ml, m/+l, m,+l) products or a subcom-
putation sequence S of length l- 2 for computing (ml, m2," ", ml) products or

Dboth. By the inductive hypothesis, (S’)19 (s19il, ., s i._,) is a subcomputation
sequence for (ml, ml+l,’" ", mn+l)D products, if < n.

Then, the same argument yields a subcomputation sequence ()19 for
(ml,.. ", mt) products, if > 2.

Finally, either (()19, (S’)19, Sn-1) or ((S’)D, ()D, DS,-1) (equivalent sequences)
are subcomputation sequences for (m,+l, m,, , rn 1) products. To see this, note
that

Sn-1 1,

(mn+ 1, ml, m 1)

and (S’)19, (g)19 are subcomputation sequences for (m,+l,’" ,m) and
(m,..., ml) products, respectively.

Thus, by induction, the lemma holds for all n, as required, l-1
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Before deriving the analogous result for the rotation operation on subcompu-
tation sequences, we note that given any such sequence S =(sa, s2,’" ,s,_)
there is an equivalent sequence T-(tl, t2," , t,_l) where the last k triples (for
some k _>- 1) have the form (mjl, m,, ran+l), (mj2, ml, ran+l), ", (mik_l,
m,+a), (m, mi_, m,+). Thus, without loss of generality, we will now assume all
subcomputation sequences are written in this "normal form" before any duality
operations are applied.

LEMMA 3. Given a subcomputation sequence S (sa, s2, , s,
s+ , s,_ a) in normalform to compute (m m2, , m,+) products where k is

defined above,

is a subcompumtion sequence for (m,+, ml," , m,) (ml, m2," mn+l)
products.

Proof. This follows by the definition of a subcomputation sequence and
straightforward substitution. It should be noted that S will usually not be in
normal form if S is.

By applying computational duality for matrix multiplication (Lemma 1) to
individual triples in the subcomputation sequences SD and Sn, we have

LEMMA 4. Given a piecewise bilinear algorithm with subcomputation
sequence S which computes (ml, m2,"" ", mn+l) products using multiplication
steps and a additions/sub,actions, it is possible to consuuct a dual algorithm, with
subcomputation sequence SD, which computes (m 1, m, , m,+a)D products in
multiplications and a additions/subtractions, and one with subcomputation
sequence S, which computes (m, m2, mn+)R products in multiplications
and a + mm,+-m.+lm. additions/sub,actions.

Proof. Compare the arithmetic costs of new and old corresponding subcom-
putation triples using Lemma 1. The details of new algorithm construction from
algorithm a follow from earlier computational duality [10], [11]; the reader
interested in implementing these transformations is referred to 10] for details of
bilinear algorithm representations and transformations.

Since any arbitrary dihedral permutation may be written as a sequence of
rotations and reflections, given any such and a piecewise bilinear algorithm
(from which a subcomputation sequence is easily derived) for computing
(m, m2,-’’, m.+l) products, we can successively apply Lemma 4 according to
any sequence of reflections and rotations equivalent to to construct a piecewise
bilinear algorithm for (ml, m2,"’’, mn+x) products. Noting that reflections do
not alter product matrix size and successive rotations each increase cost by the
amount of decrease of product matrix size, we have the main result.

TnEORE 5. Given a piecewise bilinear algorithm a for computing
(ml, m2," ", mn+) products and any dihedral permutation , there is a uniform
method for constructing a piecewise bilinear algorithm a’ from a for compun’ng
(m l, m2,’"’, m,+l) (ua, u2,’’’, U, +l) products using exactly the same number
of multiplications as a and mm,+a-uu,+l more addin’ons/subgacn’ons.

COROLLARY 6. If a is an optimal piecewise bilinear algorithm for
(m,m2," .,m,+) products with respect to number of mulplications
(additions/subgacn’ons) used, a’ is an optimal piecewise bilinear algorithm for
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(ml, m2,’’.,mn+l) products with respect to number of multiplications
(add/subtractoperations). f3

Thus, by demonstrating constructively duality among algorithms, we have
demonstrated a tight computational complexity relationship among dual prob-
lems.

Ramifications of extended computational duality. Corollary 6 is actually a
theorem on algorithm duality; problem duality with respect to essential computa-
tional complexity follows by assuming that the original algorithm for the original
problem is optimal. If that algorithm is nonoptimal (with respect to multiplica-
tions, say, since multiplicative complexity of dual problems is identical whereas
additive cost of dual problems varies conversely as the product matrix size), then
any dual algorithm will be exactly as nonoptimal for the dual problem.

This leads us to consider the class of "approximately optimal" piecewise
bilinear algorithms for (m a, m2,""", ran+a) products [4]. There appears to be a
tradeoff between the cost of finding efficient algorithms for this problem of
multiplying n matrices and the degree of optimality of the algorithms found. For
example, the dynamic program algorithm in 1] finds an optimal algorithm in time
n3; the "min method" [4] (the resultant algorithm computes in both directions
beginning with a matrix product triple which begins or ends with a minimum
dimension) finds an algorithm at worst half as optimal in linear time and such bad
algorithms can be derived by the min method infinitely often. This result is proved
in [4] with (1, 1, x, 1) as the input problem assuming pairs of matrices are always
multiplied classically, but actually holds for any piecewise bilinear algorithm.
Thus, as a corollary to Theorem 5 we have

COROLLARY 7. Given an approximately optimal algorithm a for computing
(m 1, mE, mn+) products and any dihedral permutation , we can construct an
algorithm ’ from for computing (m 1, m2," ", m+l) products, and a’ has the
same approximate optimality as a.

Thus, for the problem of computing (m, m., , m,+) products, computa-
tional duality is a property of algorithms produced by common optimization
techniques such as dynamic programming and the min method. This in turn
implies a symmetry of structure for such optimization techniques which may
possibly be exploited to gain more understanding of these techniques and simplify
proofs and algorithms for them.

The fact that the matrix problem is so simply stated may indicate it is an ideal
vehicle for studying design and optimization.

This leads us to note the existence of complexity classes of optimal (or
approximately optimal) algorithms for dual computations. Given an n + 1-tuple
(m 1, m2," ", ran+l) of matrix dimensions, if all dimensions are distinct there are
(n / 1)! problems in the class of problems given by all (symmetric) permutations of
(m 1, m2, , m,+). A given problem in this class (actually the optimal algorithm
for this problem) has the same complexity as all problems given by dihedral
permutations of the n + 1-tuple describing the given problem. There are 2(n + 1)
problems in the "complexity class" of all dihedral permutations of a
given problem. Thus, by Theorem 5, there are at most (n + 1)!/[2(n + 1)]= n !/2
equivalence class of problems of equal complexity (or of equal approximate
complexity).



AN EXTENSION OF COMPUTATIONAL DUALITY 97

Of course, if the matrix dimensions are not all distinct, we may have fewer
complexity classes than this (for n => 3).

An open question is whether computational duality can be extended to a
larger class of problems than those problems represented by all dihedral permuta-
tions of a given (n + 1)-tuple of matrix dimensions. Certainly, the extension
cannot be made to the class of problems characterized by all symmetric permuta-
tions of a given (n + 1)-tuple of dimensions. As an example, consider the problems
of computing (3, 2, 3, 2) products versus (3, 2, 2, 3) products. By computational
duality applied to some known lower bounds on the complexity of 2-matrix
multiplication [10], the former has multiplicative complexity 22, the latter has
complexity 26. Thus, multiplicative complexity is not invariant over the problems
represented by all symmetric permutations of a given n + 1-tuple of matrix
dimension (for n => 3, of course).

Before concluding, rather than repeating implementation details for 2-
matrix multiplication given in [ 10], we merely refer the reader to that paper. The
straightforward techniques for constructing new bilinear algorithms for dual
problems are illustrated in a detailed example. Using Hopcroft and Kerr’s
algorithm [8] for computing (4, 2, 4) products, algorithms of equal cost are
constructed for the dual problems of computing (2, 4, 4) and (4, 4, 2) products.
After transformations on bilinear algorithms for matrix multiplication are under-
stood, all that remains given a piecewise bilinear algorithm c for computing
(m 1, , m,+1) products, and a dihedral permutation @, is to derive the subcom-
putation sequence S corresponding to a, factor @ into rotation and reflection
operations, using Lemmas 2 and 3 apply an equivalent sequence of rotation and
reflection operations to S, apply duality transformations to the bilinear sub-
algorithms of a where required, and reorder the new collection of bilinear
subalgorithms according to S. This yields a piecewise bilinear algorithm for
computing (m, m2, ", mn+l) products by Theorem 5.

Thus, we have demonstrated the existence of a large class of computationally
dual problems of dually complex algorithmic structure, and therefore, of course,
of dual arithmetic complexity.

Pairwise multi-matrix multiplication is one example of a particular kind of
computationally dual problem mentioned in [11], namely one in which the
essential kind of problem is invariant over dihedral duality transformations. Of
course, new lower bounds for specific algebraic problems must be derived before
lower bounds can be given by our approach to classes of problems.
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COMPUTATIONAL PARALLELS BETWEEN THE REGULAR
AND CONTEXT-FREE LANGUAGES*

H. B. HUNT, III" AND D. J. ROSENKRANTZ{

Abstract. Several sufficient conditions are presented for a regular set or context-free language problem to
be as hard as testing for emptiness or testing for equivalence to the language {0, 1}*. These sufficient
conditions provide a unified method for proving undecidability or complexity results and apply to a large
number of language problems studied in the literature. Many new nonpolynomial lower complexity bounds
and undecidability results follow easily.

The techniques used to prove these sufficient conditions involve reducibilities utilizing simple and
efficient encodings by homomorphisms.

Key words, computational complexity, efficient reducibility, decidability, lower bounds, regular sets,
regular expressions, context-free laqguages, and context-free grammars

1. Introduction. By a language predicate, we mean any function from a set of
languages into the set {True, False}. Here, we consider the complexity or decidability of
language predicates in general. For a given class of language descriptors (such as the
context-free grammars or the regular expressions) and a given language predicate on
the corresponding set of languages, we consider the complexity or decidability of testing
a language descriptor to determine if the language it denotes satisfies the predicate. Two
language predicates, whose complexities have been studied for many different kinds of
language descriptors, are testing for emptiness and testing for equivalence to the
language {0, 1}*, which we denote by "=" and "={0, 1}*", respectively.

We give several sufficient conditions for a regular set or context-free language
predicate to be as hard as "=" or "={0, 1}*". An example of such sufficient
conditions

1) the predicate is true for {0, 1}*; and
2) there exists a context-free language L’ that is not expressible as x \L, where x is a

string and L is a language for which the predicate is true.
Any context-free language predicate satisfying these two conditions is as hard as
"={0, 1}*", and thus is undecidable when the context-free languages are denoted by
context-free grammars or pushdown automata. If the word "regular" is substituted for
the word "context-free" in the statement of the two conditions above, then any
predicate that satisfies the resulting two conditions is as hard as "={0, 1}*" for the
regular sets, and thus is PSPACE-hard, when the regular sets are denoted by regular
expressions, regular grammars, or nondeterministic finite automata.

The techniques used to prove the sufficiency of the conditions presented here
involve showing that there is an efficient (not just effective) reduction of the "=" or
"={0, 1}*" problem to any language predicate satisfying them. These reductions utilize
simple encoding arguments involving homomorphisms. The encodings are the same for
several different language classes including the context-free languages and the regular
sets. Thus, for a variety of different language classes , there is a uniform way of
embedding the "=
satisfying the given sufficient conditions.
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In 2 the undecidability of context-free language predicates is studied in detail.
Several general undecidability theorems for context-free language predicates are
presented. These theorems extend results in [9], [11], and [13].

In 3, the complexity of regular set problems is studied. Many regular set
predicates studied in the literature are shown to be as hard as the regular expression
equivalence problem, the complexity of which is extensively studied in [19] and [28].

Section 4 is a short conclusion.
Several preliminary definitions are needed to read this paper. See [14] for the

definitions of a regular set, regular grammar, deterministic finite automaton, nondeter-
ministic finite automaton, pushdown automaton, context-free language (cfl), context-
free grammar (cfg), linear bounded automaton, context-sensitive language (csl),
context-sensitive grammar (csg), and Turing machine (Tm). A two-way deterministic
finite automaton (2dfa) is defined as in [14], except that the input string is enclosed by
endmarkers. We abbreviate infinitely often by i.o. All logarithms are to the base 2.

We use A to denote the empty string and Q5 to denote the empty set.
DEFINITION 1.1. The set of (, ", *) regular expressions over {0, 1} is defined

recursively as follows:
(a) A, QS, 0 and 1 are (CJ, ", *) regular expressions.
(b) If A and B are (t.J, ", *) regular expressions, then so are

(A)CI(B), (A)’(B), and (A)*.
(c) Nothing else is a (, ", *) regular expression.
Thus (U, ", *) regular expressions are strings over {(, U, ", *,), 3,, , 0, 1}. The sets

of (LJ, ", *, f)), (U, ", *," ), (U, ", *, 0)), and (U, ", *, 2) regular expressions over {0, 1} are
defined analogously. Here 71, ", 0), and 2 denote intersection, complementation with
respect to {0, 1}*, exclusive or, and squaring respectively. Thus if A, B

___
{0, 1}*, then

A)B {x Ix A f’l-B or x 6"A 71 B} and A2 {Z] there exist x, y A for which
z=x.y}.

The language denoted by a regular expression R is written L(R).
DEFINITION 1.2. The star height SH of a (, ", *) regular expression is defined

recursively:
SH(0)=0, SH(1)=0, SH(A)=0, SH()=0

SH((A )(_J (B))= max {SH(A ), SH(B )},

SH((A)" (B)) max {SH(A), SH(B)},

SH((A)*) SH(A)+ 1.

The star height of a regular set L is the minimum of the star heights of any
(t_J, ", *) regular expression R such that L(R)= L.

DEFINITION 1.3. For cfgs we use to mean derives by a sequence of zero or more
steps. Let G (N, , P, S) be a cfg. Then L(G), the language generated by G, equals
{w[w Z* and S w}. G is said to be linear if the right-hand side of each production of
G is an element of E*U Z*NX*. G is said to be nonselfembedding if for all B in N,
B xBy implies x equals A or y equals A.

DEFINITION 1.4. A cfg G is said to be ambiguous if some string x in L(G) has two
distinct leftmost or, equivalently, two distinct rightmost derivations. G is said to be
inherently ambiguous if all cfgs generating L(G) are ambiguous.

detailed discussion of derivations and ambiguity can be found in [1].
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DEFINITION 1.5. Let k be a positive integer. A cfg G is said to be ambiguous o]’
degree k if each string in L(G) has at most k distinct derivations. G is said to be
inherently ambiguous of degree k if L(G) cannot be generated by any grammar that is
ambiguous of degree less than k, but some grammar generating L(G) is ambiguous of
degree k.

G is said to be infinitely ambiguous if for each positive integer i, there exists a string
in L(G) that has at least distinct leftmost derivations. G is said to be infinitely
inherently ambiguous if each grammar generating L(G) is infinitely ambiguous.

It is known that for all k _-> 2 there exist inherently ambiguous cfgs of degree k.
Similarly it is known that there exist infinitely inherently ambiguous cfgs [24].

In what follows E denotes an arbitrary finite nonempty alphabet.
DEFINITION 1.6. Let A, B

_
5;*.

A/B {Yl there exists x e A for which x’y e B}.

A/B {xl there exists y eB for which x’y

A\B is called the left quotient orB with respect to A. A/B is called the right quotient ofA
with respect to B.

DEFINITION 1.7. Let L _c E*. Then Lrev, the reversal ofL, equals {a, ". all each
aie,,andal aneL}.

DEFINITION 1.8. Let L
_

5;*. Then

Init (L)={xlx eE* and there exists y eE* for which x’y

Fin (L) {yly eE* and there exists x eE* for which x’y

DEFINITION 1.9. A language L
_

5;* is said to be bounded if and only if there exist
strings w1," , Wk in ,E* such that L

_
w’ w. A language that is not bounded is

said to be unbounded.
The following properties of unbounded regular sets are used repeatedly in this

paper.
LEMMA 1.10. LetL be any regularsetover {0, 1}. Then thefollowing are equivalent"
1) L is unbounded;
2) there exist strings r, s, x, and y in {0, 1}* such that

and

r’{Ox, 1 y}*’s
_
L;

3) there exist strings r, s, x, and y in {0, 1}* such that

r’{xO, y 1}*’s
_
L.

The proof of the equivalence of 1)and 2)can be found in [13]. The equivalence of
2) and 3) follows easily from the fact that the class of unbounded languages is closed
under reversal.

The next definition defines the concept of a predicate and introduces, for such a
predicate , four closely related sets of languages left, liright, (I, /’ S, X, y) and
(, r, s, x, y). These sets can be viewed as sets of languages that are generated from

the set of languages for which is true by several simple linguistic operations. Their
importance will become apparent in 2 and 3.

DEFINITION 1.11. A predicate is a function from a set L into {True, False}. is
said to be nontrivial if there exist a, b in L such that (a) True and (b) False.
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Let be nontrivial predicate on a class F of languages over {0, 1}. Then
(a) left {L’IL’= x\L, x {0, 1}+, (L)is true} and
(b) iright {L’IL’= L/x, x E {0, 1}+, (t)is true}.

Let r, s, x, and y be strings over {0, 1}. Then
(c) (, r, s, x, y)= {L’IL’= h -1 [a\[r\L/s]], a {0x, ly}/, (L) is true}, where

h:{0, 1}*-{0, 1}* is the one to one homomorphism defined by h(0) 0x and
h(1)= ly; and

(d) (, r, s, x, y)= {L’]L’ h-l[[r\L/s]/a], a {x0, y 1}/, (L) is true}, where
h:{0, 1}* {0,.1}* is the one to one homomorphism defined by h(0)= x0 and
h(1)= yl.

The reader should note that left, right, O9(, r, S, X, y) and gt (, r, s, x, y) are
classes of languages over {0, 1}. Note also that 9(i, /, /, /, /)-- left and

(i, /, /, /, / ) right. AS an illustration of Definition 1.11 (c), consider the predicate
that is true only for the language

L 011"{010, 1111, 00}*’10.

Let r 011, s 10, x 10, and y 1. Then

r\L/s {010, 1111, 00}*

and

{L’[L’=a\[r\L/s], a e{Ox, ly}+} {{010, 1111, 00}*, 11"{010, 1111, 00}*}.

Finally.

(, r,s,x, y)--{{0, 11}*, 1"{0, 11}*}.

DEFINITION 1.12. 1) P (NP) is the class of all languages over {0, 1} accepted by
some deterministic (nondeterministic) polynomially time-bounded Tm.

2) PSPACE is the class of all languages over {0, 1} accepted by some polynomially
space-bounded Tm.

3) DCSL (NDCSL) is the class of all languages over {0, 1} accepted by some
deterministic (nondeterministic) linear bounded automaton.

DEFINITION 1.13. Let E, A be finite nonempty alphabets. Let L E* andM_ A*.
1) We say that L is p-reducible toM if there exists a function f:E* -> A* computable

by a deterministic polynomially time-bounded Tm such that for all x in Y_,*, x is in L if
and only if f(x) is in M. L is said to be NP-(PSPACE-)hard if all languages in NP
(PSPACE) are p-reducible to it. L is said to be NP (PSPACE-)complete if it is NP
(PSPACE-)hard and is accepted by some nondeterministic polynomially time-
bounded (polynomially space-bounded) Tm.

2) A log-space transducer T is a deterministic Tm with a two-way read-only input
tape, a one-way output tape, and several two-way read-write work tapes such that T
given input x always halts with some string y on its output tape, and such that T never
uses more than O(log Ix[) tape cells on its work tapes. A function f: E* --> A* is said to be
log-computable if there exists a log-space transducer T such that T, when given input x
in E*, eventually halts with output f(x). If in addition If(x)[ O(Ixl), f is said to be
log-lin computable. We say that L is log-reducible toM if there exists a log-computable
function f: E* -> A* such that for all x in E*, x is in L if and only if f(x) is in M.

Let F(n) be the function

F(n) 22...2 } n levels of exponentiation,

i.e. F(0)= 1 and F(n)= 2F(n-1) for n > 0.
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THEOREM 1.14. 1) {RIR is a (, ", *) regular expression over {0, 1} and L(R)
{0, 1}*} is PSPACE-complete; requires space greater than n i.o., for all r less than 1, on
any nondeterministic Tm; and is an element ofDCSL if and only ifDCSL NDCSL.

2) {MIM is a 2dfa and L(M) {0, 1}*} is PSPACE-complete; and requires space
greater than n i.o., for all r less than 1, on any nondeterministic Tm.

3) {RIR is a (t_J, ", *, fq) regular expression over {0, 1} and L(R){O, 1}*} requires
space greater than 2cn/g i.o., for some c greater than O, on any Tm.

4) {RIR is a (t_J, ", *, 2) regular expression over {0, 1} and L(R){0, 1}*} requires
space greater than 2 i.o., for some c greater than O, on any Tin.

5) {G G is a nonselfembedding cf, with terminal alphabet {0, 1} andL(G) {O, 1}*}
requires space greater than 2cn/g ") i.o., for some c greater than O, on any Tm.

6) {R[R is a (, ", *, -) regular expression over {0, 1} and L(R){0, 1}*} requires
space greater than F(c "log n) i.o., for some c greater than O, on any Tm.

7) {R[R is a (, ", *, 03)regularexpression over {0, 1} and L(R {0, 1}*} requires
space greater than F(c "log n) Lo., for some c greater than O, on any Tin.

The pro6fs of 1), 4), and 6) can be found in [28]. The proof of 2) can be found in
[15], and the proof of 5)can be found in [19]. A weaker form of 3) appears in [15]; the
lower bound in 3) was suggested by L. J. Stockmeyer, and appears in [27]. Conclusion 7)
follows easily from conclusion 6) since L(-A) {0, 1}* O)L(A for all (, ", *, -) regular
expressions A over {0, 1}.

THEOREM 1.15. 1) {MIM is a 2dfa and L(M) } is PSPACE-complete; and
requires space greater than n i.o., for all r less than 1, on any nondeterministic Tin.

2) {R[R is a (t.J, ", *, fq) regular expression over {0, 1} and L(R) } is PSPACE-
hard.

3) {R[R is a (t.J, ", *, -) regular expression over {0, 1} andL(R) } requires space
greater than F(c "log n) i.o., for some c greater than O, on any Tin.

4) {R lR is a (U, ", *, (R)) regular expression over {0, 1} andL(R f} requires space
greater than F(c "log n) i.o., for some c greater than O, on any Tin.

The proofs of 1) and 2) can be found in [15]. The proof of 3) can be found in [28].
Again the lower bound in 4) follows easily from that in 3).

2. Undecidable properties of context-free languages. New general undecidability
theorems for predicates on the cfls are presented. Theorem 2.4 shows that any predicate
that sufficiently dichotomizes the cfls is undecidable. The conditions for sufficient
dichotomy are that the predicate is true for some language with an unbounded regular
subset, and that the predicate is false for some language that cannot be obtained from
the set of languages for which the predicate is true by several linguistic operations. Our
results extend related work in [9], [11], and [13]. Analogous results hold for many
subfamilies of the cfls including the linear cfls, the metalinear cfls, the on-line one
counter languages, and the least AFL containing {a"b"]n => 1}.

The first theorem is a special but important corollary of Theorem 2.4 below. We
present an independent proof of Theorem 2.1 in order to display the ideas behind the
proof of Theorem 2.4 in a simple setting.

THEOREM 2.1. Let be any predicate on the cfls over {0, 1} such that ({0, 1}*) is
true and such that eft or iright is a proper subset of the cfls over {0, 1}. Then for arbitrary
cg G, the predicate (L(G)) is undecidable. Similarlyfor arbitrary pushdown automaton
M, the predicate (L(M)) is undecidable.

Proofi We prove Theorem 2.1 for cfgs; the proof for pushdown automata is similar.
The proof consists of effectively reducing the known undecidable predicate "L(G)=
{0, 1}*" to the predicate (L(G)), where is any predicate on the cfls over {0, 1}
satisfying the conditions of the theorem. Let be any such predicate. Suppose left is a
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proper subset of the cfls over {0, 1}. Let Lt be a cfl over {0, 1} that is not in left. Let
h: {0, 1}*{0, 1}* be the homomorphism defined by h(0)= 00 and h(1)=01. (The
reader should note that this homomorphism is one to one.) For any cfg G, a cfgH can be
constructed effectively such that

L(H) L1 (.J L21,.J L3
and

L1 h(L(G))’IO{O,

L2 {00, 01}*’10.Ly

L3 =-[{00, 01}*’10"{0, 1}*].

We claim that (L(H)) is true if and only if L(G)= {0, 1}*.
There are two cases to consider.
Case 1. If L(G)= {0, 1}*, then h(L(G))= {00, 01}* and

L1---{00, 01}*’10"{0, 1}*.

Thus La U L3--{0, 1}*, so that L(H)= {0, 1}* and (L(H)) is true.
Case 2. If L(G) is properly contained in {0, 1}*, then there exists a string w in

{0, 1}*-L(G). This implies that h(w) is in {00, O1}*-h(L(G)), and that h(w)’10 is not
a prefix of any string in L1. Also, h(w)10 is not a prefix of any string in L3. Thus
h(w)’IO\L(H) Ly. If (L(H)) were true, Lt would be in lat. ButLt was selected to be
a cfl over {0, 1} not in lat. Therefore (L(H)) is false.

Thus (L(H)) is true if and only if L(G)={0, 1}*. Since H is constructed
effectively from G, the predicate (L(H)) is undecidable. The proof when rigt is a
proper subset of the cfls over {0, 1} is analogous. [-1

DEFINITION 2.2 A predicate is preserved by quotient with singletons on the left if
(L) true implies (x \L) is true for all x in {0, 1}+. Similarly is preserved by quotient

with singletons on the right if (L) true implies (L/x) is true for all x in {0, 1}+.
Unlike the results in [9], Theorem 2.1 does not require to be preserved by

quotient with singletons on either the left or the right. For example the following holds.
PROPOSITION 2.3. Let be the predicate "L [L]rev". Then is not preserved by

quotient with singletons on the left or on the right; but satisfies the conditions of Theorem
2.1. Thus for arbitrary cfg G the predicate "L(G)= [L(G)]rev’’ is undecidable.

Proof. Let L {001,100}. Then L [L]rev; but 0\L {0, 1} and L/O {10}. Thus
is not preserved by quotient with singletons on the left or on the right. Since {0, 1}*
[{0, 1}*]rev, ({0, 1}*) is true. Moreover as shown below, ileft is a proper subset of the
cfls over {0, 1}. Thus satisfies the conditions of Theorem 2.1; and for arbitrary cfg G
the predicate "L(G)= [L(G)]rev’’ is undecidable.

Facts 1 and 2 below show that the cfl 1"{0, 1}* is not in left, so that ileft is a proper
subset of the cfls over {0, 1}.

FACt 1. IfL is in left, then there exists an x in {0, 1}/ such that L/x [L/x ]rev.
FACT 2. There is no string x in {0, 1}/ such that

1"{0, 1}*/x--[1 {0, ling/x]rev.
To prove Fact 1, observe that if L is in left, there is a y in {0, 1}/ and Lo such that
L y\Lo and Lo [Lo]rev. But (y\Lo)/y equals [(y\Lo)/yrev]rev. Therefore letting
x yreV, L/x [L/x]rev. TO prove Fact 2, observe that for a string x in {0, 1}/ beginning
with 1

1"{0, l}*/x {h } U 1"{0, 1}*
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and for a string x in {0, 1}/ beginning with 0

1"{0, 1}*/x 1"{0, 1}*.

Thus for all x in {0, 1}+, 10 is in 1"{0, 1}*/x, but 01 is not. 1-1
Next Theorem 2.1 is extended so that need only be true for some cfl Lt that

contains an unbounded regular subset. The properties of unbounded regular sets that
we exploit are those of Lemma1.10. Thus a cfl Lt over {0, 1} has an unbounded regular
subset if and only if there exists strings r, s, x, and y in {0, 1}* such that

r’{Ox, ly}*’s Lt or r’{xO, y 1}*’s G
THEOREM 2.4. Let be any predicate on the cfls over {0, 1} ]’or which there exists a cfl

Lt and strings r, s, x, and y in {0, 1}* such that
(a) (L,) is true,
(b) r’{Ox, ly }*’s

_
L,, arid

(c) (, r, s, x, y) is a proper subset o]’ the cfls over {0, 1};
or

(d) (L,) is true,
(e) r’{x0, y 1}*’s

_
Lt, and

(f) (, r, s, x, y) is a proper subset o1’ the cfls over {0, 1}.
Then for arbitrary cfg G the predicate (L(G)) is undecidable. Similarly ]’or arbitrary
pushdown automaton M, the predicate (L(M)) is undecidable.

Proof. We only prove the theorem for the cfgs. Let be any predicate on the cfls
over {0, 1} satisfying (a), (b), and (c). From (c), there is a cfl L over {0, 1} that is not in
(, r, s, x, y). Let hi, h3: {0, 1}* ---> {0, 1}* be the one to one homomorphisms defined
by hi(0)= 0x, ha(l)= ly, h3(O)=OxOx and h3(1)=Oxly. For any cfg G a cfgH can be
constructed effectively such that

where
L(H)=L1 [.JLzL3

L1 rh3(L(G))’lyOx’{Ox, ly}*’s

L2 r’{OxOx, Ox ly}*’lyOx’hl(Lf)’s

L3=Ltf-)~[r’{OxOx, Ox ly}*’ly0x’{0x, ly}*’s].

But (L(H)) is true if and only if L(G) {0, 1}*. There are two cases to consider.
Case 1. If L(G) {0, 1}*, then h3(L(G)) {0x0x, 0x 1 y}* and La t_J L3 L,. Thus

L(H)= L, and by (a) (L(H))is true.
Case 2. If L(G) is properly contained in {0, 1}*, then there exists a string w in

{0, 1}*-L(G). Thus h3(w) is in {0x0x, Oxly}*-h3(L(G)). Let a =h3(w)’lyOx. Then
r’a is not a prefix of any string in L1. Let

A {z ]r’ce’z’s L3}

Note that A contains no string in {0x, 1 y}*.
Now, a\[r\L(H)/s] ha(L)U A. Also

h-a(a\[r\L(H)/s]) h-aha(Lf)t.J h-l(A ).

Since hi is one-to-one, h- h(Lt)= Lt. Moreover h-X(A)= . This follows since
in h-(A) implies ha(t), a string in {0x, ly}*, is in A, a contradiction. Thus
h-(a\[r\L(H)/s]) L. If (L(H)) were true, L would be in(, r, s, x, y), which is a
contradiction. There, (L(H)) is false.
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The remainder of the proof closely follows the above and is left to the reader.
The reader should note the following facts about Theorem 2.4. First, (a) and (b),

and (d) and (e) assert that is true for some cfl Lt with an unbounded regular subset.
However, Lt need not be regular. Second, there is only one homomorphism involved in
the statement of (c) or (f). Third, the homomorphisms in (c) and (f), depend only upon
the particular decomposition of L, used to determine r, s, x, and y in (b) and (e),
respectively. Thus if r’{0, 1}*’s

___
Lt for some strings r and s, then the homomorphisms

and inverse homomorphisms in Definition 1.11 can be set equal to the identity on
{0, 1}*. Fourth, need not be preserved under quotient with singletons on the left or on
the right, or under inverse homomorphisms. All that is required is that these operations,
when applied as in (c) or (f) to the set of cfls over {0, 1} for which is true, do not
generate all the cfls over {0, 1}. Thus let be some nontrivial predicate on the cfls over
{0, 1}; and let True()= {LI(L) is true)}. If True() is closed under quotient with
singletons on both the left and the right and under inverse one-to-one homomorphisms,
then any predicate ’ such that True(’)

___
True() and such that ’ is true for some cfl

with an unbounded regular subset is undecidable. This is true regardless of the closure
properties of True(’). We illustrate these observations with several corollaries of
Theorem 2.4.

PROPOSITION 2.5. Any predicate satisfying the conditions of Theorem 2.1 satisfies
the conditions of Theorem 2.4.

Proof. Let be any predicate on the cfls over {0, 1} satisfying the conditions of
Theorem 2.1. Then ({0, 1}*) is true and left or iright is a proper subset of the cfls over
{0, 1}. Lt of (a) and (d) of Theorem 2.4 can be set equal to {0, 1}*; and r, s, x, and y of (b)
or (e) of Theorem 2.4 can be set equal to A, the empty string. Thus the homomorphisms
of Definition 1.11 are equal to the identity function on {0, 1}*. Thus (, r, s, x, y)=
(, ;, A, A, A) {L’]L’ a \L, c {0, 1}+, (L) is true} ileft. Similarly
Y(, r, s, x, y) Y(, A, A, A, A) {L’[L’ L/a, {0, 1}+, (L) is true}= righ.t. [

Thus Theorem 2.4 is an extension of Theorem 2.1. Our next result shows that it is a
proper extension.

COROLLARY 2.6. Let Lo be any cfl over {0, 1} such that Lo contains an unbounded
regular subset. Then for arbitrary cfg G the predicate equal to "L(G)=Lo" is
undecidable.

Proof. Since L0 has an unbounded regular subset, there exist strings r, s, x, and y in
{0,1}* such that r’{Ox, ly}*’sLo. Therefore [r\Lo/s]_{Ox, ly}*. For any a in
{Ox, ly}+,

ce\[r\Lo/s] _{0x, ly}*.

Let h: {0, 1}*{0, 1}* be the one-to-one homomorphism defined by h(0)=0x and
h(1)= ly. Then

h-l[a\[r\Lo/s]] {0, 1}*.

But

(, r, s, x, y)= {h-(L’)lL’ a\[r\Lo/s], a s{0x, ly}+’}.
Thus (, r, s, x, y)= {{0, 1}*}. 71

Corollary 2.6. appears in [19], and extends results in [13], where it is shown that
"L(G) Lo" is undecidable for all unbounded regular sets Lo. The reader should note
that, for all Lo not equal to {0, 1}*, both of the predicates "L(G) Lo" and "L(G) eL0"
do not satisfy the conditions of Theorem 2.1.

Next we show that the undecidability of many known undecidable predicates on
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the cfls is a special case of the closure properties of the finitely inherently ambiguous cfls.
We need one technical lemma.

LEPTA 2.7. 1) The finitely inherently ambiguous cfls are closed under inverse
homomorphisms.

2) The finitely inherently ambiguous cfls are closed under quotient with singletons on
the left and on the right.

Proof. The proofs of 1) and 2) are very similar and fairly easy. We sketch the proof
of 1). Let L be any cfl of finite degree of inherent ambiguity. Then there exists a
pushdown automatonM such that L L(M); and there exists a positive integer k such
that each string x accepted byM is accepted by at most k distinct sequences of moves of
M. Let h be any homomorphism. The pushdown automaton M’ described below
accepts h-l(L). For all inputs y to M’, M’ applies h to y one character at a time in its
finite control. M’ simulates M on x h (y); and it accepts y if and only if M accepts x.
Thus for each y in h -I(L) the number of distinct accepting sequences of moves of M’ on
y equals the number of distinct accepting sequences of moves on x h(y). Thus
h-l(L) L(M’) is of finite degree of inherent ambiguity.

THEOREM 2.8. Let be any subset of the finitely inherently ambiguous cfls over
{0, 1} such that there exists a language Lt in , where Lt has an unbounded regular subset.
Then for arbitrary cfg G the predicate "L(G) is a member of" is undecidable.

Proof. By Lemma 2.7 the finitely inherently ambiguous cfls over {0, 1} are closed
under all inverse homomorphisms and quotient with singletons on both the left and on
the right. hus for all such 6e, (, r, s, x, y) is a subset of the cfls over {0, 1} of finite
degree of inherent ambiguity. Since there are infinitely inherently ambiguous cfls over
{0, 1}, the theorem follows immediately from Theorem 2.4.

The applicability and power of Theorems 2.4 and 2.8 is shown by the following
corollary of Theorem 2.8.

THEOREM 2.9. The following classes of cfls over {0, 1} satisfy the conditions of
Theorem 2.8. Thus ]’or arbitrary cfg G, the predicate "L(G) is a member of 6e" is
undecidable.

1) the finitely inherently ambiguous cfls
2) ]’or all positive integers k greater than 1 the cfls of degree of inherent ambiguity

equal to, or less than or equal to k;
3) the unambiguous cfls
4) the one-one linear cfls
5) the RPP languages;
6) the LR regular languages;
7) the LR(1, oo) languages;
8) the full SPMparsable languages;
9) the FPFAP languages;

10) the BCP languages;
11) the deterministic cfls
12) ]’or all k greater than or equal to 1, the ELC(k) languages;
13) the ELC languages, i.e. {L [L is an ELC(k) language ]’or some k};
14) ]’or all k greater than or equal to 1, the LL(k) languages;
15) the LL languages, i.e. = {L[L is an LL(k) language ]’or some k};
16) the strict deterministic languages;
17) the real-time strict deterministic languages;
18) the LR (0) languages;
19) the s-languages;
20) the simple precedence languages;
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21) the operator precedence languages;
22) the regular sets; and
23) the reversal of any of the above language classes.
Proof. For the definitions of the above language classes, see [2] for 4); [29] for 5), 7),

and 9); [6] for 6); [7] for 8); [30] for 10); [1] for 11), 18), 19), 20), and 21); [4] for 12) and
13); [26] for 14)and 15); and [10] for 16)and 17).

The proofs that classes 1) through 22) satisfy the conditions of Theorem 2.8 follow
easily from their definitions and known inclusion properties. The result for 23) follows
since the class of cfls over {0, 1} of finite degree of inherent ambiguity is closed under
reversal. [3

Theorems 2.8 and 2.9 show why the Post’s correspondence problem was used
almost identically to prove that several of the classes of cfls mentioned in Theorem 2.9
are undecidable. We hope that future proofs that subclasses of the finitely inherently
ambiguous cfls are undecidable will only consist of verifications that some element of
has an unbounded regular subset. Results for classes of context-free grammars rather

than context-free languages appear in [20].
Analogues of Theorems 2.1, 2.4, and 2.6 hold for many other families of languages

as well (see [18]). For example, analogues of Theorems 2.1, 2.4, 2.6, 2.8, and 2.9
hold for the linear cfls, the metalinear cfls, the online one counter languages, and the
least AFL containing {anbnln-<1}. (See [3] and [11] for properties of the last two
families of languages.) We present one such theorem for the linear cfls.

THZORZM 2.10. Let be any predicate on the linear cfls over {0, 1} for which there
exists a linear cfl L, and strings r, s, x, and y in {0, 1}* such that

(a) (L,) is true,
(b) r’{Ox, 1 y}*’s

___
L,, and

(c) (, r, s, x, y) is a proper subset of the linear cfls over {0, 1};

or

(d) (L,) is true
(e) r{x0, y 1}*’s

_
L,, and

(f) (, r, s, x, y) is a proper subset of the linear cfls over {0, 1}.
Then for arbitrary linear cfg G the predicate (L(G)) is undecidable.

The proof of Theorem 2.10 is almost identical to that of Theorem 2.4 and is left to
the reader.

Finally, we present one possible analogue of Theorem 2.1 for the context-sensitive
languages.

THEOREM 2.11. Let be any nontrivial predicate on the csls over {0, 1} such that
left or right is a propersubset ofthe csls over {0, 1}. Thenfor arbitrary csg G, the predicate
(L(G)) is undecidable. Similarly for arbitrary linear bounded automaton M, the
predicate (L(M)) is undecidable.

Proof. We only prove the theorem when left is a proper subset of the csls over
{0, 1}. There are two cases to consider.

Case 1. There exists a csl L, and a string r in {0, 1}* such that r’{0, 1}*_ L, and
(L,) is true.

Case 2. For no string r in {0, 1}* and csl L for which r’{0, 1}* L is 9(L) true.
To prove Case 1 let Lr be a csl over {0, 1} that is not an element of ett. Let

h: {0, 1}* {0, 1}* be the one-to-one homomorphism defined by h(0)= 00 and h(1)=
01. For any csg G a csg H can be constructed effectively such that

L(H) L1 L2 [,.J L3
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where

L r’h(L(G))’lO’{O, 1}*

L r’{00, 01}*’10"Lz

L3 L, (q-[r’{O0, 01}*’10"{0, 1}*].
As i: the proofs of Theorems 2.1 and 2.4, (L(H)) is true if and only if L(G)= {0, 1}*.
Since the predicate "L(G) {0, 1}*" is undecidable for the csgs, so is (L(G)).

To prove Case 2 for any csg G, a csg H can be constructed effectively such that
L(H)=L(G)’{O, 1}*LJLt, where (Lt) is true. But (L(H)) is true if and only if
L(G) ;. This follows since if L (G) ;, then L(H) Lt. If L(G) ;, there is a
string r in L(G); and, hence, r’{0, 1}* _L(H).

Since the predicate "L(G)= " is undecidahle for the csgs, so is P(L(G)). F1
One immediate corollary is the following.
COrOLLArY 2.12. Let Lo be any csl over {0, 1}. Then ]’or arbitrary csg G the

predicate "L(G)- L0" is undecidable.
Proof. There are two cases to consider.
Case 1. There exists r e {0, 1}* such that r’{0, 1}* L0. Then, for all y {0, 1}*,

Lo/y is infinite. Hence, every language in right is infinite.
Case 2. For no string r e {0, 1}* is r’{0, 1}*

_
L0. Then {0, 1}* glft. !-!

3. Hard problems oI the regular sets. Many of the undecidable properties that
satisfy the conditions of Theorems 2.1, 2.4, and 2.11 become "hard" but decidable
when restricted to the regular sets. In fact almost identical analogues of these theorems
hold for the regular sets.

Our first theorem is a regular set analogue of Theorem 2.1.
THEOREM 3.1. Let be any predicate on the regular sets over {0, 1} such that

({0, 1}*) is true and such that left Or right is a proper subset of the regular sets over
{0, 1}. Then the following hold.

1) {RIR is a (U, ",*) regular expression over {0, 1} and (L(R)) is false} is
PSPACE-hard; requires space greater than n i.o., for all r less than 1, on any
nondeterministic Tm and is an element ofDCSL only ifDCSL NDCSL.

2) {M]M is a 2dfa and P(L(M)) is false} is PSPACE-hard; and requires space
greater than n i.o., for all r less than 1, on any nondeterministic Tin.

3) {RIR is a (t.J, ", *, f-)) regularexpression over {0, 1} and (L(R )) is false} requires
space greater than 2c’/g n) i.o., for some c greater than O, on any Tin.

4) {RIR is a (U, ", *, 2) regular expression over {0, 1} and (L(R)) is false} requires
space greater than 2 i.o., for some c greater than O, on any Tin.

5) {G]G is a nonselfembedding cfg with terminal alphabet {0, 1} and (L(G)) is
false} requires space greater than 2’/0g") i.o., for some c greater than O, on any Tin.

6) {R [R is a ((3, ", *, -) regular expression over {0, 1} and (L(R)) is false} requires
space greater than F(c’log n) i.o., ]’or some c greater than O, on any. Tin.

7) {R [R is a (U, ", *, () regular expression over {0, 1} and(L(R )) is false} requires
space reater than F(c’log n) i.o., for some c greater than O, on any Tm.

Proof. The proof closely follows that of Theorem 2.1. From Theorem 1.14 the
conclusions of 1) through 7) hold when is "L(R), L(M), or L(G)= {0, 1}*." Let left
be a proper subset of the regular sets over {0, 1} and let Lt be a regular set over {0, 1} that
is not in )left. Let h:{0, 1}*--> {0, 1}* be the one-to-one homomorphism defined by
h(0)= 00 and h(1)= 01. Let

L1 [{00, 01}* "10 .q] U [~[{00, 01}* "10 "{0, 1}*]].
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From any regular set descriptor R of type 1) through 7), a set descriptor S of the same
type can be constructed deterministically using only linear space and polynomial time in
Igl such that

L(S)= h(L(R))’IO’{O, 1}* LIL,.
Moreover, if R is a descriptor of the types of 1) or 2), then it is easily seen that S is log
computable from R. The construction of S from R is only complicated for the 2dfa. The
construction in this case is based on having the 2dfa for L(S) first simulate a fixed 2dfa
for L1 that always halts. (Note that L is independent of R). If the simulated 2dfa rejects
the input string, the 2dfa for S then simulates R using 10 as a right endmarker, and the
encoding h of 0 and 1.

(L(S)) is true if and only if L(R)= {0, 1}*. There are two cases to consider.
Case 1. If L(R)= {0, 1}*, then L(S)= {0, 1}*. By assumption (L(S)) is true.
Case 2. If L(R) {0, 1}*, then there exists a string w in {0, 1}*-L(R). As in the

proof of Theorem 2.1, h(w)’lO\L(S)= Lr. Since Lr is a regular set over {0, 1} not in
(L (S)) is false.

Thus (L(S)) is true if and only if L(R)= {0, 1}* as claimed and the conclusions of 1)
through 7) follow. The proof, when right is a proper subset of the regular sets over {0,1},
is left to the reader. 71

Our next theorem is an analogue of Theorem 2.4.
TI-IEOREM 3.2. Let be any predicate on the regular sets over {0, 1} such that there

exists a regular set L, and strings r, s, x, and y in {0, 1}* ]:or which
(a) (Lt) is true,
(b) r’{Ox, l y}*’s Lt, and
(c) (, r, s, x, y) is a proper subset of the regular sets over {0, 1};

or
(d) (Lt) is true,
(e) r’{xO, y 1}*’s c__ L,, and
(f) (, r, s, x, y) is a proper subset of the regular sets over {0, 1}.
Then the following hold:
1) {R[R is a ((.J, ", *) regular expression over {0, 1} and (L(R)) is false} is

PSPACE-hard; requires space greater than n i.o., for all r less than 1, on any
nondeterministic Tm and is an element ofDCSL only ifDCSL NDCSL.

2) {R [R is a (t_J, ", *, (3) regular expression over {0, 1} and (L (R)) is false} requires
space greater than 2"/g ") i.o., for some c greater than O, on any Tin.

3) {RIR is a (, ", *, 2) regular expression over {0, 1} and (L(R)) is false} requires
space greater than 2 i.o., ]’or some c greater than O, on any Tin.

4) {GIG is a nonselfembedding cfg with terminal alphabet {0, 1} and (L(G)) is
false} requires space greater than 2’/g ") i.o., ]’or some c greater than O, on any Tm.

Proof. The proof is almost identical to that of Theorem 2.4 and is left to the reader.
The third theorem is an analogue of Theorem 2.11.
THEOREM 3.3. Let be any nontrivial predicate on the regular sets over {0, 1} such

thateft or right is a propersubsetofthe regularsets over {0, 1}. Then thefollowing hold:
1) {MIM is a 2dla and (L(M)) is false} is PSPACE-hard and requires space

greater than n i.o., for all r less than 1, on any nondeterministic Tin.
2) {R [R is a ((.J, ", *, fq) regular expression over {0, 1} and (L(R)) is false} is

PSPACE-hard.
3) {R[R is a (tA, ", *, -) regular expression over {0, 1} and !9(L(R )) is false} requires

space greater than F(c’log n) i.o., for some c greater than O, on any Tin.
4) {R [R is a (, ", *, 03) regular expression over {0, 1} and(L(R )) is false} requires

space greater than F(c "log n) i.o., for some c greater than O, on any Tin.
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Proof. The proof of Theorem 3.3 is similar to that of Theorem 2.11 once "=" and
"= {0, 1}*" are known to have the corresponding complexities (Theorems 1.14 and
1.15). The major difference in the proof is that for Case 2, we let h’{0, 1}* {0, 1}* be
the one-to-one homomorphism defined by h(0)= 00 and h(1)= 01, and let

L(H)= h(L(O))’lO’{O, 1}*" U Lt.
This encoding ensures that when G is a 2dfa, H can be obtained from G (by using 10 as
an endmarker). The details of the proof are left to the reader.

We illustrate the power and applicability of Theorems 3.1, 3.2, and 3.3.
THEOREM 3.4. The following predicates on the regular sets over {0, 1} satisfy the

conditions of Theorem 3.2 and of Theorem 3.3.
1) For all unbounded regular sets Lo, "= L0";
2) L is a star event, i.e. L (L )*;
3) L is a code event, i.e. there exist strings w1,..., Wk in {0, 1}* such that L

{w, w,’.., w}*;
4) For all k >- 1, L is a k-parsable event; and L is a locally parsable event;
5) L is an ultimate definite event, reverse ultimate definite event, or generalized

ultimate definite event;
6) L is a comet event, reverse comet event, or generalized comet event;
7) L y(L), where y(L) {yl there exists x in L such that lyl [x I};
8) L is prefix closed; i.e., L ={xl there exists y in {0, 1}* and x’y eL};
9) L is suffix closed, i.e., L {Y/there exists x in {0, 1}* and x’y L};

10) L is infix closed, i.e., L {Yl there exist x, z in {0, 1}* and x’y’z L};
11) L is cofinite
12) For all k >= 1, L is a k-definite event, k-reverse definite event, or k-generalized

definite event;
13) L is a definite, reverse definite, or generalized definite event;
14) For all k >-_ 1, L is a k-testable event;
15) For all k >- 1, L is k-testable in the strict sense;
16) L is locally testable in the strict sense;
17) L is locally testable;
18) L is a loop-free or FOL event;
19) L is a star-free, noncounting, group-free, permutation-free, or LTO event;
20) For all k > 2, L is a CMk event;
21) For all k >= 1, L is of star height equal to, or less than or equal to, k;
22) L is accepted by some strongly connected deterministic finite automaton;
23) L is accepted by some permutation automaton;
24) L is a pure group event;
25) L [L]rev; and
26) L is dot-free, i.e. L is denoted by some (LI, ", *, -) regular expression over {0, 1}

with no occurrence of ’"".
Moreover, predicates 2) through 17), 19), 20), and 22) through 26) also satisfy the

conditions of Theorem 3.1.
Proof. The definitions of the classes of regular sets of 3), 4), and 12) through 21)

can be found in [23]. The definition of 5) can be found in [25], 6) in [5], 22) in [ 12], 23) in
[31], and 24) in [22].

The proof for each of the above predicates consists of two parts. The first part
consists of observing that the predicates we claim satisfy Theorem 3.1 are true for
{0, 1}*, and that each of the remaining predicates is true for some unbounded regular
set. The second part of the proof consists of showing that left or right is a proper subset
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of the regular sets over {0, 1}; and for predicates 1), 18), and 21), that for the
appropriate r, s, x, and y in {0, 1}*, (, r, s, x, y) is a proper subset of the regular sets
over {0, 1}.

We now consider the second part of the proof for each predicate.
1)" From Lemma 1.10 a regular set L0 over {0, 1} is unbounded if and only if there

exist strings r, s, x, and y in {0, 1}* such that r’{Ox, l y}*’s _c_L0. As in the proof of
Corollary 2.6, (, r, s, x, y)= {{0, 1}*}. Next, we note that an argument analogous to
that in the proof of Corollary 2.11 shows that left or right is a proper subset of the
regular sets over {0, 1}.

The proofs of 2) through 6) are similar. We only prove 6). A regular set L is a comet
event if and only if there exist regular sets L and L2 such that L L1"L2, L1 L 1", and
L#{A}. Let be the predicate "L is a comet event." Then iright C: {}t_J{LIL is an
infinite regular set over {0, 1}}. This follows since for all x in {0, 1}*, either L/x or
there exists a string y in L and w in L/x such that y/x w. Suppose L/x is not empty.
Then there exists a nonnull string z in L1. Hence for all k_->0, z’y is in L and
z k’y/X Z k’w. Thus L/x is infinite.

7): L y(L) implies for all x in {0, 1}/ that L/x y(L/x). This follows since if y is
an element of L/x, then y’x is in L. Thus L y(L) implies for all strings z such that
Izl [y’xl, z is in L. Thus for all strings z’ such that [z’[ [y [, z"x is in L.

The proofs of 8), 9), and 10) are similar. We only prove 8). L {x[ there exists y in
{0, 1}* such that x’y L} implies for all x in {0, 1}* that x\L is prefix closed. This follows
since y in x\L implies x’Init(y)

_
Init(L) L. Thus for all y in x \L, Init(y)

_
x\L.

11): L is cofinite implies for all x in {0, 1}* that x\L is cofinite. The proof is left to
the reader.

The proofs of 12) through 18) all follow from that of 19), since any regular set,
satisfying one of the predicates of 12) through 18), satisfies the predicate of 19). We
note that McNaughton and Papert [23] have shown that the classes of star-free,
noncounting, group-free, permutation-free, and LTO events are the same.

By definition a regular set L is a noncounting event over {0, 1} if and only if for
some n >= 1, for all positive integers/’, and for all strings u, v, and w in {0, 1}*, u’v"+i’w is
in L if and only if u’v"’w is in L. Let L be a noncounting event. Let z be any string over
{0, 1}. Then there exists an n => 1, such that for all positive integers , and for all strings
u,v, and w in {0, 1}*, z’uvn/i’w is in L if and only if z’u’v"’w is in L. Hence for all
strings z in {0, 1}*, L noncounting implies that z\L is noncounting.

The proof of 20) is similar to that of 19) noting that for all k _-> 2, there are regular
sets which are elements of CM(k + 1) but not elements of CMk, e.g. (0k/l)*. By
definition L is in CMk if and only if there exists an n _-> 1 such that for all positive

n+kj.integers f and strings u, v, and w over {0, 1}, u v w is in L if and only if u’v w is in L.
21)" The proof consists of the following two facts:
(a) there are regular sets over {0, 1} of star height k for all k >= 0 and
(b) quotient with single string does not raise star height.
22)" If L is accepted by some strongly connected deterministic finite automaton,

then for x in {0, 1}/ either x\L is empty or infinite. LetM (K, {0, 1}, 8, q0, F) be some
strongly connected automaton which accepts L. Then x\L implies that there exists
y in {0, 1}* such that 8(q0, x’y) is in F. But M strongly connected implies that there
exists z in {0, 1}/ such that 8(8(q0, x’y), z qo. Hence for all k >- O, X’y’(Z’X’y)k is in L.

23)" If L is accepted by a permutation automaton, then for all x in {0, 1}/, x\L is
either empty .or infinite. The proof is similar to that of (22) and is left to the reader.

24): By definition L is a pure-group event if the syntactic monoid of L, denoted by
Syn(L), is a group. The elements of Syn (L) are the congruence classes Ix] defined by
Ix] {y[ for all u, v in {0, 1}*, u’y’v is in L if and only if u’x’v is in L}. Again for all x in
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{0, 1}+, X \L is either empty or infinite. Suppose x\L . Let y be an element of x\L.
Since Syn(L) is a group, for all x in {0, 1}* there exists x’ in {0, 1}* such that
[x "x ’] [x "[x’] [) ]. Thus there exists z in {0, 1}* such that [x "y ] "[z ] [x "y "z ] [A ].
Thus for all k >= O, ([x’y’z])k’[x’y] [x’y]. Hence for all k >= O, (x "y "z k "x "y is in L and
for all k => 1, (y’z)’(x’y’z)k-l"x’y is in x\L.

25): The proof is identical to that in Proposition 2.3.
26): If L is dot-free, then L [L]rev as is easily seen by induction on the depth of

nesting of regular operators appearing in some dot-free (tO, ", *, -) regular expression R
for which L L(R). Thus the proof of Proposition 2.3 applies.

THEOREM 3.5. The [ollowing predicates satisfy the conditions of Theorem 3.3:
1) for all bounded regular sets L over {0, 1}, "=L";
2) L is finite;
3) L is commutative, i.e. for all x, y in L, x’y y’x and
4) L is bounded.
Proof. 1), 2), and 4) are obvious. 3) follows since L is commutative if and only if

L
___
w* for some word w (see [8].) Predicates 1) through 4) do not satisfy the conditions

of Theorems 3.1 or 3.2. !-1
COROLLARY 3.6. For all unbounded regular sets Lo over {0, 1} the following hold.
1) {RIR is a ({.J, ", *) regular expression over {0, 1} and L(R)# L0} is PSPACE-

complete; requires space greater than n i.o., ]’or all r less than 1, on any nondeterministic
Tm and is an element oj DCSL if and only ifDCSL NDCSL.

2) {R IR is a tO, ", *, f3 ) regular expression over {0, 1} andL(R ) L0} requires space
greater than 2cn/g n) i.o., ]’or some c greater than O, on any Tm.

3) {R IR is a (tO, ", *, 2) regular expression over {0, 1} and L(R) L0} requires space
greater than 2 i.o., ]or some c greater than O, on any Tm.

4) {GIG is a nonseljembedding c[g with terminal alphabet {0, 1} and L(G) L0}
requires space greater than 2’/g ") i.o., for some c greater than O, on any Tm.

Proof. 1) through 4) follow immediately from Theorem 3.2 and Theorem 3.4 part
1). The statement of 1) reflects the fact that the predicate in 1) is a member of NDCSL
[28]. 1

COROLLARY 3.7. For all regular sets Lo over {0, 1} the following hold.
1) {MIMis a 2dfa andL(M) # L0} is PSPACE-complete and requires space greater

than n’ i.o., for all r less than 1, on any nondeterministic Tm.
2) {R In is a (tO, ", *, -) regular expression over {0, 1} andL(R ) # Lo} requires space

greater than F(c’log n) i.o., for some c greater than O, on any Tm.
3) {R IR is a (t_J, ", *, (R)) regular expression over {0, 1} andL(R ) # L0} requires space

greater than F(c’log n) i.o., for some c greater than O, on any Tm.
Proof. 1) through 3) follow immediately from Theorem 3.3, if we note that the

equivalence problem for 2dfa is decidable by a polynomially space-bounded Tm. This
follows from the construction in [14], given an arbitrary 2dfa, of an equivalent
deterministic finite automaton.

Corollaries 3.6 and 3.7 provide a whole class of new provably hard sets and
nonpolynomial lower time or space complexity bounds.

4. Conclusion. We have studied the complexity of a variety of problems on the
regular sets and the context-free languages. The main technique used was that of
embedding "={0, 1}*" and "=" into other predicates. In 2 the undecidability of
"={0, 1}*" for the context-free languages was exploited to provide sufficient conditions
for the undecidability of predicates on the context-free languages. In 3 the same
techniques were applied to the regular sets. Many predicates studied in the literature
satisfy the conditions of our theorems. Related results appear in [18] and [19].
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THE TIME MEASURE OF ONE-TAPE TURING MACHINES
DOES NOT HAVE THE PARALLEL COMPUTATION PROPERTY*

JOACHIM BISKUPt

Abstract. J. Hartmanis conjectured that the time measure of one-tape Turing machines does not have the
parallel computation property. We prove this conjecture by constructing one-tape Turing machines M1 and
M2 such that no one-tape Turing machine can simulate them in parallel. This is shown using a result of F. C.
Hennie that nonregular sets cannot be accepted in linear time.

Key words, abstract complexity measure, parallel computation property, one-tape Turing machines,
time measure, recognizers, nonregular sets

L. H. Landweber and E. L. Robertson [7] defined that an (abstract) complexity
measure ((qi)iN, (C)iN) in the sense of M. Blum [2] has the parallel computation
property iff there exists a recursive function h such that for all and/’, and for all x

(1) (gh(i,j)(X). { (i (X) if G(x)_-< G(x),
0(x) otherwise

and

(2) Chi,j)(X) min [C/(x), C(x)].
J. Hartmanis [5] conjectured that the complexity measure, defined by the number

of steps taken by one-tape Turing machines, does not have the parallel computation
property. In this note we prove this conjecture for Turing machines recognizing sets. A
similar proof for Turing machines computing word functions is given in a technical
report [ 1]. For unexplained notations and further background the reader is referred to
E3].

We consider the class of one-tape Turing machines recognizing sets over some
fixed finite alphabet with cardinality c(Z)=> 2 by off-line computations as explained
below (cf. [6], [4]). Any machine M Y has one tape the left end of which is indicated
by the special marker IS] on tape square 0 and which is unbounded on the right. Prior to
the start of a computation an input word w rl r, * is written on the first n tape
squares, and the remainder of the tape squares are left blank (denoted by the special
symbol t_l). Furthermore the reading head is positioned on the tape square 1 (the first
input symbol), and the machine is placed in a designated starting state. Then on each
operation the machineM scans the tape square under the reading head, and depending
on the symbol scanned and the present internal state it prints a new symbol on that tape
square, moves the reading head one tape square to the right or to the left, and enters a
new internal state. The machine stops if the new state is a halting state, which must be
either an accepting state or a rejecting state. Formally a Turing machine M can be
defined by a finite set of instructions of the form (present state, symbol scanned, new
symbol, direction of moving, new state), such that no two different instructions are
identical both in the first and the second component. Furthermore there are designated
exactly one starting state and a set of accepting states and a set of rejecting states.

A Turing machine MIY computes a possibly partial O-l-valued function
IMI" Z*-{0, 1} in the following way. Let M be started with input w. If M eventually
stops by entering an accepting state then IMl(w) :- 1; ifM eventually stops by entering

* Received by the editors May 6, 1977.

" Lehrstuhl fiir Angewandte Mathematik, insbesondere Informatik, RWTH Aachen, D-5100 Aachen,
Germany.
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a rejecting state then IMl(w):= 0; otherwise, if M does not stop, IMl(w) is undefined.
Interpreting IMI as a characteristic function, we say thatMrecognizes the set {w
and IMl(w)=

With each Turing machine M6 we associate a possibly partial step counting
function Tt: E* N such that Tlvt(w) is the number of operations performed by M in
processing the input word w. TM(W) is undefined if machine M does not stop when
started with input word w.

Under an appropriate arithmetization of Y_,* and we can consider
(TM)M) as a complexity measure (for all computable 0-1-valued function) in the
sense of M. Blum [2].

THEOREM. The complexity measure (([M[)M, (TM)4), i.e. the time measure of
one-tape Turing machines recognizing sets, does not have the parallel computation
property.

Proof. Below we-shall construct Turing machines M1 G) and M2 6 with the
following properties:

(A) The step counting functions TM, and TM2 are linearly bounded by the lengths
of the input words.

(B) The function

t[Ml(w) if TM,(w) TMz(w),
g(w) :--

[MEI(W) otherwise

is the (total) characteristic function of a nonregular context-free set.
Now assume that there exists a Turing machine M computing g with step

counting function Tl(W) min [TMI(W), TM(w)]. By (A), T is also linearly bounded
by the lengths of the input words. Thus, by a result of F. C. Hennie I-6, Thm. 3], M
recognizes a regular set. But this is a contradiction to (B). Hence there cannot exist a
function h with the properties (1), (2) required by the parallel computation property.

M1 is defined by the following set of instructions:

(S, a, a, right, S) (X, a, a, right, Y) (Y, a, a, right, Y)

(S, b, b, right, X) (X, b, b, right, X) (Y, b, b, right, Y)

(S, II, t_l, right, A) (X, II, II, right, A) (Y, II, II, right, R)

where S is starting state, A is accepting state, and R is rejecting state.
The machine M1 scans the input word from left to right exactly once recognizing

the set {a"bnlm >-0 and n _>-0}. Thus we have

1 ifw=a’b within, n_->0,
IMll(W)= 0 otherwise,

T(w) length (w)+ 1.

ME is defined by the following set of instructions:

(S, a, a, right, S) (X, a, a, left, X)

(S, b, b, left, X) (X, , IS], right, R)

(S, II, II, right, A)

where S is starting state, A is accepting state, and R is rejecting state.
The machine ME first scans the input word from left to right. If it finds the symbol b,

it moves the reading head back to the tape square 1 and rejects the input word.
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Otherwise, if the input word does not contain the symbol b, the machine accepts it after
detecting its end. Thus we have

1 if w{a}*,IM21(w)= 0 otherwise,

length (w)+ 1 if w 6{a}*,
TM(W) ]2m + 2 otherwise, that is if w a’b,

with m -> 0, {a, b }*.

We have to show that M1 and M2 satisfy the conditions (A) and (B). Condition (A)
obviously holds. In order to prove (B) we look at the function g defined by (3) in detail:

TMI (w) TM2 (W) g(w)

a with m _-> 0 m + m + Iml(w)-

with m =>0,
n=>l

m +n + 2m +2 IMll(W) if m + n + =< 2m + 2
IMl(w) 0 otherwise

a tub"aft with m -> 0,
n>-l,

f {a, b}*

length (w) + 2m + 2 [Mll(w) 0 if length (w) + =< 2m + 2
IMl(w) 0 otherwise

Hence we have

1 ifw=a"bn andn=<rn+l,
g(w)=

0 otherwise.

But it is well-known that {a’b In =< rn + 1} is a nonregular context-free set. This proves
property (B).
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ERRATUM: A FAST MONTE-CARLO TEST FOR PRIMALITY*

R. SOLOVAYf AND V. STRASSEN

Allan Borodin has pointed out a slight error in the justification of our algorithm.
We assert that if n is an odd composite integer then the Jacobi symbol, (a/n), is unequal
to 1 for some a prime to n. But in fact (a/n) is identically equal to 1 when n is a perfect
square (and only in that case).

Here is a repair for our analysis. Let n be odd and composite and suppose

(1) a(n-)/2=(-) (mod n)

for all a Z relatively prime to n. We shall derive a contradiction. First, suppose that n
is not square free. Say n pe q where p is an odd prime, e > 1, and q is relatively prime
to p. It follows from (1) that a n-1 l(mod n) for all a relatively prime to n. By the
Chinese remainder theorem, a n-1 1 (mod pe) for all a relatively prime to p. But Z,e is
cyclic of order pe-1. (p 1). SO pe- (p_ 1) divides n 1. Since e > 1, p divides n 1
as well as n. This absurdity shows n is square free.

But if n is square free, the argument in our paper applies to show that since n has
two distinct prime factors (a/n)=- 1 for a prime to n. Whence a is a perfect square and
also a square free composite. Contradiction!

* This Journal, 6 (1977), pp. 84-85. Received by the editors, June 2, 1977.
f IBM Watson Laboratory, Yorktown Heights, New York. Now at Department of Mathematics,

University of California, Berkeley, Berkeley, California 94720.
: Seminar fiir Angewandte Mathematik, Universitit Zurich, 8032 Zurich, Switzerland.
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ON STRUCTURE PRESERVING REDUCTIONS*

NANCY LYNCHer AriD RICHARD J. LIPTON$

Abstract. The concept of reduction between problems is strengthened. Certain standard problems are
shown to be complete in the new and stronger sense. Applications to the number of solutions of particular
problems are presented.

Key words, reductions, polynomial time, logspace, complete sets

1. Introduction. One of the most striking features of a large number of the known
reductions of one problem to another [3] is that they often preserve a great deal more
than they have to. More precisely, suppose that A is many-to-one polynomial time
reducible to B where A and B are, as usual, subsets of * for some finite alphabet E.
Then all that is required in the usual definition is that

/x E*, x A if and only if f(x) B,

where f(x) is some polynomial time computable function. Essentially (*) states that x
has a solution exactly when f(x) has a solution. It appears, however, that quite often x
and f(x) are more closely related than this.

This imprecise intuitive feeling that reductions often preserve additional structure
is the subject of this paper. We introduce a new kind of reduction and prove that some
standard complete problems are also complete in our strong sense.

The notion that reduction preserves additional structure also appears in Simon [7].
His main result is that a number of problems are still equivalent when (*) is strengthened
to:

x has the same number of solutions as f(x).

He calls reducibilities preserving the number of solutions "parsimonious". There is a
difficulty with these results, however; it is not clear what it means for x to have k
solutions when A is an arbitrary set. Clearly, either x is in A or it is not. Simon avoids
this difficulty by working only with well known and specific problems. In these cases it is
reasonable to assume that "x has k solutions" is a meaningful concept. We take an
alternative approach. The main virtue of this approach is that it allows us to work with
arbitrary problems, and thus we can prove the existence of complete sets.

2. New definition of reduction. The key idea of the new reduction is a focus on
relations rather than on sets. Roughly, suppose that

/x X*, x A if and only if =lyR (x, y).

The intuitive concept that "x is an instance of A with k solutions" can be more precisely
rendered by "there are k y’s such that R(x, y) is true." There are, however, several
interesting difficulties in making this rough idea work correctly. In this direction the
next definition is the key.

* Received by the editors February 28, 1977, and in revised form July 25, 1977. This work was supported
in part by the National Science Foundation under Grant DCR 92373. Part of this work was carried out while
the authors were visiting IBM Thomas J. Watson Research Laboratory in June, 1975.

" School of Information and Computer Science, Georgia Institute of Technology, Atlanta, Georgia
30332.

$ Department of Computer Science, Yale University, New Haven, Connecticut 06520. The work of
this author was supported in part by the U.S. Office of Naval Research under Grant N00014-75-C-0752.
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DEFINITION. A combination machine is a Turing machine with two read-only input
tapes with end-markers, the first 2-way and the second 1-way, a 2-way read-write
worktape and a 1-way write-only output tape. A combination machine is logspace
(polynomial time) if it always halts and runs within worktape space logarithmic (within
time polynomial) in the length of the first input.

As remarked in [5], a set A is in dg’w, the class of nondeterministic logspace sets
(, the class of nondeterministic polynomial time sets) if and only if there exist a
polynomial p and a relation R such that

x ca 4=> (::iy)[]y[ <- p([xl)/R (x, y)],

and R is computable by a logspace (polynomial time) combination machine.
Now let R and S be arbitrary binary relations, and let r and s be polynomials. Then

we will define reducibility <= (-<_ ) between (R, r) and (S, s) as follows:
(R, r)_-< (_-<) (S, s) provided there exists an f and g such that
1. f is a function computable by a deterministic logspace (polynomial time)

transducer 2-way on its input;
2. g is a functi6n computable by a logspace (polynomial time)combination

machine;
3. Vx, y E*,

IN(x, y)Alyl_-<r(Ix[)] implies [S(f(x), g(x, y))/lg(x,

4. g is 1-1 in the sense that Vx, y l, y2 Y*,

[R(x, y,)AR(x, y2)AIy,I =< r(Ixl)Aly:l <--r(Ixl)Ag(x, y,)= g(x, y2)]

implies Yl Y2;

5. g is onto in the sense that Vx, z 6 E*,

[S(f(x), z)Alzl <-- sdf(x)l)]
implies [Byly[<-r(lxl)/R(x, y)/g(x, y)=z].

This definition, while at first appearing to be complex, is actually a natural
extension of the usual one. In order to see this, observe that the usual definition states
that A is logspace (polynomial time) reducible to B for A and B which are expressed by

a {x]yly] <= r(lxl)AR (x,
and

B {xlylyl <--s(Ixl)AS(x,

provided

[ ly[y] r(lxl)AR(x, y)]

[2tyly[ <-_s(If(x)l)As(f(x), y)],

where f is some logspace (polynomial time) transduction. Our main idea is to strengthen
this condition by putting into 1-1 correspondence specific witnesses to the two
existential quantifiers. Note that according to our definitions, if (R, r)=<e (<_-) (S, s) via

f and g, then for any x,

I{yl lyl-<- r(Ixl)AR(x, y)}l

I{y] lyl <=s(lf(x)l)As(f(x), y)}].

PROPOSITION 1. <_e (_<_) is transitive.
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Proof. We consider -<. We need only show that if (R, r)=< (S, s) via f, g and
(S, s)=<z (T, t) via f’, g’ then (R, r) -< (T, t) via

f"= hx[f’(f(x))] and g"=hx, y[g’(f(x), g(x, y))].

First, f" is a logspace transduction; this follows by standard arguments [8]. We show
that g" is computable by a logspace combination machine as follows"

Simulate g’. The only difficulty is in obtaining the appropriate bits of the inputs to g’
as needed. The first input is easy: in order to compute the ith bit of f(x) we need
only simulate f(x) from the beginning until it outputs the ith bit. This works since x
is 2-way; a counter must be maintained for i. The second input is more difficult. In
order to compute the ith bit of g(x, y) we simply simulate g(x, y) until it outputs the
ith bit. The key is that g’ asks for these bits in the same order as produced in the
computation of g(x, y); thus, in the simulation of g(x, y) it suffices to have y on a
1-way tape. No counter need be maintained for in this case.

Now verification of properties 3-5 is reasonably straightforward. Transitivity of -<’ is
obvious.

DEFINITION. (S, S) is -complete (-complete) if $ is a relation computable by a
logspace (polynomial time) combination machine, s is a polynomial, and for all (R, r),
where R is computable by a logspace (polynomial time)combination machine and r is a
polynomial,

(R, r)-<_e (-<_)(S, s).

It is not difficult to show that if (S, s) is -complete (-complete), then

{xlylyl <-- s(lxl)/kS(x, y)} is complete in WSF (W) according to

the more usual definitions.
Let SAT(x, y) be "x is a conjunctive normal form Boolean formula and y is an

assignment of true or false to the variables of x making x true" [3]. SAT is clearly
computable by a polynomial time combination machine. Let s(n)= n.

PROPOSITION 2. (SAT, s) is -complete.
Proof. Let R be a relation computable by a polynomial time combination machine

M and let r be a polynomial. We will construct a nondeterministic Turing machine M’
from M and r as follows:

M’ on input x simulates M on inputs of the form (x, y) by guessing bits of y
(including guessing when the end of y has been reached) when M needs them. M’
also keeps a counter and if M tries to read more than r([x]) bits of y, then M’ will
reject the input x for this series of guesses. If M rejects (x, y), then M’ will also
reject x on the corresponding computation path. If M accepts then M’ will
continue to guess bits of y, and it accepts when it guesses that the end has been
reached; again if it tries to exceed r([x]) total bits of y then it rejects.

We also require that every guess made by M’ be actually "written down" when made (at
least temporarily) so that distinct values of y satisfying g (x, y) and [Yl -< r(Ixl)will cause
M’ to follow distinct computation paths. Clearly there is a polynomial q such that M’ on
any input x and any computation path, halts in at most q(Ixl) steps; by standard
techniques, we can actually assume that any computation of M’ that accepts x halts in
exactly q (Ix I) steps.

Now M’ is coded into (SAT, s) as in Simon [7]. In order to show (R, r) < (SAT, s)
we obtain the required mappings as follows:

1. f(x) is the Boolean formula obtained by coding the computations of M’ on the
input x;
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2. g(x, y)is anything we like if lYl > r(lxl); otherwise, let M’ operate on input x and
guess precisely the input y when simulating the machine M; then let g(x, y) be
the Boolean assignment to the variables of the formula f(x) which describes this
computation.

We may now assert that these functions have the required properties. Properties 1 and 2
of the definition of -<- are clear. For 3, we must show that

JR(x, y)/lyl-<r(lx])] implies [s(f(x), g(x, y))/lg(x,

But this should be clear from the construction of M’, f(x) and g(x, y). To see 4, suppose
that R(x, yx), R(x, y2), [yll--< r(Ix[), ly21-< r([xl), and g(x, yl) g(x, y2) are all true. Since
M’ writes down all its guesses, it must be the case that y y2.

Finally we will show property 5. Suppose that S(f(x),z)and Iz[ =< s(If(x)l) are
true. Since z encodes the guesses of M’, there must be an input y (since M’ only guesses
the second input)such that R (x, y)with ]Yl -< r(Ix])and by construction g(x, y)= z. Thus
g is onto, and hence (SAT, s) is -complete. I-I

We could, of course, extend Proposition 2 to a collection of other polynomial-
computable relations. Rather than pursuing such results, we turn our attention to
relations computable by logspace combination machines. Let GAP (x, y) be "x encodes
an acyclic directed graph (Savitch [6]) with the property that the total order of nodes
induced by the node numbering is a topological ordering of the partial ordering induced
by the edge directions, and y encodes a directed path from start to finish." Again let
s(n) n. Clearly, GAP is computable by a logspace combination machine.

PROPOSITION 3. (GAP, s) is -complete.
Proof. Since this is almost identical to the proof of Proposition 2 we will only sketch

it. Let R be a relation computable by a logspace combination machine M, and let r be a
polynomial. Define M’ as follows"

M’ on input x simulatesMon inputs of the form (x, y) by guessing bits of y whenM
needs them. (Note since M is 1-way on this input M’ does not have to remember all
of y). M’ then operates just as in Proposition 2.

Since guesses need only be written down temporarily, there is no difficulty with the
space bound. Clearly M’ will be a nondeterministic logspace Turing machine which we
can assume halts for any computation in exactly q(Ixl)steps, for some polynomial q.

M’ is encoded into GAP as in [6]. Then f and g are obtained as follows:
1) f(x) is the graph obtained by encoding of M’ on x.
2) g(x, y)is anything we like if [y[> r(Ixl). Otherwise, let M’ on input x’with

guesses y yield the path g(x, y) through the graph f(x).
Then (R, r)<_-e (SAT, s) via this f and g. A key again is that the computation of M’
encodes the actual y it guesses so that g(x, y) will be 1-1. 71

We note that Proposition 3 is also extendible to a variety of other logspace-
computable relations.

3. Size oi solution sets ior relations. We consider -complete (-complete) (R, r).
We wish to give a complexity classification for

(R, r)k {Xl ::1 exactly k values of y, lY[ <- r(lxl)/kR (x, y)}

for various values of k. We will first examine specific problems and then we will use the
results of 2 to obtain generalizations. In the following, we let <-’, <_e, =< and <=e
represent the reducibilities used by Karp [3], Jones and Laaser [2], Cook [1] and Ladner
and Lynch [4], respectively. For convenience, we let SAT1 (x, y) be "x is an arbitrary
form Boolean formula and y is an assignment of true or false to the variables of x
making x true." Let s(n)= n as before. Then it is clear that (SAT1, s) is -complete.
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and

PROPOSITION 4. For any fixed k >= 1,

(a) (GAP, s)k =e (GAP, S)l,

(b)

Proof. (a) We first show

(SAT1, s)k = (SAT1, S)I.

(GAP, s) _<e (GAP,.s)I.

Assume k >-2. If x is not an acyclic directed graph satisfying the given consistency
condition, then let f(x)= x. Otherwise, let ,:N{0, 1}-1 (where N is the set of
natural numbers) be a natural 1-1 (2k- 1)-tupling function with the property that

i= i=1

implies 4(Xl, ", X, al," , ak-1)< fi(Yl, Yk, bl," b-l).

The start node of f(x is
p (ns,’’’,ns, 0,’’’,0),

k k-1

where ns is the (number of the) start node of x. The goal node of f(x) is

(n,...,n,l,...,1),

k k-1

where n is the (number of the) goal node of x. The edges of graph f(x) will be defined
by tupling together edges of x as follows:

(fi(Xl,""", Xk, ax, ak-1), ,(Yl, Yk, bx,""", bk-x))

will be an edge of f(x) exactly if:

1) (Xl, xk, al," a,-1) #- (nG, ", nG, 1,..., 1), and
2) for alli, l<_-i_-<k-1,

(a) either (xi, yi) is an edge of x, or xi yi n, and
(b) one of (bl)-(b3) holds:

(bl) ai 0 and xi Xi+l # n and bi 0 and y yi+l n,
(b2) ai 0 and xi Xi+l : n and bi 1 and yi <
(b3) ai 1 and bi 1.

The reader may verify that f(x) is an acyclic directed graph satisfying the given
consistency condition, and that f(x) is computable from x in logspace. Intuitively, a
single path through f(x) corresponds to parallel simulation of k distinct paths through x,
where a flag is changed from 0 to 1 to indicate that two "adjacent" paths have just been
discovered to diverge with the path at the left preceding the path at the right
lexicographically. Padding is used for shorter paths in x. With this intuition, the reader
should be able to verify that x has exactly k solutions iff f(x) has exactly 1 solution.

We now must show (GAP, s )I =<e (GAP, S)k. But this is straightforward by a

construction which adds k- 1 disjoint "dummy paths" to a graph of the appropriate
type. Vl

(b) We first show

(SAT1, s) =<e, (SAT1,
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If x is not a Boolean formula, define f(x)= x. Otherwise, assume x is of the form
a(xl,.’., xn). Let f(x) be the formula obtained by selecting new disjoint sets of
variables {xil,’’’, xi,,}= and expanding into the appropriate form the expression"

[a(Xll,""", xx,)/a(x21,’’’, x2,)/k ’/a(xkl,’’’,
A(X11X12" Xln <X21X22" X2n < <XklXk2" Xkn)].

The last line of inequalities is intended to indicate lexicographic ordering of the given
strings, f is computable in polynomial time, and x has exactly k solutions iff f(x) has
exactly 1 solution.

Next we show

(SATe, s) _-< (SATe, s).

If k 1 there is nothing to prove, so assume k >- 2. If x is not a Boolean formula, define
f(x) x. Otherwise, assume x is of the form a (Xl,. , x,). Let f(x) be the formula

a 1, A

k-1

V
i=1

(n+i A

n+k-1

[(X Xn)i=1 ] k/1 [ \/.__1Xj) (/.=3i+1 1") 1
f essentially adds k 1 dummy solutions to x, and so x has exactly 1 solution iff f(x) has
exactly k solutions. 71

We now note that a result similar to Proposition 4 must hold for all complete (R, r).
That is, addition of dummy solutions and collapsing of several solutions to one are
constructions which work for all complete problems. In fact, all such problems must be
equivalent to each other:

PROPOSITION 5. For any fixed k >- 1,
(a) if (R, r) is -complete, then

and

(R, r) -= (GAP, S)I,

(b) if (R, r) is -complete, then

(R, r)k =- (SAT1, s)1.

Proof. By Proposition 4 and the fact that our reducibilities _-< and _-< preserve
cardinality of solution sets (as noted immediately prior to Proposition 1).

Now that we know that all size problems lie in a common complexity class, we
would like to be able to say more about the location of this class. The only such
information we have so far arises as a result of the following proposition. Here, let G(S)
be W,-complete (W-complete) in the usual sense.

PROPOSITION 6. (a) If
_<eA =<e G,

then A Wiff/’ is closed under complement, and A iff W, and

(b) If
g-<’A _-<S,

then A dV’ iffdV’ is closed under complement, and A iff
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Proof. The arguments are all standard Turing machine constructions, of the type
found in [2] or [4], for example. 1i

Finally, we can conclude"
PROPOSITION 7. For any fixed k >- 1,
(a) if (R, r) is -complete, then (R, r)k 5iffisclosed undercomplement, and

(R, r)k iff5 , and
(b) if (R, r) is -complete, then (R, r) iff is closed undercomplement, and

(R, r) iff
Proof. (a) It suffices to show

_<ze (GAP, s)a -<G,

where G {xl ylyl--< s(lxl) and GAP (x, y)}.
The first reduction follows by adding a single "dummy path" to a graph.
To see the second reduction, note that (GAP, s) A B, where

A {xl::l at least k values of y, [Yl <- s(IxI)AGAP (x, y)},

B {x[::l at least k + 1 values of y, lYl <-- s(Ix[)/GAP (x, y)}.

Clearly A, B are both in Sf, so that

A_-<eG and B=<eG.

Then a Turing machine with a G-oracle may easily be constructed to decide member-
ship in (GAP, S)l.

(b) It suffices to show

<- (SAT1, S)l S.

To see the first reduction, we use a special case of construction for Proposition 4(b): if x
is not a Boolean formula, define f(x)- x. Otherwise, if x is the form a (Xx,. , xn) let
f(x) be the formula [a(xl,. x,,) ^ x--d-+x] v [Xl ^" ^ x, ^ x,,/x], x has no solutions iff
f(x) has exactly one solution.

The second reduction follows from the same argument as in (a). l-I
Of course, the given complexity classification is still very incomplete; further work

remains to be done. For example, is (SAT, S)x in?
We would expect that there are other interesting properties of solution sets which

are preserved by strong reducibilities such as ours. Finding the appropriate strength
reducibilities needed to preserve constructions such as those used for approximation, or
for finding a particular solution when existence is known, seems to be an interesting area
for further study.
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AN ALGORITHM FOR TRANSITIVE CLOSURE WITH LINEAR
EXPECTED TIME*

C. P. SCHNORR’

Abstract. An algorithm for transitive closure is described with expected time O(n + m*) where n is the
number of nodes and m* is the expected number of edges in the transitive closure.

Key words, transitive closure, average time, random access machines

1. Introduction. Algorithms that construct the transitive closure of a given direc-
ted graph have obtained considerable attention. Roy [5] and later on Warshall [8]
proposed an algorithm that runs in O(n 3) steps, where n is the number of nodes. In
1970 four Russians published an algorithm with time bound O(n3/log n). M. Fischer
and A. R. Meyer [4] applied Strassen’s fast matrix multiplication and obtained an
algorithm for transitive closure with time bound O(n281).

Recently Bloniarz, Fischer and Meyer [2] proposed an algorithm for transitive
closure with average time O(rt 2 log n). We propose an improved algorithm with
expected time O(n + m*) where rn* is the expected number of edges in the transitive
closure. Moreover the event that the running time exceeds cn 2 is less than 2 for
some fixed c > 0 and all n.

These bounds hold for all those graph distributions where the probability of a
graph only depends on its number of edges and on its number of nodes. This, for
instance, is true whenever the n 2 possible edges of the random graph with n nodes (i.e.
whether there is an edge - j or not) are identical and independent random variables.
The above class of graph distributions is only slightly smaller than the one which is
used by Bloniarz, Fischer and Meyer. They require that the probability of a graph only
depends on the set of outdegrees and the number of nodes. This latter class of graph
distributions is not preserved under the transformation which associates to each graph
its edge reversal (the edge - j is replaced by j by this transformation). Requiring
that the class of graph distributions is closed with respect to the transformation of edge
reversal leads to our smaller class of distributions.

2. The algorithm. Our time analysis is valid for an implementation of the al-
gorithm on the type of storage modification machines which has been proposed by
Sch6nhage [7]. This model of machine is linear time equivalent to the RAM machine
with unit costs and addition/substraction by 1; see Schnorr [6] for the equivalence
proof.

We suppose that the input graph has node set {1, 2,..., n} and is given by its
adjacency lists L {/’1::1 edge from to j} for 1, ., n. We assume that there are no
repetitions in the lists L, which ensures that the input is not too big. No particular
ordering of the input lists L is assumed; these lists will be linearly ordered in Stage 0
of the algorithm. Let m Y7’-- IIL, be the number of edges in the given graph. Let
L= {/’1::1 edge from j to i} i= 1,..., n, be the adjacency lists of the edge reserved
graph, j is called a successor of if there is a path from to j. in this case, is called a
predecessor of j.

* Received by the editors September 20, 1976, and in final revised form September 26, 1977.
f Fachbereich Mathematik, Universitit Frankfurt, 6 Frankfurt am Main, West Germany.
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Informal description of the algorithm. The algorithm consists of the following
stages:

Stage O. The lists L of the edge reserved graph are constructed in linear order by
inserting into L for all j Li in the order of succession 1, 2,... n. By a second
application of this process we obtain the lists (L/r) which are linearly ordered permu-
tations of the lists Li. Substitute (L for Li.

Stage 1. Associate in a breadth first search manner to each node a list Si of
successors such that either (i)or (ii) holds:

(i) ]]Si]] < In/2] + 1 and Si is the complete list of successors of i.
(ii) IISi In/2] + 1.
Stage 2. Apply Stage 1 to the edge reversed graph, i.e. associate to each node a

list Pi of predecessors such that either (i) or (ii) holds with Pi substituted for Si.
Stage 3. For 1, 2,. , n form the adjacency lists

L/* S, U {j’li P,} L_J {j’[ [ISi[[--liP, l[- Ln/2/+ 1}

of the transitive closure as unions of three lists each.
Stage 4. Permute L/* into the linearly ordered lists (L’i) using two applications of

the algorithm for forming the edge reserved graph (compare Stage 0). Replace L/* by
(L’i) and remove multiplicities by one pass over the ordered lists L/*.

Clearly Stages 0, 3 and 4 can be implemented on a storage modification machine
as to run in linear time on their respective input data. Stage 2 is symmetric to Stage 1.
Therefore it will be sufficient for the time analysis of the algorithm to give a detailed
description of Stage 1 which constructs Si, i-1,..., n, in a breadth first search
manner. We use two auxiliary storages, queue and stack. The lists Q., ] 1, , n, are
supposed to be initially empty.

Stage 1 of the algorithm.

for 1 step 1 until n do
begin Si := queue := {i}, stack :=

counter := 1, mark
while queue ( and counter < In/2] + 1 do

/" := top node of queue
remove ] from top of queue
push/" onto the top of stack
while counter < In/2] + 1 and L do

a := first node of L
L := L-{a}, O := O (-J {a}
if a is not yet marked then
[push a to the bottom of queue,
mark a, Si := Si U {a },
counter := counter + 1]

end
end
for all ] on stack
[unmark ], L := L LI Oi, O := ]

end

Comments on the algorithm. Let be fixed. Then the algorithm constructs Si in a
breadth first search since we push a at the bottom of queue when a is visited for the
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first time (while in a depth first search a must be pushed to the top of queue) and
within the inner while-loop, the adjacency list Lj of the previous top node j of queue is
exhausted. Before examining Li, j is removed from queue and pushed onto stack.

3. Correctness anti analysis of the algorithm.
THEOREM 1. The complete algorithm correctly computes the transitive closure.
Proof. The outer while-loop in Stage 1 either finishes because queue or

because counter Ln/2J + 1. If it finishes because queue , then Si is the complete
list of successors of node i. If the while-loop finishes with queue , then counter
[n/2J + 1, and this means IISi[[ [n/2J + 1. This proves that Stage 1 associates to each
node a set of successors Si such that either (i) or (ii) above hold. Stage 2 of the
algorithm works exactly as Stage 1 with Li replaced by L and Si replaced by Pi.

It remains to prove that for each edge j, - j is in the transitive closure of the
input graph if and only if

[j Si or Pi or liSill- IIPilI [n/2J + 1]

" "" Obviously, if j Si or Pi, then the edge -> j is in the transitive closure. If
IISill- IIP ll- Ln/21 / then Si cannot be empty since this would imply [ISi t3 Pill>
n. However, Si f-] Pi # implies that --> j is in the transitive closure.

"==]>"" If j-> is in the transitive closure and either [ISil[< Ln/2// 1 or IIP;ll<
[n/2] + 1 then the correctness conditions (i), (ii) of Stages, 1 and 2 of the algorithm
imply that Si is the complete set of successors of provided
is the complete set of predecessors of ] provided

THEOREM 2. Suppose that the probability of a graph is a function of its number of
nodes n and edges m. Then the expected running time of the algorithm is O(n + m*),
where m* is the expected number of edges in the transitive closure.

Proof. Observe that we do not suppose that the input lists Li are permuted at
random. This would be unnatural since usually these lists are ordered in some way.
However, the lists Li will be in linear order at the end of Stage 0 and the following
time analysis of Stage 1 will use this fact. Since we do not suppose that the lists Li are
permuted at random and since the first element a 6 L. in the inner while-loop of Stage
1 of the algorithm is chosen deterministically and not at random, it is clear that the
sequence (aelt 1, 2,’’’ of nodes a, {1,..., n} which are examined in the inner
while-loop during the construction of Si is not a sequence of independent random
variables. Here a, is the node which is examined within the tth pass through the inner
while-loop during the construction of Si for some fixed i.

A main point is that the breadth first search structure of our algorithm ensures
some global random properties of the sequence (alt-1,2,... ). Let L)=
(alh(u)<t<=h(u+ 1)) be the uth adjacency list under examination within the con-
struction of Si. Here h is a function that depends on the input lists Lj and the start
vertex i. Let h(u + 1) be defined if and only if the uth adjacency list L)is exhausted
during the construction of Si. Let AL)={a,[h(u)<t<=h(u+ 1)} be the set of ele-
ments in the list L< and let Si(t)= {al,""", at}.

In the following average time analysis of Stage 1 let n and m be arbitrarily fixed.
Under this condition we have Prob (j ALi) m/n 2 for all nodes j, i. In particular all
n-tuples of ordered lists (L,..., L)with m i%l[ALit[ are equally probable. Since
no list L is examined twice during the construction of S, we have

FACT 1. (i) The sets AL<), u 1, 2,. ., are (mutually) independent;
(ii) AL<) is uniformly distributed, i.e., for all A {1,..., n },

Prob (AL) a)= (m/n2)llAIl(1 m/n2)n-llAII.
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The independence of the sets AL,() will serve as a substitute for the in-
dependence of the sequence (at[t 1, 2,. ). We like to bound the expected value of
min {tl Ils,(t)ll> k} with k =< [n/2]. Observe that min {tl IIs,(t)ll> k} up to a constant
factor bounds the number of steps that are carried out in the construction of $i until
the (k + 1)st element of Si has been found. We shall compare (at[t 1, 2,.. to a
sequence of independent random variables.

LEMMA 1. Let A c {1,..., n} with [IA[I- k be fixed and let (dtlt 1, 2,... ) be
independent random variables which are uniformly distributed over {1, 2,. , n}. Then
min {t]& A} has expected value 1 + k/(n -k).

Proof. Prob [al,’’’, aeA and &+a e!A]=(k/n)r(1-k/n). Hence the expected
value of min {tl, A} is

1+ E r(k/n)(1-k/n).
r=l

Obviously ,=ora-a (1/(i-a))’ 1/(1-a Hence E=lr(k/n)r(1-k/n)
(k/n )/(1 k/n ) k/(n k). This proves Lemma 1.

LEMMA 2. Let (d[t 1, 2,... be independent random variables which are uni-
formly distributed over {1, 2,..., n}. Then for k <-n/2, min {tl
has expected value -<_l.5(k + 1).

Proof. According to Lemma 1 the expected value of min
k} is bounded by

k k

E (l+v/(n-v)) <-k+l+ 2 v/(n/2)
v=O v=l

<-k+l+k(k+l)/n
<_-1.5k + 1.5. l--I

Let the sequence of random variables (a[lt 1, 2,... be obtained from (a, lt
1,2,...) by permuting the segments (a,lh(u)<t<=h(u+l)) at random for u=
1, 2,.... (atlt-- 1, 2,... is "almost" a sequence of independent random variables.
The unique dependence between the variables a[ is that the variables within each
segment (a’, Ih (v) < _-< h (u + 1)) take pairwise different values. Let SI (t) {a ,. , a’t}.

LEMMA 3. For k <-_n/2 the expected value of min {t[llsI(t)ll> k} is <- 1.5(k + 1).
Proof. Since the sets AL() are independent and AL() is uniformly distributed

according to Fact l(ii), it follows from the construction of (a’tlt 1, 2,... ) that this
sequence is distributed as a sequence of independent random variables
1, 2,... under the condition that the variables within each segment (i,[h(v)< t=<
h(v + 1)) take pairwise different values for v 1, 2,. . However, the 1.5k + 1.5
bound of Lemma 2 holds a fortiori under the condition that the variables within each
segment (tlh(v)< <= h(v+ 1)) take pairwise different values, since it should be ob-
vious that the expected value in Lemma 2 must increase under the converse condi-
tion. I-]

LEMMA 4. ([ISi(t)llt= 1, 2,... ) and (IISI (t)ll 1, 2,... are equally distributed
sequences of random variables.

Proof. Let t= h(u)+ r<= h(u + 1). Since Si(h(u))= S[(h(u))we have

S/(t) S,(h(v)) U A(z, r),

S,(t) S,(h(v))U A(<, r)
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where A(-, r) (A(<, r), resp.) are the first r elements of AL() with respect to a
random ordering z (the linear ordering <, resp.) It follows from Fact 1 that Si(k(u))
is uniformly distributed. Therefore the distribution of IISi(h(u))UA(z, r)[[ does not
depend on z. This proves that IIS[(t)[I and [IS(t)l] are equally distributed. El

Let s be the expected and let [ISi[[ be the actual size of Si upon completion of Stage
-, In/2] +11. Obviously s Z,k--1 k" Prob (IISII k). Let q be the expected number of passes

through the inner while-loop during the construction of Si. Then
[n/2]+1

q_-< Y’. Prob (lls, ll- k)l.5k
k=0

where 1.5k according to Lemmas 3 and 4 bounds the expected value of
min {tl IIS,(t)ll > k 1}. Hence q <_- 1.5s. Since ns <- rn*, this implies

LEMMA 5. The expected total number ofpasses through the inner while-loop during
Stage 1 and Stage 2 of the algorithm is <-3m*.

Observe that the bound in Lemma 5, which was proved under the condition that
n and m are arbitrarily fixed, now holds uniformly for all n and m. It remains to bound
the number of steps in those parts of the algorithm which are not affected by the
distribution. Stage 0 takes O(n + m)steps with rn =-1 IlZXgill and Stage 4 takes
O(n /F,L IIAL.*,II) steps. Next we consider Stage 3 of the algorithm, which does the
following:

construct P[ := {J’li Pj}, i= 1,..., n,

L := Si L.J P[, i=l,...,n,

S := {il IIS[I In/2] + 1},

P :- {’111Pl[- [n/23 + 1},

forallieS, fP: L/* := L/* U {j}.

This yields the adjacency lists L* of the transitive closure and Stage 3 can clearly be
done within worst case running time O(n +il IIAL*II). This finishes the proof of
Theorem 1. [-1

Our algorithm not only has a linear expected running time but for some c > 0
the event that the running time exceeds cn 2 has probability less than 2-". We shall use
the following fact from probability theory; see e.g. Erd6s and Spencer [3].

LEMMA 6. Let Xt, 1,. , k, be independent random variables with Prob (Xt
1) Prob (Jt 1) 1/2. Then Prob (xt=lt > A)_<ek-2A:z/k.

Let An,q be the event that the number of passes through the inner while-loop
within Stage 1 exceeds n2q. An,q implies that the number of passes through the inner
while-loop during the construction of some Si exceeds nq. Fix and let
1, 2,. ) be the sequence of nodes which are examined during the construction of Si.
Set Xt 1 if at e Si(t- 1)= {al," at-i} and Xt -1 if at Sg(t- 1). Set Xt -1 if
less than nodes are examined during the construction of

In the same way we associate to (at[t 1, 2,... ) the random variables (X[[t
1, 2,... ). Obviously Xt I iff I[S(t)[[ [ISi(t- 1)1[ and X[= 1 iff IIS[(t)ll IIS[(t- 1)[I. By
Lemma 4, (Xt[t 1, 2,... and (X[lt-1, 2,... ) are equally distributed. Now let
(Jt[t 1, 2,. be a sequence of independent random variables with Prob (Jt =/x)
Prob (Xt =/x) for/x 1, 1. Then

Prob Xt > h Prob Xt’> h
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by Lemma 4, and

Prob X/>A -<Prob Xt>A
t=l

by the argument that underlies Lemma 3.
Moreover, Lemma 6 applies to (Jtlt 1, 2, ) since the J?t are independent and

Prob (Jt 1)= Prob (Xt 1)<_- 1/2. This altogether yields

(*) Prob Xt > A -< e -2x 2/k.

Now suppose that the number of passes through the inner while-loop during the
construction of Si exceeds nq and call this event A n,q. It follows for at least nq-n
different < nq" at Si(t- 1) and therefore Xt 1. This implies "qt=l Xt >= n(q 2). We
conclude from (,):

Prob(Ai (nq )n,q)--< Prob Y Xt _-> n (q 2) _-< e
t=’l

-2(q-2)2n/q

Hence

and for q 4,

Prob (An,q) < Prob (A <-_ -2(q-2)2n/q
n,q, n e

i=1

Prob (An,4) <- n e -2n.

Now consider the total running time of the algorithm which is composed by the
running time of the different stages. For some c the running time of Stages 0, 3, 4 is
bounded by cln

2 in total. The number of passes through the inner while-loop of Stage
1 bounds the total running time of Stage 1 up to some constant factor c2. Since Stage 2
has the same average time behavior as Stage 1 it follows that the event that the
algorithm takes more than (8c2+cl)n 2 steps has probability less than n e -2". This
yields a constant c := 8c2 + Cl, which satisfies the following

THEOREM 3. For some c > O, the event that the algorithm takes more than cn 2 steps
has probability less than 2-" for all n.

Finally we remark that our average time analysis no longer holds if the algorithm
is operated in a depth first search manner. In this case the examination of an adjacency
list will be successively interrupted. Therefore the sequence (atlt 1, 2, ) of visited
nodes during the construction of $i can no longer be partitioned into independent
parts. Unless the input lists Li are permuted at random, there will be a trend that those
nodes which come first in the linear order and which therefore stand at the very
beginning of the input lists are visited more frequently than other nodes.
Consequently it takes longer to find those nodes which come last in the linear
ordering. For example, in the case of the complete graph with n nodes which is given
for m n 2, the depth first search algorithm takes at least (n3) steps. Hence
Theorems 1 and 2 no longer hold.

Acknowledgment. I thank M. Fischer and the referee for their valuable sugges-
tions that greatly helped to improve the paper.
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OBSERVATIONS ON THE COMPLEXITY OF
GENERATING QUASI-GRAY CODES*

MICHAEL L. FREDMAN’

Abstract. The purpose of this paper is to develop a decision tree-like model for defining and measuring
the on-line complexity of algorithms for generating combinatorial objects. For the purpose of illustration,
we consider the problem of generating Gray codes and simple generalizations of Gray codes. We in’clude
some results pertaining to the generation of certain special codes and, in addition, we present a trade-off
theorem. Our model is information theoretical and we emphasize two aspects of complexity; the amount of
ihformation that must be gathered and the amount of data structure update required to generate the
successor to a given codeword.

Key words, on-line complexity, Gray codes, decision trees, combinatorial generation

1. Introduction. The purpose of this paper is to develop an information theory
oriented model for defining and measuring the complexity of algorithms that generate
combinatorial objects. For the purpose of illustration, we will focus our attention on
what we shall call quasi-Gray codes. The model will be used to establish theoretical
bounds on the efficiency of optimal algorithms that generate various types of quasi-
Gray codes. Among other things, we shall demonstrate a provocative trade-off be-
tween two complexity measures" the amount of information that must be gathered,
and the amount of data structure update that must be performed in order to generate
the successor to a given codeword.

We define a quasi-Gray code (QGC) of the dimension n to be a cyclic sequence of
n dimensional binary vectors, vl, v2," ", v/, vl, the first L of which are distinct, and
satisfying the condition that two consecutive vectors differ in exactly one component.
We refer to the number L of distinct vectors as the length of the code. Clearly, L _--< 2n.
The extremal QGC’s with L 2 are called Gray codes. The class of algorithms which
we shall use to generate these codes will be called decision assignment trees (DAT).

A DAT is a binary tree whose internal nodes are each labeled with the name of a

binary variable, and whose leaves each contain a sequence of one or more assignment
statements of the form x 0 (or 1), where x is a variable name. The execution of a

DAT begins with control at the root node. In general, control passes from a given
internal node labeled with variable x to its left son if currently x 0, and to the right
son if x 1. Upon reaching a leaf, the list of assignment statements contained in that
leaf are performed, and the execution terminates. Given that the set of variables
appearing in a particular decision assignment tree T is {xl,.. ", x,,}, we let denote
the binary vector whose jth component is the current value of xi, and we refer to as
the current value vector. The execution of a DAT typically changes the values of
certain of its variables by virtue of its executed assignment statements. If initially

w, and after an execution of the tree T we have ,, then we write , T(oo) to
denote the function relationship holding between w and u, as defined by T. Given an
m dimensional vector Ol, consider the infinite sequence wa, w2, w3,’" such that

W+l= T(wi), and let p,, n =<m, denote the projection mapping an m dimensional
vector o into the n dimensional vector p,, (w), consisting of the first n components of

* Received by the editors November 9, 1976, and in revised form August 2, 1977.
Department of Applied Physics and Information Science, University of California, San Diego, La

Jolla, California 92093. This work was supported in part by the National Science Foundation under Grant
MCS-76-08543.
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w. We say that the tree T generates the QGC Va," , vL of dimension n if and only if
there is a way to choosewa so that for each k -> 1, pn(o)k)= V when k -=j (modulo L).

Our DAT algorithms are intended to model random access machines with small
word size, one bit words to be precise. The current value vectors represent the
contents of memory. When used to generate a QGC, under our interpretation the first
n bits of memory comprise the most recently generated code vector. The remaining
m-n bits represent the dynamical state of a data structure employed to facilitate
efficient generation. Given a decision assignment tree, we let I denote the maximum
number of internal nodes along any path from theroot to a leaf, U denote the
maximum number of assignment statements in any leaf, and T denote the maximum
number of internal nodes plus assignment statements in any path from the root.
Observe that max (I, U)_-< T _-< I + U. Given that the tree generates a specified QGC,
we can, in principle, prune from the tree any redundant tests and any nodes that are
never reached in the generation process, so that I, U, and T can be given the following
respective worst case on-line complexity interpretations: the amount of information
gathered per code vector generation, the amount of data structure update or
modification, and the total time per generation. More precisely, one of the assignment
statements enumerated by U specifies a change to the QGC vector; the remaining
specify changes to the data structure. The quantity I represents the number of
memory probes required to determine the appropriate set of assignments.

In the sequel, we will concern ourselves with the following questions concerning
inherent complexity. Among all DAT’s that generate a specified code, how small can
T, I or U be? We will observe that I can generally be traded against U.

A few comments about the DAT as a computational model are in order. Given a
QGC, the best value for T from any DAT generating the code provides a lower bound
on the RAM complexity of the problem under the logarithmic cost criterion, roughly
speaking (see [9, p. 12]). It is not reasonable to expect, however, to be able to always
attain these bounds on the RAM in a practical sense. In particular, when defining a
class of codes with the code vector dimension being a parameter, the problem of
uniformity rears up.

2. Summary of results. A few of our results pertain to the so-called binary
reflected Gray codes. For each n-> 1, there is a reflected Gray code Gn of length
L 2 consisting of code vectors of dimension n. The code Ga is given by the vector
sequence (0), (1). The code G,+I is described in terms of G,, as follows. If
Vl, V2, ", VL denotes the vector sequence for the code G,, the code Gn+l of length 2L
is given by the sequence (0, Vl),’’ ", (0, vL), (1, vc),..., (1, Vl).

In the literature, there are algorithms (e.g. see 1]) that generate G,,, which, when
formulated as DAT’s, satisfy/, U, T O(log n) and L U, T f(log n). Since, as will
be seen, I l)(log (log L)) for any DAT which generates a QGC of length L, it follows
that these algorithms are near optimal in terms of T and L But what happens if we try
to decrease U? Can we reduce U without significantly increasing I? Yes; we shall
construct an algorithm with I O(log n) and U 7. If we impose the extreme
constraint U 1, however, then we can show that I n for any such DAT generating
the reflected Gray code. Thus we see slight evidence of a trade-off phenomenon
between I and U, but one which does not manifest itself until a rather extreme
constraint on U is imposed.

Logarithms are taken to the base 2. The expression fin)= (g(n)) denotes the relationship g(n)=
off(n)).
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If we consider that the constraint U 1 altogether eliminates the possibility of
utilizing a data structure in generating a QGC, it is not unreasonable to conjecture
that U 1 and I O(log (log L)) is an impossible condition to meet when generating
any infinite class of QGC’s, not merely the reflected Gray codes. But, in fact, we shall
construct a class of QGC’s satisfying these constraints.

To find an interesting trade-off phenomenon between I and U, it suffices to
consider codes that are relatively difficult to generate. Given any small e > 0, we will
show that there exist QGC’s for each dimension n >= no(e), such that for each a in the
interval 1/2+e-<a _--<1, a DAT generating the QGC with I<-_an and U--<2 (1-’+)n

exists. Moreover, for any DAT generating these codes and satisfying I <_-an, the lower
bound U -> 2 (1--e)n also holds. At first glance this seems absurd; more memory must
be updated than would ever need to be probed. But we can explain this by remember-
ing that we are considering worst case values. When averaged over all code vectors, it
turns out that a very small amount of update takes place per code vector generation.
Only on extremely rare occasions is substantial update required.

While the results presented in this paper pertain strictly to the generation of
quasi-Gray codes, it is clear that the DAT model of computation can be adapted for
the purpose of studying the complexity of algorithms which generate other kinds of
combinatorial configurations; e.g. combinations, partitions, permutations, etc. In [4],
Ehrlich introduces the notion of a loopless algorithm. Roughly speaking, an algorithm
for generating combinatorial objects is called loopless if the transition from a parti-
cular object to its successor is computed in constant time (on a conventional machine),
independently of the size or dimension of the objects being generated. The DAT
model provides a precise and more stratified notion of cost, in terms of which the
so-called loopless algorithms appearing in [1]-[8] actually require O(logn) time
(n =object size). Moreover, Lemma 1 (below) suggests that O(log n) is the best
possible.

3. An information theoretic lower bound.
LEMMA 1. For any DAT which generates a OGC of length L, we have

I -> log (log L).
Proof. Let x l, x2,-" ", xn be the variables in the DAT that represent the vector

components of the generated QGC. (In the sequel, the words "variable" and
"component" will be used interchangeably, exploiting the correspondence between
variables and components of the current value vectors.) We shall call one of these
variables active if it takes on both values 0 and 1 over the entire code sequence.
Clearly, the number nA of active variables satisfies nA log L if the code has length L.
Because a QGC is cyclic, if x is an active variable, then both assignment statements,

x1 <--0 and x ,-1, must appear in the DAT. Because two consecutive code vectors
differ in only one component, it follows that the DAT must have at least 2hA leaves,
and the lemma follows immediately.

4. Some special DAT constructions. Our first construction shows that we can
come close to achieving the bound in Lemma 1, even when imposing the constraint
U 1. We begin with some definitions and notation.

Given a decision assignment tree T, we let X(T) denote the set of components
(variables) appearing in T, and we let Xg(T) denote the subset of X(T) consisting of
those components that label the internal nodes of T. Let (-Ol be the zero vector of
dimension Ix(T)[, and as in the Introduction, define the sequence Wl, 092, w3,-" ", by
the rule wi+l T(wi). Let w/ denote the projection of w consisting of those
components in Xx (T). Each vector w/determines a path through T from the root to
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some leaf. Given a particular leaf of T, we let b() denote the set

{w/[ is the leaf reached by input w/}.
We say that T is parity preserving if and only if for each leaf in T, all vectors in b()
have either an even number of l’s, or all have an odd number of l’s. Moreover, we say
that has even parity, or has odd parity in accordance with the parity of the vectors
in 4 ().

Let T and T be two DAT’s. We say that T and T are isomorphic if and only if
they are isomorphic as ordered binary trees, and there is a one-to-one mapping
between the sets X(T) and X(T) preserving node labels and assignment statements.
In particular, if T and T are isomorphic, then the induced functions T(o) and T(o)
are identical. We will have occasion to notationally distinguish certain components in
X(T) by parenthetically listing them following the name T, e.g. T(x, y, z). When we
state that T(x, y, z) and T(Y, 37, ) are isomorphic, it is to be understood that Y, )7, and
Y are the respective isomorphic images of x, y, and z.

Given a parity preserving DAT with distinguished components, T(x,...,z),
which satisfies U 1, we dfine the extended DAT, Te(x, ", z, t, ) where and/" are
not in X(T), as follows. If

-b 0 1(1) b= or

is a leaf of even parity, we replace it by

(2E)

On the other hand, if (1) is a leaf of odd parity, we replace it by

(20)

Observe that U remains 1 and I increases by 1 when "extending" the DAT. In the
sequel it will become apparent that this extending construction fits into a mechanism
for implementing subroutine calls. The leaf acts as a transfer instruction, and
is inverted before the return from the subroutine takes place.

Next, we define Flip(u, v, t, k) to be the following DAT shown in Fig. 1. Observe
that if initially u v 1, then after repeated application of Flip, we ultimately reach
the leaf k[__J, with u v 0, and complemented in value; hence the name Flip.

FIG.
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Using the above definitions and notation, we define a sequence of trees
T,(L l,f, z), n >=0. As will be indicated below, these trees are parity preserving,
hence they can be extended as described above.

To(L l, [, z)= T(L l, [, z)=

FIG. 2

First, we define To and T1 in Fig. 2. We define T,+I in terms of T, and T,-1 as
follows. Let T,(a, b, c, k) and T,_(d, e, f, 1) be DAT’S isomorphic to T,(j, 1, f, z) and
T,_(/’, 1, f, z) respectively, such that the variable sets, X(T,(a, b, c, k)) and
X(T,_a(d, e, f, 1)) are disjoint. Moreover, assume that ], u, v, and z do not appear in
either of these variable sets. Then T,+a(j, l, f, z) is given by Fig. 3. Finally, we define
T, to be the DAT shown in Fig. 4. Observe that the DAT’s T, satisfy U 1.

Tn(a,b,c,k) Flip(u,v,t,k)

FIG. 3

THEOREM 1. The DAT, n >= 0, generates a QGC of length L L. and dimen-
sion d d. where

(L,,_a + 8)(Ln-2 4) + 6

d,, ={4d -Jc" d 2 + 5

if n =0 or 1,

ifn>-2.

ifn =0 or 1,

ifn>--_2.
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Also,

1=1,,={8 if n= l,

2n+8 if n =O or n >--_2.

Remark. In terms of Ln, we have I, 2.88 log (log Ln)+0(1). Hence, these
DAT’s have a value I which comes to within a constant factor of the theoretical lower
bound given in Lemma 1.

T,q,t,L

FIG. 4

Informal proof of Theorem 1. The motivation behind the DAT construction in
Fig. 3 is provided by the following overview of its operation. Beginning with the zero
vector of dimension dn+l, repeated application of the induced T,+I function yields a
long sequence of vectors, ultimately leading to the vector which defines the path
reaching the leaf,.For this vector, it will be the case that j f 1, and all of
its remaining components will equal zero. We call this fact the exit condition, and it is
proven by induction on n.

Describing the T,+I iterations of the zero vector in greater detail, we observe that
these iterations define paths into the T, subtree until the leaf k ,-- !..] is reached. In
accordance with the exit condition induction hypothesis, for the vector reaching this
leaf, we have a b c 1, and the other components in X(Tn) equal zero. The next
six iterations lead to the vector which reaches the leaf *-1], and for this vector,
u v k 1, and its remaining components in X(Tn) equal zero. The next four
iterates define paths into the Flip subtree, the last of which, to (say), reaches the leaf

in the Flip subtree. Consider now to’= T,/l(to); all of its components in X(T,)
equal 0, u=v=0, t=l (by virtue of Flip), and to’ defines a path into
T_(d, e, f, I, t, j). Noting that X(Te,-)-{t, j} X(T,-1), we observe that all
components of to’ in X(Tn_a) equal 0, and therefore, the totality of these components
has even parity. Consequently, the situation depicted in (2E) applies and to’ reaches
the [xi b] leaf. For to"= T,+l(to’), it follows that the totality of its components in
X(T,_I) has odd parity, and to" reaches a leaf, since the situation depicted in
(20) applies. Hence, when considering to’"= Tn/x(to"), we conclude that j 0 and all
components in the left subtree of T,+I equal 0. From the "perspective" of the left
subtree of T,+x, the generation process seemingly starts over from the beginning.

In general, the sequence of iterations has a cyclical structure. The first vector in
each cycle has zero values for the components in the left sub-tree of T,/1, and j 0, as
is the case with to’. The last two vectors in a cycle are analogous to to’ and to" above.
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Denoting by ,p and @, respectively, the last two vectors of the pth cycle, we now
argue by induction on p that @ leads to a 1]01 leaf in T,-I, with the exception of the
last cycle. Assume that @-1 leads to a I"-0 leaf. The next cycle begins with vectors
leading into the left subtree of Tn+l. By the time Up is generated, has changed in
value due to the action of Flip, and so instead of reaching the same leaf in T2-1
that @_1 reaches, ,p reaches its brother leaf.We have two cases to consider"
(a) the leaf reached by Up is not the leaf, and (b) it is the leaf. For case
(a), we observe that @= Tn+l(Vp) has opposite parity within X(Tn-a) than has Vp.
Hence @ reaches a leaf in T_a, followed by the commencement of a new
iteration cycle, as promised. For case (b), we shall observe that this pth cycle is the
final cycle, and we write p =pfinal. By the exit hypothesis applied to Tn-1, for the
vector ’pna, we have d e =f 1, and all other components in X(Tn-1) equal 0. We
also have that 0, since for vectors of the form t,p, the totality of components in
X(Tn-1) U{t} has odd parity, as can be readily proven by induction on p. The third
iteration beyond tOp,a, reaches the leaf, and for this vector,/" f 1, and all
other components in X(Tn/) equal 0, verifying the exit condition for

We now see that the variable t, the subtree Flip, and the parity considerations
establish a control structure for implementing "subroutine calls" into the left subtree
of Tn/l; the leaves constitute the transfer mechanism. By an induction on n left
to the reader, taking into account the operation of Tn as described above, it can be
verified that Tn is parity preserving. The "trimmings" added to Tn that make up
are necessary to satisfy the cycle constraint that QGC’s must satisfy. The expressions
for Ln, dn and In in Theorem 1 are readily derived from the above discussion.

We turn next to the subject of generating Gn, the binary reflected Gray code of
dimension n. The following constructions culminate in a DAT for generating Gn with
I O(log n) and U 7. It is readily verified that if the constraint U 1 is imposed,
then for any such DAT generating Gn, I n.

First, we describe an algorithm which can be expressed as a DAT with I
O(log n) and U O(log n). Then we describe the necessary modifications to reduce
U. Our algorithm will be based on the following well-known observation (see [7,
5.2.1]). In generating the code Gn, the transition from the kth vector to its successor

is achieved by inverting the/th component (from the right), where k and are related
as follows. When adding 1 to the binary radix representation of k-l, the carry
propagates to the/th digit; that is, digits 1 through l- 1 are reset to zero, and digit is
set to 1. This rule is readily proven by induction on n. Our algorithm will involve a
representation for numbers which is sufficiently similar to the binary radix repre-
sentation, that when performing the operation on the representation correspond-
ing to adding 1 (modulo 2n), the extent of carry propagation is effectively
determined. Moreover, in terms of our DAT costs, this operation is efficiently
performed.

Our representation involves what we shall call tree numbers. Let T denote an
extended binary tree with n leaves. (An extended binary tree satisfies the property
that each node has either zero or two sons, leaves defined as nodes with zero sons. The
reader should not confuse this use of the word "extended" with its previous use in
connection with parity preserving DAT’s.) Consider labeling each node of T either
0 or 1. We say that the labeling is proper if and only if the following condition is
satisfied.

(P) If a node is labeled 1, then its brother and descendants are all labeled 0. (It follows
that its ancestors are also labeled 0.)
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A labeling of T (proper or otherwise) represents an n digit binary radix number as
follows.

(R) The k th digit (from the right) is 1 if and only if one of the nodes in T on the
path from the root of T to the k th leaf (from the right) is labeled 1.

Figure 5 shows a properly labeled tree and the binary radix number which it
represents.

LEMMA 2. Given an n digit binary radix number a and a tree T with n leaves, there
exists a unique proper labeling of T which represents ce in accordance with (R).

This lemma is readily proven by induction on the size of T, or equivalently, on n.
A tree number is defined to be a properly labeled tree. The skeleton of a tree

number is the underlying unlabeled binary tree. We use the notation 17- to denote a
tree number with skeleton T, and we let a (IT) denote the integer represented by 17- as
defined by (R). Given 17-, we let 1-denote the tree number such that a(l)=- 1 + a(l)
(modulo 2n), where n is the number of leaves in T.

ber’ (1101110)2

FIG. 5

We present an algorithm, named Increment, which takes as input a tree number
l, and relabels T to yield as output l-. The algorithm utilizes the following notation.
Root(T) denotes the root of T, RS(n) denotes the right son of node n. The left brother
of node n is denoted by LB(n), and Father(n) denotes the father of n. Finally, Label(n)
denotes the 0, 1 label of node n.

Increment
I1. Set n-Root(T). If Label(n)= 1, then reset Label(n) - 0 and Halt.
I2. (Now Label(n)=0). If n is a leaf, then go to step I4; otherwise replace

n -RS(n) and go to step I3.
I3. (Node n is the right son of a node.) If Label(n)-- 1, then reset Label(n)<-0,

replace n -LB(n), and go to step I2; otherwise directly return to step I2.
I4. If n is the right son of a node and Label(LB(n)) 1, then reset Label(LB(n))-

0, replace n -Father(n) and repeat this step; otherwise set Label(n)- 1 and
Halt.

The following comments explain in part how this algorithm works.
(a) In step I1, if Label(n)= 1, then c(/7-) 2n- 1. Resetting Label(n)0 yields

the tree number l-such that a (l-)= 0.
(b) Consider the labeled subtree of node n in step 13. If T, denotes the cor-

responding tree number, the algorithm effectively adds 1 to this tree number. In
particular, if Label(n)= 1, the assignment, Label(n) 0, resets IT SO that or(iT,,)--0,
and the assignment n LB(n) effectively propagates the carry.
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(c) The explanation of why Label()= 0 at the beginning of step I2 is as follows.
The first time step I2 is executed, we have -Root(T) and Label()-0 from step I1.
Thereafter, transfer to step I2 takes place from step I3. If Label()= 0 at the begin-
ning of step I3, then the transfer to step I2 is immediate, and indeed Label() 0 upon
entering step I2. On the other hand, if Label()= 1 at the beginning of step I3, then
(P) implies that Label(LB())=0; and before transfer to step I2 takes place, the
replacement, -LB() takes place.

(d) If the step I4 was to be replaced simply by

I4’. Label()- 1,

then the resulting labeling would represent the appropriate number as defined by (R),
but the labeling might not be proper. The repetition of step I4 as prescribed by the
algorithm ensures that the resulting labeling is proper. This is accomplished by finding
the highest ancestor 0 of such that all of the binary digits of c (l-) corresponding to
the leaves of the subtree of 0 are 1, and then setting Label(0)- 1, as well as resetting
to 0 the labels of the descendants of o.

To modify the Increment algorithm so that it generates successive vectors of Gn,
we must first define a second label, d (), for each of the leaves of T. Given that is the
jth leaf (from the right) in T, regard d() as the jth component (from the right) of the
currently generated code vector in Gn. If ’= Root(T), then identify d(’) with d(),
where is the leftmost leaf of T. Now we modify Increment as follows. Just before the
Halt in step I1, we insert, set "d(n)-0," and at the beginning of step I4, insert
"d(,) 1 d()."

In assessing the implied DAT costs of this algorithm, we do not include the costs
of operations or tests on the static structure of T; these operations and tests are
reflected in the DAT structure, and serve as a descriptive convenience for constructing
the DAT. The quantity I reflects the cumulative number of tests on Label() values,
plus 1 for the operation d()-1-d(), should it be performed; and U reflects the
cumulative number of assignments, Label()0 (or 1), plus 1 for the operation
d() 1-d() in step I4, or the operation d() 0 in step I1. It is clear that both I
and U O(h) where h is the height of T. Because a tree with n leaves need only have
height log n, our algorithm, Increment, modified as described above, lends itself to the
construction of a DAT for generating G, with I 0 (log n) and U O (log n).

An analysis of Increment would show that the average amount of update per code
vector generation is bounded by a constant independent of n. This suggests the
possibility of an algorithm that amortizes over subsequent code vector generations the
infrequent large amounts of update required by Increment. We illustrate how this
works for incrementing radix numbers, and then sketch how it could be incorporated
within Increment to produce a DAT which generates G, and satisfies I O (log n)
and U=7.

Consider the operation of adding 1 to a binary radix number. On the average,
only a bounded number of digits need to be changed. We describe a number system
similar to the binary radix system, but which enjoys the property that only a uniformly
bounded number of digits need ever change when adding 1. The numbers in this
system, which we shall call contagious numbers, are represented by strings over the
three-symbol alphabet, {0, 0, 1}. The symbol 0 acts as a "contagious" zero. The
conversion of the contagious number a,a,-l.., a to its equivalent binary radix
number, (b,b,-i bl)2 is defined by the following rule.

/ 0 if ai 0 or 0, or for some <], a 0 and a+l a 1,
(c)

1 otherwise.
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For example, 1110110100101 (1110000100001)2. Observe that if the contagious
number s has no occurrences of 0, then s is its own binary radix equivalent. For every
contagious number s, we let v(s) denote the equivalent binary radix number defined
by rule (C). Assume s an... a 1. The following algorithm, Add 1, specified changes to
some of the ai’s, resulting in a contagious number s’ such that v(s’)= v(s)+ 1.

Add 1
A1. Find the least such that ai--0 or 0.
A2. If ai 0 and ai+l 1, then set ai+l O.
A3. Set ai 1.
A4. If > 1, then set ai-1 <---O.
A5. If > 2, then set al 0.
A6. Halt.

For example, 1+ 101101111 101010110. The purpose of step A4 is to set up a
barrier between the newly established i in the ith digit and the digits to its right, which
are converted to zeros when applying rule (C). Observe that no more than four digits
are ever changed in a single application of Add1, and that the value of in step A1 is
the extent of carry propagation that takes place when adding 1 to v(s). This allows us
to incorporate contagious numbers into a scheme for generating Gn with U uniformly
bounded. However, I (n).

These techniques can be generalized to construct contagious tree numbers. We
describe an algorithm, named CIncrement, which is a modification of Increment for
handling contagious tree numbers. The quantities Label(n) referred to in algorithm
Increment can take on three values, 0, 0, and 1, in CIncrement. Other modifications
are as follows. Let 1, 2,’" ", k be the nodes satisfying the condition, Label(j)
1, 1 _-< --< k, in step I3 in the order in which they are encountered. Instead of resetting
Label(j)0 for each , l_-<_-<k, as indicated in step I3, CIncrement only resets
Label(t,)0, and also, if k > 1, sets Label(l)-0; this being reminiscent of the
algorithm, Addl. Likewise, let nl, 2,’" ", nt be the nodes satisfying Label(LB(i))-
1, in step I4. Instead of resetting Label(LB(.))-0 for each , as indicated in step I4,
CIncrement only resets Label(LB(t)) +- 0, and also, if l> 1 sets Label(LB(l))-0.
Before setting Label() 1, which takes place at the conclusion of step I4, CIncre-
ment first checks to see if Label(n)- 0, and if so, "propagates the 0" in analogy with
step A2 of Add1. Specifically, if is the left son of a node and LB(Father(n))= 1, then
CIncrement sets LB(Father()) 0. On the other hand, if is the right son of a node,
CIncrement examines the sequence of nodes, 1 RS(LB()) +1 RS(i), j _-> 1, until
it finds a node in this list such that Label(j)- 1, or determines that there is no such
node. Should such a node j be discovered, CIncrement sets Label(i) 0. In every
case, the algorithm eventually sets Label()-1, as takes place at the conclusion of
step I4.

As we were able to do with Increment, we can incorporate labels d() into
CIncrement to generate the code Gn. If we interpret 00, 10, and 11 to be binary
representations for the labels, 0, 1, and 0, respectively, then this leads to a con-
struction for a DAT which generates Gn with I O (log n) and U 7.

5. A trade-off between ! and U. In this section we present a theorem which
provides an example of an inherent trade-off phenomenon between I and U.

THEOREM 2. Given e > O, there exists for each n >-no(e) a QGC of dimension n
such that for each a in the interval 1/2 + e <-a <-1, a DAT generating this QGC and
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satisfying I <-- an and U <- 2 (1-a +e)n exists. Moreover, for any DATgenerating this QGC
and satisfying I <-an, the lower bound U > 2(a--n also holds.

Remark. The reader should observe that for any QGC of dimension n, there
exists a DAT with I n and U 1 which generates the OGC. The following lemmas
are used in the proof of Theorem 2.

LEMMA 3. For any OGCof dimension n and any a such that 1/2 <-_ a <-_ 1, there exists
a DAT generating the QGC and satisfying

()

(4)

I max (1/2n + O (log n), [an] + 1),

U O((log n)2(1-’)n + n).

Proof. Let Q denote a QGC of dimension n, and let x a, X2,’" , Xn denote the n
components of the code vectors of O. Let A(j), 1 <-j _-<L (L length of Q), denote the
appropriate assignment statement xi 0 (or 1) which generates the successor to the jth
code vector. As there are 2n possible assignment statements, xi 0 (or 1), involving
these n variables, it is possible to encode a statement A(j) using O (log n) bits. We let
c(A(j)) denote such an encoding. What follows is an algorithm schema, algorithm G,
for generating Q. Algorithm G uses two counter variables, Ca and C2. Counter C1
counts from 1 to L1 2 n-r"l 1, and C2 counts from 1 to L2 LI(L1 + 1). (For the
sake of simplicity of presentation, we can assume that L is a power of 2.) Algorithm G
also employs an array R(]), 1<-] <=L a, of O (log n) bit words, as well as a binary
variable, Load. We define the initial memory configuration o91 as follows:
(Xl, x2," ", x,,) =first code vector, Ca C2 1, Load= "off", and R(]) v(A(])) for
1 _-<] <- L1. The configuration to specifies the complete contents of memory (including
data structure) for representing the first code vector. Observe that n ran bits suffice
to represent all possible values of C1, and because L<-2", [an] bits suffice to
represent C2. The steps of algorithm G follow.

ALGORn’I-IM G
G1. If Load "on", then go to step G4.
G2. Perform the assignment statement encoded by R (Ca).
G3. If Ca =L1, then set Load-"on" and Halt; otherwise set Ca Ca + 1 and

halt.
G4. Perform the assignment statement, A(C2(L1 + 1)).
G5. Perform the appropriate collection (depending on C2) of single bit assign-

ment statements to set up the array R so that R(])=c(A(C2(La + 1) +])) for
I <-j <-L1.

G6. If C2 L2 then set C2 - C2 4-1; otherwise set C2 - 1.
G7. Set C1 - 1, set Load -"off", and Halt.

This algorithm can be formulated as a DAT satisfying (3) and (4). In particular if
Load "off" in step G1, then steps G2 and G3 are performed. Reading C1 and R (C1)
require reading n- [tin] + O (log n) bits, which we bound by the expression, 1/2n +
O (log n), in (3). On the other hand, if Load "on" in step G1, then steps G4, G5,
G6, and G7 are performed. Reading Load and C2 contributes the term [tin] + 1 to
(3). The assignment Ca 1 in step G7 involves the appropriate setting of the n rtin
bits of C1, contributing to U (but not to I). The assignment, C2 -C2 + 1, in step G6
(or C2 - 1) similarly contributes [tin to U (the contribution to I involved in reading
C2 already accounted for). The assignments in step G5 contribute the remainder of
the expression for U in (4).
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LEMMA 4. There are at least 22"-30GC’s of dimension n >= 2.

Proof. Given a set of n objects, S {s l, s2," ", s,}, we define a J, sequence, a
sequence over S consisting of 2n- 1 terms, inductively as follows.

(5) For a one element set, S {Sl}, the one term sequence, s 1, is a J1 sequence over
S.

(6) For an n element set, S {sl, ", sn}, n > 1, the sequence
Sil, Si2, ", Sit, S.i, Sin1, Sm2, ", Smt, 2"-1- 1, is a Jn sequence over S provided
that sil, si2, ", si, and s,,1, s,,2, ", s,, are Jn-1 sequences over S-{sj}.

Letting Z, denote the number of Jn sequences over S, we clearly have that

(7) Z1 1,
2(8) Zn =nZ,-I for n > 1.

We define a one-to-one mapping from J, sequence over {1,..., n} into QGC’s of
dimension n+l as follows. Let 3’ be the J, sequence m l, mz,"’,mt over
{1, 2, ., n}, and let Bi, 1 =< =< n + 1, denote the n + 1 dimensional binary vector
whose th component equals 1, and whose other components are zero. We define the
QCG O(y)= Vl, v2, v3," ’, VL by the rules

(9)

i-1

B. for 1 --< _-< 2,
/’=1

vi (summation modulo 2)
Bn+l q-" tA2n+l+l--i for 2 <i <--2n+l.

It is readily verified from (5), (6) and (9) that O(y) defines a one-to-one mapping from
Jn sequences into QGC’s of dimension n + 1, and Lemma 4 follows from (7) and (8).

LEMMA 5. The number of distinct OGC’s of dimension n that can be generated by
DAT’s with I <= r and U <-_ s is no greater than

(10) (1 +2(2 +n)) (l+s2r.

Proof. Assume T is a DAT with I =<r and U =<s that generates Q, a QGC of
dimension n. We can assume without loss of generality that xi is the variable in T
designating the values of the th component of the code vectors of Q. Since T has at
most 2 internal nodes, we can also assume that the variables which label the internal
nodes of T are contained in the set, X {x l, X2,’" ", Xn, Y l, Y2,’" ", Y2r}. Moreover,
without loss of generality we can assume, for each assignment statement z 0 (or 1)
appearing in a leaf of T, that either z labels one of the internal nodes, or z x for
some i; in other words, z X. For if zX, removal of any assignment statements
involving z would not change the fact that T (so modified) generates O.

Now consider the number of ways to construct a DAT consisting of a complete
binary tree Tr of height r, with each internal node labeled with a variable in X and
each leaf containing at most s assignment statements, z +-0 (or 1), with z X. On the
basis of the above discussion, this number provides a bound on the number.of QGC’s
considered in Lemma 5. The number of ways of labeling the internal nodes of Tr is
bounded by IX]2. By introducing a new label A which denotes the null statement, we
can assume that each leaf of Tr contains exactly s statements, and it follows that there
are =<(1 +2[X[)s2 ways to structure the leaves of T. The bound expressed in (10)
follows immediately.



146 MICHAEL L. FREDMAN

Proof of Theorem 2. Given e > 0, we show that for sufficiently large n, there exists
a QGC of dimension n, O (say), such that:

(11) For any DAT generating O and satisfying I <-_an where 0=<a _-< 1, the in-
equality U > 2 (1--),, holds.

Let N(r, s) denote the number of QGC’s of dimension n which can be generated by
DAT’s satisfying I -<r and U =<s. We estimate the sum,

S(n) ’. N(r, 2n-r-n)
r=l

and show that when n is sufficiently large, S(n)<22"-3. The QGC’s not enumerated
by & (n) are those satisfying (11). (By virtue of the remark following the statement of
Theorem 2, there is no need to consider DAT’s with I > n.) Since the total number of
QGC’s is at least 22"-3, as stated by Lemma 4, this inequality for &(n) implies the
existence of QGC’s satisfying (11). From Lemma 5, when 1 <=r<=n-en,

N(r, 2"-r-") <_- (1 + 2(2 + n))(a+2 12r 22 O(log rt)

Hence, for n sufficiently large, S (n)< 22"-3 as claimed. The upper bound on U stated
in Theorem 2 follows from Lemma 3, completing the proof.

COROLLARY. Almost all OGC’s of dimension n can only be generated by DAT’s
satisfying I >-1/2n- 0 (log n).

Proof. Because there is no purpose served by having a given variable appear in
two assignment statements within the same leaf, we can reason as in Lemma 5 to
conclude that U-< 21 + n. Therefore, the number of QGC’s that can be generated by
DAT’s with I -< r is no more than

(1 + 2(2 + gl))(l+2"+n)2"22(2r+(’g ’*

Reasoning as in the proof of Theorem 2, we conclude the corollary.
Using a construction similar to Algorithm G in the proof of Lemma 3, one can

show that any QGC can be generated by a DAT such that, when averaged over all
code vectors in the QGC, T O (log n).
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SELECTING THE KTH ELEMENT IN X+ Y AND X+Xz+...+X,,,*

DONALD B. JOHNSONt AND TETSUO MIZOGUCHI$

Abstract. An algorithm is given which selects the Kth element in X + Y in O(n log n) time and O(n)
space, where X+Y is the multiset {xi+yjxiX and yj Y} for X=(xl, x2, ...,x,,) and Y=
(Yl, Y2," Yn), n-tuples of real numbers. The results are extended to i=1Xi for m > 2. There is strong
evidence that this more general problem is difficult if m and K may be selected arbitrarily. However,
algorithms can be shown which are fast for small K and arbitrary m.

Key words, selection, order statistics, weighted median, pair selection, optimal algorithm, N-hard
problems

Introduction. Until the appearance of an O(n) algorithm for selecting the Kth
element in an n-element set with a total order [2], it was widely believed that any
uniform algorithm for this problem would require time proportional to the time to sort
the set. We consider the more general problem of finding the Kth element in the
multiset --’i%1 X/--{/=1XilxiXi} where for i= 1,2,..., m, Xi--(Xil, Xi2,... ,Xin),
an n-tuple of real numbers, and the rank of an element in i=1 X is its rank in some
nonincreasing order of the values i--1 xi. In the given n-tuples X/, the elements
appear in arbitrary order. When m 2 we denote the multiset ;= Xi as X + Y.

A straightforward application of the linear algorithm for selecting singletons [2]
to problems where m >_-2 involves forming all the m-tuples with values in Yi%l Xi,
giving an algorithm with a running time which realizes O(n’). We show how to do
better. For finding the Kth largest element in X + , we give an algorithm which runs
in O(n log n) time, less time asymptotically than is required to construct the pairs.
This bound has been shown to be optimal to within a constant factor [5]. When our
algorithm is extended to cases where m>2, the running time for all K is
O(mn ;m/:zl log n). It appears unlikely that an algorithm can be found with running
time polynomial in n if both m and K are unrestricted subject to m =< n. The existence
of such an algorithm implies, as we show, that -TIME -TIME.2 Enumerative
algorithms can be exhibited which run in polynomial time when K is bounded by a
polynomial in n.

The related problem of sorting X + Y has been considered in [4-1 where it is
shown that n 2 log n comparisons suffice and, under a certain class of comparison
algorithms, are necessary. Under a less restrictive model of computation, X+ Y can
be sorted in O(n 2) comparisons [3].

Our results apply to finding the Kth largest element in i=1X when the Xi are
sets, and also to the problem on X+X when the elements paired are either required
to have distinct indices or not. In X +X we adopt the convention that for each and j,
exactly one of X + Xj and xj + X appears.

Weighted medians. To obtain our result we use a technique to find a certain
partition in linear time. Let A =(aa, a2,’’’, an) be an n-tuple of elements drawn

* Received by the editors June 28, 1976, and in revised form April 4, 1977.
t Computer Science Department, Pennsylvania State University, University Park, Pennsylvania 16802.
$ Mitsubishi Electric Corporation, Kamakura Works, 325 Kamimachiya, Kamakura City, Japan 247.
All logarithms are base 2.
-TIME is the class of decision problems solvable in time polynomial in the size of the problem input

on a deterministic Turing machine. N-TIME is the analogous class defined with respect to nondeter-
ministic Turing machines.
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(with repetition allowed) from a universe with a total order, and let w: A-+ be a
weight function defined on A. It is desired to find a partitioning element ai,, satisfying

i<=m w(aij)>--Zj>m w(aij) and j<,, w(a#)<]>=m w(a#) where ai,, aiz, ai. is an
ordering of A consistent with the total order on the universe. The element ai.. is called
the weighted median of A with respect to w. It may be seen that ai.. is unique for any
fixed ordering of A.

Given an n-tuple A and the weights w(A), the weighted median ai.. can be found
in O(n) time by means of a binary search of A. Since A is not sorted, the binary search
is implemented using a linear median-finding algorithm [2]. At the first step, the
median element at,,/2 is found and used to partition A. The weights are summed over
each of the elements of the partition to test whether air./2 is the weighted median. If
not, the process is repeated on the partition element known to contain the weighted
median, and so on. At each step the availability of the sums of weights previously
computed allows the test for the weighted median to be performed in time propor-
tional to the size of the collection of elements known to contain the weighted median.
Since at each repetition of the process at least half of the elements in this collection is
discarded, the running time of the entire procedure to find the weighted median and
the partition it induces is O(n).

Finding the Kth pair. The collection X + Y may be represented in a canonical
form as the matrix B (bii) where bi xi + yi for x the ith largest element in X and y.
the jth largest element in Y. If elements repeat in either X or Y, rank or rank j is
defined with respect to some fixed total order consistent with the ordering of the
domain. It is convenient to visualize the algorithm operating on B although, of course,
B is not constructed.

The algorithm first sorts X and Y separately and then proceeds as follows. For
each row of B the median element ai bil, is found. Each median element is assigned
a weight w(ai), the number of elements in row of M. Then the weighted median
a,, bplp of (al, a2, , an) is found. The first iteration is then completed by discard-
ing from B at least 1/4 of the elements known not to be the Kth largest. If K is
sufficiently large, the elements discarded are for 1, 2,. ., n, bi,-> a,,). If K is
sufficiently small, the elements discarded are (b,l for 1, 2,..., n, bij, <-am). For
certain intermediate values of K it is possible that a,, is a Kth pair. If a,,, is a Kth pair,
it is reported and the algorithm terminates. Otherwise, discarding the elements
indicated yields a submatrix (not necessarily rectangular in shape) B’ of B on which
the above process is repeated. As will be brought out in the analysis, after O(log n)
repetitions of this process either the Kth pair will have been reported or the submatrix
of B will contain O(n) elements from which the desired element may be extracted by
known methods.

ALGORITHM KTHPAIR.
Input: X (Xl, x2, , x,), Y (yl, Y2, Yn), n-tuples of real numbers, and

K, an integer satisfying 1 =<K _-< n 2.
Output: (i, ) satisfying xi + yi is Kth in a nonincreasing ordering of all elements in

X+Y.
Method:
1) Sort X and Y separately into nonincreasing order. Without loss of generality

let X (xl, x2, , x,) and Y (ya, Y2, Yn) where, for 1, 2, , n
1, X Xi+ and Yi >- Yi+

2) LetL=0, R=n2;
For 1, 2, , n, let Lb(i) 1, Rb(i) n;
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3) while R -L > n do
begin

3a) Let A =(ala =x+yi,, where j [(Lb(i)+Rb(i))/2], for all
1,2,...,n satisfying Lb(i)<-Rb(i)). For aeA let w(ai)=Rb(i)
Lb(i) + 1;

3b) Let a,, A be the weighted median of A with respect to w; Partition the
pairs as follows:

Fori=l 2 ...,nlet P(i)=O
max {j [x + y > a,, }

ifxi /yl _-<a,,,
otherwise,

Q(i)={n+lmin {] Ixi + yi < am }
if xi + Yn ---> a,,,,
otherwise;

3c) if K 2i=1P(i) then for 1, 2,..., n let Rb(i)= P(i)
else ii K >=1 (Q(i)- 1) then for 1, 2,-.., n let Lb(i)= Q(i)

else return (i, ]) satisfying x + y. am
Let L E/=I (Lb(i)- 1), R i=1Rb(i)

end;

4) Sort ((x +YJ,)I for i= 1, 2,..., n, Lb(i)<--.i <-Rb(i)). Let (xi + yj) be the ele-
ment of rank K-L in this sorted order.
Return (i, ]).

Throughout the execution of algorithm KTHPAIR the arrays Lb and Rb define a
partition of the canonical pair matrix/3 into three collections,

for 1, 2,..., n, l_--<ji <Lb(i)),

for i= 1, 2,..., n, Lb(i) <-j <-Rb(i)),

for/= 1,2,... ,n, Rb(i)<j<-n).

Before the execution of step 3), Bc B and BL and Bn are empty. To show the
correctness of the algorithm it suffices to show that R -L decreases with each iteration
in step 3) and that

(bl>b2>b3 for all blBL, b2GBc, b3BR and

T-=there exists a pair x + y in Bc which is of rank K
kin X / Y and of rank K-L in Bc

holds following execution of step 3).
Condition T holds trivially before the execution of step 3), and it may be seen that

if T holds before some execution of step 3a) it is preserved over the execution of steps
3a), 3b), and 3c). Since a,, belongs to/3c before step 3c) and does not belong to/3c
after normal termination of step 3c) it follows that R -L decreases over each iteration
of steps 3a), 3b), and 3c) except possibly the last. By induction it may be concluded
that a Kth pair is always found either in step 3c) or in step 4).

To bound the running time of the algorithm it may be seen that steps 1), 2), and 4)
together run in O(n log n) time, and the computations in steps 3a) and 3c) run in O(n)
time. With respect to step 3b), it has already been observed that the weighted median
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can be found in O(n) time. The values in P may be computed in O(n) time as follows.
Let/" 0;
for i--n, n-1,..., 1 do

begin
while j < n and x + yi+ > am do let j j + 1;
Let P(i)=j

end.

A similar procedure computes the values in O. To complete the proof of an
O(n log n) bound on the running time for the entire algorithm it remains to show that
steps 3a), 3b), and 3c) are repeated O(log n) times.

From the definition of the weighted median presented in the previous section it
may be seen that step 3c) either returns the desired indices (i, j) or moves at least 1/4
of the elements in Bc to either B or B. Let w be the number of times step 3c) is
repeated. From T it is clear that Bc always contains at least one element. Thus

n =>1,

w (log 3 2) + 2 log n => 0,
2 log n

w-< O(log n).
2 log 3

The proof of the following theorem is completed by inspection of the data
structures employed by the algorithm, verifying that O(n) space is consumed.

TEOREM 1. Algorithm KTHPAIR finds a Kth largest pair in X + Y, where Xand
Y are n-tuples of real numbers and K is an integer satisfying 1 <=K <= tl 2, in O(n log n)
time and O(n) space.

COROLLAR’’. The Kth pair in X +X and the Kth pair, composed of members with
distinct indices, in X +X can be found in O(n log n) time.

Proof. Algorithm KTHPAIR is easily modified to solve these problems. In the
case of X+X where indices within a pair are not required to be distinct, Lb(i) is
initialized to for 1, 2,. , n, and K is restricted to the range 1 <-K <=n(n + 1)/2.
In the second case, pairs composed of elements with equal indices are excluded by
initializing Lb(i) to + 1 for 1, 2, , n and restricting K to the range 1 -< K -<
n(n-1)/2, gi

The selection problem on X1+X2+"" +Xm. The ideas in the previous section
extend immediately to the selection problem on i= X/for m > 2.

THEOREM 2. The Kth m-tuple in i= X for 1 <=K <--n may be found in

O(mn m/21 log n) time and O(n r,,/2) space.
rn/2Proof. For m even, let X Zi=I X/ and Y-i=,/2+1X. Algorithm KTHPAIR

may be applied to find the Kth pair in X + Y. If care is taken to construct X and Y in
lexicographic order so that the original indices can be recovered from the solution to
the problem on X + Y then the space required is bounded by O(nm/2), the size of X
and Y. It follows from the analysis for Theorem 1 that the running time is bounded by
O(mn ’’/2 log n). The bounds for m odd are obtained in a similar manner.

A drawback of this construction is the space consumed when m is large. As the
following theorem indicates, however, it is not surprising that the time bound is
exponential in m.



SELECTING THE KTH ELEMENT 151

THEOREM 3. The existence of an algorithm for selecting the Kth m-tuple in , i= X
which runs in time polynomial in n for all m <-n and K <-_ 1/2n" implies -TIME V’-
TIME.

Proof. It is known that determining the existence of nonnegative integers
Xl, X2, Xn satisfying = aix b and =1 Xi n, given nonnegative integers b
and al, a2," an, is V-complete [7] (the reader unfamiliar with -completeness
and the significance of the question whether -TIME -TIME is referred to [ 1].)
A selection algorithm which finds the Kth m-tuple in =aX can be used to solve this
problem by performing a binary search of the set of m-tuples in =a (al, a2," ", an)
for each m 1, 2,. ., n. For each m, the search requires O(m log n) applications of
the selection algorithm. Thus the existence of a polynomial-time selection algorithm
implies a polynomial-time algorithm for an -complete problem. 71

In the preceding analysis the dependence on m of the complexity of the selection
problem on Y=a X/ is analyzed for the worst case with respect to K. While the
algorithms of Theorems 1 and 2 run in time independent of K, the result in Theorem 3
depends on allowing K to be large. Lawler [6] has given a general procedure for
enumerating the K best combinatorial objects, generated from a given set of size n, in
time O(KnT(n)) where the best object can be found in T(n) time. A straightforward
application of this result gives an algorithm for the selection problem on i= X which
runs in O(KnZm). Rather than recount the details here we present an improved
algorithm for the related problem where only m-tuples composed of elements with
distinct indices are drawn from mX X+X+... +X. This algorithm, which selects
the Kth subset of size rn from X, runs in O(n log n +K log K) time.

The algorithm operates by generating a portion of a tree consistent with a total
ordering of the set of subsets. If without loss of generality the given X=
(xa, x2,’" ,x,) satisfies xa >=Xz>-...>-_x,, then it is clear that the largest subset is
{x, x2, , Xm}. The second largest is {x, x2, , Xm-1, Xm+}, and the third largest is
either {Xl, x2," , x,,-2, x,,x,,+l} or {xa, x2," , Xm-a, Xm+2}. The tree which the
algorithm constructs has {xa, x2,""", x,,} at the root and, in general, a vertex in this
tree has as sons those subsets which can be generated according to certain trans-
formations on the father which produce candidates for the next subset in the total
order. The transformations guarantee a tree with exactly one vertex for each m-tuple.
At any point in time only a frontier of the tree is stored by the algorithm. The frontier
never grows larger than K. The algorithm stores the frontier in the set Q. In O, subsets
are represented by configurations of the form (w, f, u, d). A configuration alone is not
necessarily a unique description of a subset. However, any subset in the tree con-
structed by the algorithm is completely described by its configuration together with
the sequence of configurations labeling the path to it from the root. Thus, in the
algorithm, a configuration stands for precisely one subset. In a configuration, w is the
sum of the elements in the corresponding subset. The indices f, u, and d are relative to
a sorted representation of X. The index f is the largest index of the elements which
will be fixed in all descendants of (w, f, u, d) in the tree. That is, if for <f the element
x is present in the subset described by (w, f, u, d) it will be present in all descendants.
If it is absent it will appear in no descendant. It is easily seen that xt is absent in the
subset described by (w, f, u, d). The index u is the greatest index of elements of Xused
in the subset corresponding to (w, f, u, d) or any of its predecessors in the tree. It can
be seen that Xu is always present in the subset described by (w, f, u, d). For f< --< u, x
is present in the subset described by (w, f, u, d) unless d. Element xa is the deleted
element in the subset.
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ALGOITIJM KTHSUBSET.
Input: X--(Xl, X2,... ,Xn) an n-tuple of real numbers, integers m<=n and K

satisfying 1 -< K =< ().
Output: A set {il, i2," i,,16 {1, 2," , n} for 1, 2,. ., m} satisfying

Y/=l xij is Kth largest among all subsets of size m drawn from X, where subsets are
ranked on the sums of their elements.

Method:
1) Sort X in nonincreasing order; without loss of generality let X=

(Xl, X2, Xn) where xi Xi+l for 1, 2, , n 1;
2) if K 1 then output {1, 2,. ., m}

else
begin

Put (Xm+l "+’2i=1 Xi, 0, m + 1, m) into Q;
for := 2 until K- 1 do

begin
Let (w, f, u, d) maximize w among the 4-tuples in O;
Delete (w, f, u, d) from O;
Put next(w, f, u, d) and succ(w, f, u, d) into O;
while ]QI>K do

delete (w, f, u, d) minimizing w among the 4-tuples in Q
end

Let (w, f, u, d) maximize w among the 4-tuples in Q;
Output {il, i2, ira} selected by (w, f, u, d)

end;
where

next(w, f, u, d)={(Aw +xa-xa-l’ f’ u’ d-1) ifd-l>f,
otherwise,

SUCC(W, f, U, d):{(_AWnt-xu+l-xu’ d, u+l, u) if u +l=<n and u >d,
otherwise.

Putting A into O is intended to be a vacuous operation. The functions next and
succ may be represented pictorially as

1 f d u n

II II II (w,f, u,d)

d’ u’

f’ d’u’
II III

(w’, f’, u’, d’) next(w, f, u, d)

(w’, f’, u’, d’) succ(w, f, u, d).

The usual techniques employed in dynamic programming can record the changes
leading to any (w, f, u, d) in O without an asymptotic increase in storage used. From
this information the output itself can be reconstructed in time O(K + m).

THEOREM 4. Algorithm KTHSUBSET constructs the Kth subset of size m from a
set of n real numbers in O(n log n +K log K) time and O(n +K) space.

Proof. Consider any sequence of configurations generated by applications of next
and succ from (Xm+l Y’.i=l Xi, O, m + 1, m). If (w, f, u, d) occurs before (w f’, u’, d’)
in this sequence then w’ =< w and either u’> u or u’= u and d’ < d. Thus no configura-
tion repeats and it follows that the algorithm does indeed generate a binary tree in
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which subset weights are nonincreasing on any path from the root. It also may be seen
from examination of the functions next and succ that if the next and succ configura-
tions generated from some configuration (w, f, u, d) are both nonvacuous then any
subset represented in the subtree rooted in one son will differ from every subset
represented in the subtree rooted in the other son at some index i, f < < d. Thus no
subset is represented twice. Furthermore, given any subset, a sequence of next and
succ moves can be shown which will generate a path representing this subset. It
follows from these arguments that the entire tree is potentially generated by the
algorithm though in general the algorithm will terminate before the construction is
completed. Furthermore, the algorithm guarantees that a frontier of the tree will
always be contained in Q. The frontier has the property that all predecessors, in the
tree, of vertices in the frontier have been accounted for, that is, deleted from
Correctness follows from these arguments.

If O is maintained as a double heap (see, for example, [1]) in which both a largest
and a smallest element can be found and deleted in time O(log IQ]), the time bound
O(n log n +K log K) is immediate. The bound on space required follows from the
bound of O(K) on ]Q] and the observation that the number of vertices in the tree (and
hence the amount of information necessary to determine the indices in the Kth
subset) is also O(K).
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AN O(N" log N) ALGORITHM FOR A CLASS OF MATCHING
PROBLEMS*

NIMROD MEGIDDO" AND ARIE TAMIR:

Abstract. The following class of matching problems is considered. The vertices of a complete undirec-
ted graph are indexed 1,. , n, where n 2m. Every vertex is assigned two numbers ai, bi. The length of
every edge (i, ), where < j, is d(i, j)= ai + bj. This class of weighted graphs is applicable to scheduling and
optimal assignment problems. A maximum weighted (perfect) matching is found in O(n log n) operations.

Key words, matching, assignment, scheduling, polynomial-time algorithm, 2-3 trees

1. Introduction. The maximum matching problem has many applications in
operations research. The first polynomial-time bounded algorithm for the maximum
weighted matching problem is Edmonds’ [2]. The most efficient algorithm for the
maximum (cardinality) matching, known to the authors, is Even and Kariv’s [3].
Gabow [4] has the most efficient algorithm for the weighted matching. In this paper
we focus on a subclass of maximum weighted matching problems (see 2 for a precise
definition). Our study is motivated by the following two problems which are easily
shown to belong to our class.

In the first problem, a group of individuals, ordered by seniority, is to be
partitioned into teams, having the same mission. Each team consists of two posi-
tionsma senior position and a junior one. The senior position must be manned by the
more senior individual between the members of the team. Assuming that we know the
effectiveness of each individual in both the senior and the junior positions, we wish to
maximize the total effectiveness of the teams.

The second problem is to schedule 2m jobs to m identical processors, two jobs to
each processor, preserving the arrival ordering. The objective is to minimize the total
flow time, or equivalently, the average waiting time of a job.

Using a dynamic programming approach, these two models can be solved in
O(m2) time. In this paper we present an algorithm which solves the above problems in
O(m log rn) operations.

2. Preliminaries. Our goal is to develop an efficient algorithm for the following
problem.

Problem 1. Given numbers ai, hi, 1,..., n (n 2rn), find a perfect matching
(ix, jl)," (i,,, j,,), where ik < jk, k 1,. m, which maximizes Y=I (aik + bik).

We may assume without loss of generality that a maximum matching
(il, j),...,(i,,j,,)satisfies &<i+x, fl<jk+, k=l,...,m-1. In view of this we
shall restrict our attention to matchings (ia, ja),"’, (i,,, ,,) which satisfy i <fl, k
1,...,m, and i<i+1, fl<+, k=l,...,m-1. These can be handled by
introducing the following notation.

Let x (xa,..., xn) be a vector whose components are either 1 or -1. Denote
Hi(x)=_,=lx,, i= 1,..., n. Let X be the set of all vectors x (x=(x,..-,xn),
Xi E{1,-1}) such that Hi(x)>O, i= 1,..., n-1 and Hn(x)= 0. Consider the follow-
ing problem.
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Problem 2. Maximize C(X)Ei=I (ai-bi)’xi over X.
We claim that Problems 1 and 2 are equivalent. Specifically, if (ix, ix)," , (i,,,/’,)

solves Problem 1 then the vector x, where xk 1 if k iq and xk 1 if k I’, solves
Problem 2. Conversely, if x solves Problem 2 then a solution to Problem 1 is defined
recursively as follows. Let ix 1. Suppose that ix, , iq and ix, , jr (0 -< r _-< q) have
been defined, and {ix,"’, iq, jl,’’’,/’r}={1,’’’, q+r}. Then, if X,+r+X 1 let i,+x
q + r + 1 and if X+r+x -1 let jr+l q + r + 1. Thus, we shall henceforth be dealing
with Problem 2. We note that Problem 2 can be transformed to a linear program with
a totally unimodular matrix whose basic solutions yield solutions to our problem.
Thus, the theory of linear programming suffices for solving Problem 2. However, we
shall present an algorithm which is more suitable. Our algorithm is based on the
following theorem.

THEOREM. A vector x solves Problem 2 if and only if the following condition holds.
For every pair i, ], 1 <= < <= n, (i) if xi 1, xj 1 then ai bi <- aj bi and (ii) ifx 1,
x 1 and Hg (x) >= 2, for <- k < j, then ai bi

Necessity is obvious, since if the condition does not hold, then by defining
yi -xi, y -xj, and y x for k i, j we have y X and c (y)> c (x). We shall now
prove the sufficiency of the condition. For x, y s X define a metric D(x, y)=
#{i" xi : yi}. Suppose that x X does not solve Problem 2 and let y s X be a solution
to Problem 2, which is nearest (with respect to (w.r.t.) D) to x. Let be the smallest
index such that xi 1 and yi =-1. Let be the smallest index such that xi =-1 and
y. 1. If > j then for every k, j <= k < i, Hk (y) -> 2. It follows that ai b. > ai bi
(equality cannot occur since it implies D(x, z)<D(x, y), c(z)=c(y), z s X, where
zi 1, zi =-1, Zk Yk for k i,/’). Thus, part (i)of the condition does not hold. If </"
then for every k, <- k < j, Hk (x) >= 2. Similar arguments imply ai bi > ai bi and in
this case part (ii) does not hold.

3. The algorithm. We shall first describe our algorithm in general terms and then
elaborate on its details. In this section we concentrate on the validity of the algorithm;
an estimate of the number of operations is given in 4.

Let Mx {1," , m}, M2 {m + 1,. , n }. For every x X let

I(x) min {i EMI" H(x)-> 2 for all k, -<k _-<m},

J(x) max {/" M2" Hk (x) --> 2 for all k, m + 1 _<- k _-</" 1 }.

Our algorithm generates a sequence x..., ,x of vectors in X such that
D(x-x, x) 2. This sequence develops according to the following scheme.

Scheme.
0. Initiate with x (1,. , 1, -1,. ., -i) X.
1. Find an s Mx such that xi 1, >-_ I(x ) and ai bi

min {a-b" I(x)<-k<-m, xk= 1}; find aj eM2 such thatxi=-l,j<-J(x)and
ai-bj max {a-b" m + 1 <-_k <-_J(x), x =-1}.

2.- If ai-bi>-aj-bi then terminate; otherwise, set xi =-1, x.= 1 and go to 1.
Let x (i- 0, 1,...) denote the vector x stored after executions of step 2, and

suppose that the scheme terminates after r iterations. It can be easily verified that
c(x-X)<c(xk), k-1,..., r. Moreover, since H,,(x)=m-2k and H,,(x)>-_O for
k 0, 1, , r, it follows that r <- m/2.

We shall now prove that upon termination the vector x =x is a solution to
Problem 2. This is done by verifying that the condition stated in the theorem is
satisfied. Let i<] be any pair (1 <_-i, j <-n). Distinguish cases" (i) xi =-1, x 1. If
i, j Mx then there is q < r such that x 1, -> I(x q) and ai bi
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min {ak--bk" I(xq)<-k <=m, x,= 1}. This implies ai-bi <=aj-bj. Analogous
arguments hold in case i,/" M2. The case M1,/" M2 can be handled by applying
this type of arguments twice. (ii) xi 1, xj 1, and Hk (x) --> 2 for --<_ k </’. If i,/" M1
then there is q <r such that x= 1, j>=I(xq) and ai-bi rain {ak--bk" I(xq)<-k <-m,
x,= 1}. However, since Hk(Xq)>=Hk(X) (k 1,..., m), it follows that i>-I(x’) and
hence a- bi => ai- bi. A similar argument holds in case i, ] M2. If M1 and/" M2
then termination implies ag- b => aj bi.

In fact, the sequence x, x can be generated without calculating the values
I(x), J(x), Hk(X) explicitly. This can be performed as follows. First, the elements of
M1 are sorted according to increasing magnitude of ai- b and the elements/" of M2
are sorted according to decreasing magnitude of ai-b.. Let x q be a vector in the
sequence generated by the scheme. Let A1 denote the ordered (by the natural order
on M1) q-tuple of the indices M1 such that x -1. An index 6 A is called a right
minimum if H(xq)<H(xq) for every kM such that k>i. Let B denote the
ordered set of right minima. Linearly ordered sets A2, B2 are defined in analogous
manner with respect to the elements in M2; A2 is the ordered tuple of the indices
j e M2 such that X/l 1 and B2 consists of those ] e A2 such that/-/.(xq) < H(xq) for
every k < j (k e M2). Once the lists A a, Ba, A2, B2 (w.r.t. a vector x) are known, it is
easy to execute step 1 of the scheme. The following algorithm generates the same
sequence as that generated by the scheme, and at the same time maintains the lists
A, Ba, A2, B2. Our algorithm operates symmetrically on the sets Ma, M2. Hence we
shall describe in detail only the part concerning M.

ALGORITHM.
Phase I: Sort the elements of M to form a list L1 arranged in order of

increasing magnitude of ai bi; sort M2 to form a list L2 arranged in decreasing order.
Phase II"
0. Initiate with x (1, , 1, 1,. , 1) e X and A Ba A2 B2 .
1 Let be the first element in L and let s =#{k" k 6Aa, k <i}.
2. If i-2s < 2 then delete from L and go to 1; otherwise go to 3.
3. If there is no k B1 such that k>i then set i* =oe, s* =0 and go to 5;

otherwise let i* be the smallest element of Ba such that i*>i and let
s* #{k" k A 1, k < i*}.

4. If i*-2(s* + 1)< 2 then delete from L and go to 1; otherwise go to 5.
5. Pick an element ] e M2 in a manner similar to that by which is picked from
M1 (see steps 1-4; f is the first in L2 such that 2m-(/’-1)-2t => 2, where
t=#{k" keAz, k>-]}, and either there is no kB2 such that k<j, or
2m-]*-2t* >-2, where/’* is the largest element of B2 such that/’* <f-1
and t*= #{k" k A2, k ->j*}).

6. If a- b->_ ai- bi then terminate; otherwise, set x 1, xj 1 and go to 7.
7. Delete from L1 and insert into A.
8. If i-2(s+ 1)->i*-2(s*+2) then set i=i*, s=s*+ 1 and go to 9; otherwise

insert into B.
9. If there is no k B1 such that k < then go to 11; otherwise let i’ be the

largest element of B such that i’ < and let s’ #{k" k A 1, k < i’}.
10. If i’-2(s’+ 1)<i-2(s + 1)then go to 11; otherwise delete i’ from B and go

to 9.
11. Perform on j, A2, B2 operations similar to those performed on i, A, B in

steps 7-10 (delete j from L2; insert j- 1 into A2, if j > rn + 1; insert j- 1 into
B2 if it has become a "left minimum" and delete from B2 those elements that
have ceased from being left minima).

12. Go to 1.
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4. The etticiency of the algorithm. We may employ the device of a 2-3 tree (see
[1, p. 146] for a precise definition) for handling the linearly ordered sets
A1, B1, A2, B2 in our algorithm. Again, the symmetry enables us to restrict our
attention to A and B1. Let T be a 2-3 tree which represents A 1. For every vertex v of
T which is not a leaf, L[v] is the largest element of A1 assigned to the subtree whose
root is the leftmost son of v; M[v] is the largest element of A 1, assigned to the subtree
whose root is the second son of v. For every vertex v of T let a (v) denote the number
of leaves of the subtree rooted in v, and let b(v) denote the number of leaves of this
subtree storing an element of B1.

It can be easily verified (see [1]) that each one of the following operations can be
executed in at most O(log n) steps: (a) Find the smallest element of A1 which is
greater than a given M1. (b) Find the smallest [largest] element of B1 which is
greater [smaller] than a given iM1. (c) Insert an element into A1. (d) Insert an
element of A1 into B1. (e) Calculate s, s*, s’.

Since each one of the operations listed above can be executed no more than O(n)
times in Phase II of our algorithm, and since these are essentially all the operations
executed during Phase II, it follows that Phase II requires no more than O(n log n)
steps. It is well-known that Phase I can also be executed in O(n log n)steps (see []).
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ON GOOD EOL FORMS*

H. A. MAURER’, A. SALOMAA:I: AND D. WOOD

Abstract. This paper continues the study of EOL forms. The notion of a good EOL form is introduced
as an important generalization of the notion of complete and very complete EOL forms. Transformations
preserving the property good are obtained and the existence of a variety of good and bad (i.e. not good)
forms is demonstrated. It is further shown that good and complete (i.e. vomplete) EOL forms do exist; that
propagating EOL forms are bad except under very special circumstances; and that synchronized EOL forms
are always bad.

Key words, grammar forms, L forms, goodness

Introduction. The notion of an EOL form and its interpretations is introduced in
[2] to define families of structurally similar EOL systems. Basically, an EOL form F is
just an EOL system, and the interpretation operator defines for each such F an
(infinite) family (F) of related EOL systems. In a natural manner this also associates
a family (F) of EOL languages with each EOL form F by defining (F)=
{L(F’)[F’ C(F)}. An EOL form F is called complete, if (F)= fEOL (the family of all
EOL languages), and F is called vomplete (short for very complete) if for each EOL
form F an F’ Cg(F) exists such that (F)= (F’).

In this paper an important generalization of the notion vomplete is introduced.
We call an EOL form F good, if for each EOL form F with ’(F)c_ (F) some
F’ Cg(F) with (F)= 5F(F’) exists. That is to say, an EOL form F is good if each
subfamily of (F) which can at all be generated by an EOL form can also be
generated by an interpretation of F, i.e. by an EOL form structurally similar to the
original one.

After a section containing a brief review of the basic notions of L form theory and
some additional concepts needed in the sequel, we establish the existence of both
good and bad (i.e. not good) EOL forms, both incomplete and complete (the con-
struction of a good and complete, i.e. vomplete, EOL form solving an open question
of [2]), we present transformations of EOL forms which preserve the property good,
we establish that no propagating EOL form generating at least certain finite languages
is good, and prove that even "weakly" synchronized EOL forms cannot be good..All
together the results presented in this paper are a first attempt to provide some
machinery for examining whether a given EOL form is good or not, a task which we
believe is both important and difficult. In contrast to the results obtained it should e.g.
be noted that the existence of bad grammar forms has not yet been established [1].

1. Preliminaries. In this section we review notions from L form theory required
in this paper, and we introduce the central notion of the paper, the concept of a good
EOL form.

An EOL system G is a quadruple G (V, E, P, S) where V is a finite set of
symbols, ,E V is the set of terminals, V-E the set of nonterminals, S V-,E is the
starting symbol and P is a finite set of pairs (a, x) with ce V and x V* such that for
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each a e V at least one such pair is in P. The elements p (a, x)of P are called
productions and are usually written as a - x. G is called deterministic, if for each a V
exactly one production a x is in P, and G is called propagating if in each pro.duction
a x the righthand side x differs from the empty word e.

For words x =ala2... a,, with aie V and y yly2"’" y,, with yie V* we write
0x ) y if ai Yi is a production of P for every i. We write x -----/x for every x in V*

G G
n--1

and write x ---) y if for some z in V* x z c[ ) y holds. By x ) y we mean
+xy for some n _->0, and by x --) y we mean xa--@ y for some n _-> 1.

For convenience, the EOL system will often not be indicated below the arrow
if it is understood by the context.
g sequence of words x0, x l, x2,’-’, xn with x0)Xl x2---)" ---=) xn

is called a derivation (of length n leading from Xo to x). The language generated by an
EOL syste.m G-(V,E,P,S) is denoted by L(G) and defined as L(G)-
(x E*IS.. ),x). For convenience, languages which differ by at most e will be

considered equal. Classes of languages will be considered equal if for any nonempty
language in one class a language in the other class, and conversely, exists which differ
by at most e.

For a set M of symbols and a set N of words, M-N denotes the set of
productions {a - x [a M, x N}. An EOL system G (V, E, P, S) is called short if for
each production a - x of P Ix[ =< 2 holds, and is called binary if each production is of
one of the forms A - e, A - a, A - B, A BC or a - A, where a Y_. and A, B, C

Let G (V, Z, P, S) be an EOL system and Xo, X be words in V*. We say

Xo ::: Xl is nonterminal and write x0 ,t f Xl, if for some sequence of words

Xl, X2, Xl-1 with Xi
G ’ Xi+l for O, 1, , 1-1,

S ;) yoxozo -- ylX1Z1 G YI-1XI-1ZI-1 G ylXIZl
G

implies yxz contains at least one nonterminal for 1-< i-<_ l-1. We say Xo )Xl is

total nonterminal and write x0 X,x if the existence of a derivation
tnt a /

S Wo Wl ’’"/Wl with Xo, Xl being substrings of Wo, w respec-

tively, implies that wi contains at least one nonterminal for 1 =< -< l- 1.
We will now review basic definitions concerning EOL forms as introduced in [2].

We have defined above how an EOL system F generates a language L(F). We will
now define how an EOL system F can be used to generate a family of languages (F).
If we are interested in the generation of a language family (rather than a single
language) then we will call F an EOL form. Thus, the terms "EOL form" and "EOL
system" can be used interchangeably. The first emphasizes the aspect of language
family generation, the second emphasizes the aspect of language generation.

Let F (V, Z, P, S) be an EOL form. An EOL system F’= (V’, E’, P’, S’) is
called an interpretation of F (modulo tx), symbolically F’ < F(/x) if/x is a substitution
defined on V and (i)-() hold:

(i) /z (A)
_
V’- E’ for each A V- E.

(ii) /x (a)
_
’ for each a .
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(iii) g (a) g (t3) for all a /3 in V.
(i’;?) P’

_
(P) where g (P) CI e/z (a) -/x (x).

s’
f(F)={F’IF’< F} is the family of EOL forms generated by F, and (F)=
{L(F’)IF’ <a F} is the )amily of languages generated by F.

We call two EOL forms F1 and F form equivalent if (F)= (Fe), and strongly
]orm equivalent if C(F)= (Fe). Note that the notion of form equivalence of two EOL
forms F and F differs significantly from the well known notion of equivalence of F
and F, the latter meaning L(F) L(Fe), i.e. equality of languages rather than language
families.

An EOL form F (V, E, P, S) nt simulates an EOL form F (V, E, P, S) if for

some integer ->_ 1 a x holds for each a - x P. Let F (V, Y, P, S) be an EOL

form and let _-> 1 be an integer. A symbol a V is called an l-symbol of F if for some

k {0, l, 2l, 3l,...} words x, y exist such that S xay holds. An EOL form F
/.

-b

(V, Y_,, P, S) is called synchronized if x L(F) and x )y implies y Z*. An EOL

form F is called complete, if (F)=EOL (the family of all EOL languages, i.e.
o {L(F)IF is an EOL system}). If F is not complete it is called incomplete. The
central notion of this paper is the concept of a good EOL form.

DEFINITION. An EOL form F is called good, if for each EOL form F with
(F)(F) an EOL form F’ exists such that F’ < F and (F’)= (F). If F is not
good it is called bad.

Intuitively, an EOL form F is good, if every language family contained in (F)
which can at all be generated by an EOL form, can also be generated by an inter-
pretation of F. Thus a good EOL form F describes, in a sense, all language families
contained in (F) which can be generated by EOL forms. An EOL form F is called
vomplete (introduced in [2] as abbreviation of very complete) if F is complete and
good.

We conclude this section by mentioning a convention used throughout. When
specifying examples of EOL forms, small letters are used to denote terminals, capital
letters to denote nonterminals, and $ (or S, S, S’,. .) to indicate the starting symbol.

2. Results. By a result in [2] there are bad complete EOL forms; we will show
later that good complete EOL forms also exist. But we first establish the existence of
both good and bad incomplete EOL forms.

THEORZM 2.1. The EOL form F1 with productions S a, a N, N N is bad, the
EOL form F2 with productions S a, a a is good, and both forms are incomplete.

Proof. That both Fx and F are incomplete is clear. We first prove that F1 is bad.
Note that (F)= Symb (the family of languages in which each language is a finite set
of single letter words). Consider the EOL form H with productions S- a, a b,
bN, NN. Clearly, (H)(F1) and (H)(F1), since {a}(F1) but
{a}(H). However, for every interpretation F of Fa evidently (F)= oSymb
(n).

We now show that F2 is good. To see this, we let be the subfamily of Symb
consisting of languages with at least k elements and we establish the following
assertion.

AsszrTo. If K is an EOL form such that (K) oSymb, then (K)= for
some k > O.
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Proof of assertion. Clearly, only the cardinality of the sets in (K) is essential not
the names of symbols. If {aa,..., a,,} (K), then also {ax,’’’, am/}(K) since
we can "split am into a,, and a,,/" in the interpretation K’ generating {a,..., a,,},
i.e. we modify K’ to K" so that for every production containing a,, another copy is
made throughout of which a,,, is replaced by a,,/. Clearly, K" is again an inter-
pretation of K and L(K") {a,. , am+l}.

That Fz is good follows from above assertion readily. For suppose K is an EOL
form with f(K)___ 5(F2), i.e. (K) ’Symb. Then 5f(K)= for some k > 0. Thus,
(K) (H) where H is given by the productions $ a, a a for 1 -< -< k.
Noting that H is an interpretation of F2 completes the proof.

It should be clear that even for rather simple EOL forms it is, in general, not easy
to determine directly whether they are good or bad. In what follows we will develop
methods which will ease this kind of task. In particular, the next two theorems permit
us to show that a form is good [bad] by transforming it in a certain way into a form for
which this property is already known.

THEOREM 2.2. LetFand Fbe arbitrary EOL forms with (F) (F) andF . F.
Then Fgood implies that F is good.

Proof. Consider an arbitrary H with (H)__ (F). Then (H)_(F)= (F),
and since F is known to be good, for some F’- F we have (F’)=(H). But
/?’ -/? - F. Thus (H)= (/?’) for some interpretation/’ of F, i.e. F is good.

Above theorem says thatprovided the language families are the same"in-
verse interpretation" preserves the property good, and interpretation preserves the
property bad. We will see later that the converse of Theorem 2.2 does not hold and
that the condition (F)=(F) is essential.

THEOREM 2.3. Let F and F be arbitrary EOL forms with (F)= (F) such that F
nt-simulates F. Then Fgood implies that F is good.

Proof. Consider an arbitrary EOL form H with (H)___ (F)= (/3). Since/3 is
good, for some F’ with F’ - F(/) we have (F’)--(H). We have to show that for
some F’- FOx) indeed ’(F’)= (H). We proceed by constructing an EOL form
F’ - F and then show that (F’)= (F’)=(H) holds.

Let F (V,Z,P,S), (V, Z, /5, ), /?’=(-’ ,,/5,,V, q’) and suppose that for

some >- 1 we have a. ....) x for each a --> x of/5. We construct F’--- (V’, E’, P’, S’)
nt F

by putting into P’ for each production q of F’ a set of production as follows.
Suppose q is the production/3 --> y. Then there exists a production a --> x of F such

that/3 /2 (a), y /2 (x). Thus a ,----t-t--) x holds and thus there is a sequence of words

\a Xo, Xl, x2, , X,-l, Xl x such that xi xi+l and such that

\S yoxoZo ylX1Z1
F >’" F

-) Yl-lXl-lZl-l F > ylXiZl

implies that yxz (1 -< -< l- 1) contains at least one nonterminal. Write

X2 a2,1a2,2 a2,t:z, (oi, V)

(q) is a terminal symbol iff ai.i isintroduce tl + t2 +" + tl- new symbols a i(./q’), where a i,i
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a terminal, and let x}q). be the word xi with ai,j replaced by t.,ti,j-(q). Suppose the set
of productions of F involved in aXlX2------/.." )x-I }x is
O. Put into P’ of F’ exactly those productions (each of them is the interpre-
tation of a production of O) required for the derivation

flv’ xq)x(zq) v’ x}q-)l y" By construction it is clear that

F’ <a F.
Since F’ nt-simulates ’, Lemma 3 of [2] yields (/?’)c_ (F’). Since for an

/-symbol a of F’, a )x implies a--x, and (since there is one possible
F’ nt F’

derivation leading from a to x in steps) indeed a)x, and a x is a production

of F, Lemma 3.4 of [2] gives (F’)c_ (F’) and the proof is complete.
We will see later that the converse .of Theorem 2.3 does not hold and that the

condition (F)= 5F(F) is essential.
Our next aim is to establish the existence of good and complete (i.e. vomplete)

EOL forms, answering an open problem of [2]. To this end we first prove two auxiliary
results and a theorem of interest in itself since it provides a further transformation
which preserves the property good.

Throughout the rest of this paper let maxr (F) for an arbitrary EOL form F be
the length of the longest righthand side of any production of F.

LEMMA 2.1. For every EOL form F with maxr (F) m >->_ 3 a form equivalent EOL
form F with maxr (F) m 1 can be constructed; and ifF is good, so is F.

Proof. Let F (V, E, P, S) and construct F (V, E, P, S) as follows"
(a) for every production p" a x of P with Ixl--< 2 put into/5 the two productions

a [p] and [p] x, where [p] is a new nonterminal,
(b) for every production p" a x of P with Ixl->- 3 and x fly,/3 V, y V* take

into/5 the three productions a [p][/], [p] /3, [/] y, where [p], [/] are
new nonterminals.

Clearly, maxr (F)= m 1 and F nt-simulates F, i.e. (F)c_ (F). If a is a 2-symbol
2 2

of/3 then ax implies a ----:__x and a --> x P, i.e. (/)___ (F). Since (F)=
F tnt F

(F) Theorem 2.3 applies. Thus F is good if F is good, as desired.
Applying Lemma 2.1 repeatedly we obtain
LEMMA 2.2. For every EOL form F a short, form equivalent EOL form F can be

constructed, such that F is good ifF is good.
Proof. The proof is clear.
THEOREM 2.4. For every EOLform Fa binary form equivalentEOLform Fcan be

constructed such that F is good ifF is good.
Proof. By Lemma 2.2 we may assume that F (V, , P, S) is short. Construct

F (V, , P, S) as follows:
(a) for every production p" a --> fly with a,/3, y in V put into P the four produc-

tions: a[p], [p][p][], [p]fl, [/]y, where [p], [p], f/q] are new
nonterminals,

(b) for every production p’a x with Ixl--< 1 put into/5 the three productions"
a [p], [p] [p], [/7] x, where [p] and [p] are new nonterminals.

Note that F is binary and nt-simulates F, i.e. (F)_ f(F). If a is a 3-symbol of F

then a F----F-c_ x implies a x and a x P, i.e. (F)_ (F). By Theorem 2.3, F

is good, if F is good. It is now easy to see that there are good and complete (i.e.
vomplete) EOL forms.
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COROLLARY 2.1. The EOL form F=({S, a}, {a}, P, S) with productions S
{e, a, S, SS}, a S is vomplete.

Proof. Let H be an arbitrary EOL form. By Theorem 2.4 a binary EOL form F
exists such that &(H)= (F). F is clearly an interpretation of F.

Corollary 2.1 raises the question whether the production S- e is actually
required for vompleteness. The following lemma will allow us to establish that
productions with e on the righthand side must occur in any good form except under
very special circumstances.

LEMMA 2.3. No propagating EOL form is form equivalent to the EOL form
F ({S, a, b, c, d}, {a, b, c, d}, P, S) with productions S --> aba, a --> cd, b -> e, c -> c,
d-->d.

Proof. L L(F)= {aba, cdcd}. Note that each language in (F) contains at least
two words, one of length 3 and one of length 4. Assume some propagating F is form
equivalent to F. Hence there exists an F’<F such that L(F’)=L. Let F’=
(V’, E’, P’, S’) and consider the derivation

Since F’ is propagating, cdcd , aba is impossible. No terminal word other than

aba can occur in the derivation D since no such terminal word is in L. If aba does not
occur in D, and thus no terminal word of length 3 occurs in D, we can easily construct
an interpretation/’ of/?’ (and thus of/?) such that L(fi’) does not contain any word of
length 3 as follows: rename the symbols in x0, YI, xn such that words ’---’,. , xn are obtained with the property that the word =’XoX1 Xn-1 contains no
symbol more than once. Define the EOL form /’= (V,=’ E,=’ /,-’ ’) by taking /’=
/ U P, where/5 contains exactly those productions obtained from productions of/’ by
the renaming required for the derivation S’
tO )1 )’’" )-n-1 }cdcd, and where / contains exactly those
productions of P’ required to continue the derivation past cdcd. Evidently,
fi’</?’</? and L(/’) does indeed contain no terminal word of length 3, a con-
tradiction. Thus abc must occur in the derivation D, i.e.

Thus we have either
,n\ x(i) a / c, b------/d, a cd or

(ii) a c, b dc, a 2 d or

(iii) a cd, b / c, a d.
In case (i),

aba cddcd

in case (ii),

aba #, ddcc
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and in case (iii),

\aba cdccd.

Since neither of above three words is in L, L(F’)L in each case, we have a
contradiction.

THEOREM 2.5. Let F be the EOL form ofLemma 2.3. No propagating EOL form
H with L(F)(H) is good.

Proof (by contradiction). If indeed H is good, for some H’ < H, H’ propagating,
(F) (H’), in contradiction to Lemma 2.3.

We obtain the immediate corollary:
COROLLARY 2.2. No propagating EOL form is vomplete.
Corollary 2.2 has interesting ramifications" while the EOL form F with produc-

tions S- {e, a, S, SS}, a- S is vomplete by Corollary 2.1 the EOL form/ with the
same productions except that S e is missing is not vomplete by Corollary 2.2. (It is of
course well known that both F and F are complete.) Note that F-, F (and F
nt-simulates F), 5(F)= (F), F is good, but F is bad, i.e. neither the converse of
Theorem 2.2 nor of Theorem 2.3 is true. Also note at this point that the condition
(F)= (F) is critical in both Theorem 2.2 and Theorem 2.3. Just consider F with
productions: S {a, S, SS, B}, a S, B - b, b C, C b and / with productions
S B, B b, b C, B - b (where a, b are terminals, S, B, C are nonterminals). F is
easily seen to be good (based on the fact that F2 of Theorem 2.1 is good, and on the
construction under (a) in the proof of Lemma 2.1), F is clearly complete (and thus bad
since it is propagating) but both F F and F nt-simulates F.

In [2]. it is shown that no synchronized EOL form is vomplete. We now generalize
this result considerably.

DEFINITION. An EOL form F (V, , P, S) is called k-synchronized (k >= 1) if
+__, + +

\
+

,)
+

\ :, :,S------ xl .. x2 /"" Xk / y, Xi implies y Note that 1-

synchronized is the usual concept synchronized.
THEOREM 2.6. NO k-synchronized EOL form Ffor which L(F) contains at least

one nonempty word is good.
Proof (by contradiction). Suppose F (V, E, P, S) is k-synchronized and good

and for some x E+, x L(F). We will construct an/ with w(/) (F) such that for
every interpretation F" of F, 5(F") (F), a contradiction.

For each X L(F) define

M(xl)=max{t[Xl
F

and let t=max{M(x)lXleL(F)}. Then there exists a derivation S=xo
F

x... \’xn containing exactly terminal words x xi2,"" xi, andXl X2 F’-’- F
/

xn y implies yE*. By renaming all symbols in Xo, X,.’.,xn words
w0, w,. , w, can be obtained such that in WoW wn no symbol occurs more than
once. Clearly, an interpretation P (, Z, P, ) of F can be constructed such that P is
deterministic,

= Wo ) Wx T)"
and wl, w2, , w, are the only terminal words in L(/).
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Define an EOL form F (V, E, P, S) as follows" Put exactly those productions of

fi into /5 which are required in the derivation ,e \’, wil e)""
wi,_l *. )u :.: wi,. Call the set of all productions used in this derivation up to the

last but one step P, and let P be the set of productions used in the last step u-----)
For each terminal a occurring in wi, put the productions a --> & --> N, N --> N ( a new
terminal, N a nonterminal) into P.

It is of crucial importance to observe that (/e)___ (). This is seen as follows.
Let F’= (V’, Z’, P)S’)be an arbitrary interpretation of F, F’- F(fi). We construct

--(an interpretation F’- V, E, P’, ’) of F, F’ <a F(fi) and demonstrate L(F’)= L(F’).
Define fi as follows:

/2 (a) U/2 (a) for each c in wi,,

2 (a)= (a) for each a occurring in a production of/6,
{a } for all other symbols.

Put into P’ all productions of P’ except those steming from productions a- d (a in
wi,), - N, and N N. Further, for each production p" a ala a of P’ which is
an interpretation of a production of P, let N(a)= {blai b P’} and put into P’ all
productions a-N(ax)N(a2)... N(a). Put also into P’ all such interpretations of
productions of P needed to insure that for every a I2’ a production with left side
exists. It is readily seen that L(F’)= L(F’).

For a derivation

Z ]’" )Zt.-Zt+
in F’ involving the terminal words zl, Z2," Zt+l only (and no further terminal word
derivable from Zt+l) we have the two derivations

and

in/’ (and no further terminal word is derivable from z, or Zt+l or occurs in between
the z’s).

Conversely, for any derivation

S’ )Z1 )Zt-1-’-’--/X

in/6, involving only the terminal words zl, Z2,""", Zt-1, X and no further terminal
word derivable from x there exists the derivation

in F’, where either x zt or x zt+ 1.

We have thus demonstrated 5f(fi)c_ &e(p) and thus (fi)c__ (F). We note that
every language in 5F(F)contains at least + 1 words.
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Take an arbitrary interpretation F" (V", ", P", S") of F with L(F") containing
at least one nonempty word. We show (F)(F"). In F" a derivation S;=
x" .x x{:==...x exists such that at most m =<t of the words

+
x0," , x, are terminal and x-77-I y implies y By renaming all occurrences of

symbols in all x an interpretation F’" of F" can be obtained such that L(F’") consists of
rn -<_ words. Thus L(F’") (F") but L(F"’): (F), completing the proof.

Note that part 1 of Theorem 2.1 is a simple corollary to Theorem 2.6.
It is interesting that as far as language families generated by EOL forms are

concerned, synchronization seems to be a drawback rather than an advantage as usual
in customary L systems theory.

While the current paper does provide some insight into the question of when an
EOL form is good or bad, many open questions remain. We are, for example, unable
to establish whether the (complete) EOL form F with productions S a, S S,
S --> SS, a -> S, a -> e is good or bad.
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LINEAR LANGUAGES AND THE INTERSECTION CLOSURES OF
CLASSES OF LANGUAGES*

RONALD V. BOOK? AND MAURICE NIVAT.I:

Abstract. The intersection closure and the closure under homomorphic replication and intersection of
certain classes of languages are studied and related to a specific class BNI" of languages defined in [5]. The
proof techniques rely on the "set-theoretic algebra" of language theory instead of arguments involving
abstract families of acceptors.

Key words, linear context-free languages, intersection closure, homomorphic replication, linear
erasing

Introduction. The class of linear context free languages has been a fruitful source
of examples and counterexamples in formal language theory throughout the
development of the subject. Recently this class has been used in establishing new
results concerning the structure of some important classes of languages [1], [3], [5],
[9], [10], [12], [13]. In this paper the class of linear context-free languages is used to
obtain new results concerning the closure of certain classes of languages under the
operations of intersection, linear-erasing homomorphism, and linear-erasing
homomorphic replication.

There has been a great deal of research activity in formal language theory aimed
at studying classes of languages specified in terms of certain closure properties and the
relationship between these classes and those specified by abstract automata behaving
in some specified manner. This research has lead to the study of abstract families of
languages and abstract families of acceptors [6], [7], [8], [11]. In particular certain
classes of languages recognized by multitape acceptors have been characterized in
terms of classes of languages closed under intersection [11]. However, the results
obtained in the abstract setting have not been particularly useful when specific classes
have been studied. One reason for this is that proofs involving abstract families of
acceptors (as in [6], [7], [8], [11]) are quite technical.

Here we present results similar to those in [11] but we do not make reference to
abstract families of acceptors. Instead we depend heavily on the properties of one
specific class of languages, the class BNP of languages accepted in linear time by
nondeterministic multitape Turing machines whose read-write heads are reversal-
bounded [5]. It is known [5] that a language is in BNP if and only if it is accepted in
real time by a nondeterministic machine with just three pushdown stores as storage
which operates in such a way that in every computation each push-down store makes
at most one reversal, if and only if it is the nonerasing homomorphic image of the
intersection of just three linear context-free languages. Thus, in considering machine
specifications of languages in Byp one can reduce "multitape" to just "three push-
down stores" and in characterizing BrP in terms of closure operations it is enough to
consider the intersection of just three linear context-free languages instead of the
intersection closure of the class of linear context-free languages. Recall that similar
characterizations of the class of quasi-real time languages were established in [4].
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The proof techniques in this paper rely on the "set-theoretic algebra" of formal
language theory as represented by results in [2], [3], [6], [7], [14]. In 2 we study
classes of languages with some simple properties that are not necessarily abstract
families of languages and consider the intersection closures of these classes by relating
them to classes obtained by combining 5BN, and the given classes. In 3 we carry this
study forward by characterizing the closure of a class under intersection and linear-
erasing homomorphic replication. The results in 3 also represent an attempt to
capture the technique of "tape-folding" used in the programming of Turing machines
in [4], [5] in terms of algebraic operations.

1. Preliminaries. It is assumed that the reader is familiar with the basic concepts
from the theories of automata, computability, and formal languages. Some of the
concepts that are most important for this paper are reviewed here and notation is
established.

For a string w, ]w] denotes the length of w" if e is the empty string, then lel 0; if
a is a symbol and y is a string, then lay 1 + ]Yl.

The reversal wR of a string w is the string obtained by writing w in reverse order"
R Re e; if a is a symbol and y is a string, then (ay)R=y a.

Recall that a homomorphism (between free monoids) is a function h" Y_,*--> A*
such that for all x, y Y_,*, h (xy)= h (x)h (y). A homomorphism h" Z* --> A* is noneras-
ing if Iw]>0 implies Ih(w)l > 0 and is length-preserving if for all w Y_,*, [h(w)l ]w]. A
homomorphism h" Y_,* A* is linear-erasing on language L Y,* if there is a constant
k>0 such that for all weL with Iwl>=k, Iwl<-klh(w)].

A class of languages is closed under (nonerasing, linear-erasing) homomor-
phism if for every language LSF and any homomorphism h (that is nonerasing,
linear-erasing on L) h(L)= {h(w)lw L} is in .

The research leading to the results presented here was motivated by the authors’
investigation [5] of the class of languages accepted in real time by nondeterministic
multitape Turing acceptors whose storage tape heads are "reversal-bounded." Recall
that a "reversal" is a change in direction of a read-write head’s motion; for a
pushdown store this means a change from "popping" to "pushing" or vice versa. A
machine is reversal-bounded if there is a fixed constant k such that in every compu-
tation each read-write head makes at most k reversals.

The following result is Theorem 3.1 of [5].
PROPOSITION 1.1. Let L be a language. The ]:ollowing are equivalent"
(i) L is accepted in linear time by a nondeterministic reversal-bounded multi-

pushdown acceptor;
(ii) L is accepted in real time by a nondeterministic multipushdown acceptor which

operates in such a way that in every accepting computation each pushdown store makes
at most one reversal;

(iii) L is the length-preserving homomorphic image o] the intersection ol some finite
number o]’ linear context-]:ree languages;

(iv) L is accepted in real time by a nondeterministic acceptor with three pushdown
stores which operates in such a way that in every computation each pushdown store
makes at most one reversal;

(v) L is the length-preserving homomorphic image o] the intersection o]’ three linear
context-J’ree languages.

The class of languages described in Proposition 1.1 will be referred to here as
BNP,

From the characterizations of the class BN1, given in Proposition 1.1, it is easy to
show the following result.



LINEAR LANGUAGES 169

PROPOSITION 1.2.
(i) The class BNP contains the linear context-free languages and is closed under

union, intersection, inverse homomorphism, concatenation, linear-erasing homomor-
phism, and reversal.

(ii) The class 5BNP is the smallest class containing the linear context-free
languages and closed under intersection and nonerasing homomorphism.

It is well known that the class of linear context-free languages is the smallest class
containing the language {wcwRIw {a, b}*} tA {e} and closed under inverse homomor-
phism, nonerasing homomorphism, and intersection with regular sets. From this fact
and Proposition 1.2, one obtains the following characterization of BNP.

PROPOSITION 1.3. The class NP is the smallest class containing the language
{wcwR[w{a,b}*}U{e} and closed under intersection with regular sets, inverse
homomorphism, nonerasing homomorphism, and intersection.

The properties of the class NP described in Proposition 1.2 will be quite useful
in establishing the results in 2 and 3. In addition certain set-theoretic notation will
be of value.

Notation. Let be a class of languages. Let H()={h(L)lh is a nonerasing
homomorphism and L }, let H-I() {h-l(L)lh is a homomorphism and L },
and let Hli,() {h(L)lh is a homomorphism that is linear-erasing on L and L }.
For classes 61 and (2 of languages, let IA()2 {L1 (’]Lz[Li ()i, 1, 2}. For a class

of languages, the closure of c under intersection is/c {La . (3 Lk ]k >- 1, each
L, l<-i<=k}.

To illustrate the use of this notation, let us restate some of the abovementioned
properties of ayp. For this purpose let LIN denote the class of all linear context-free
languages.

(i) ,BNF is closed under intersection: oBNFABNP ,BNP and/SNP ----- oQgBNP(ii) ,QgBNP is closed under inverse homomorphism: H-(---BNp)__. oBNP.
(iii) BNP iS closed under linear-erasing homomorphism: H.(---SNp)___ SNp.
(iv) A language is in ,BNF if and only if it is the nonerasing homomorphic image

of the intersection of some finite number of linear context-free languages:
H(ALIN) ,--BNP.

We will use this notation freely throughout this paper.

2. Intersection closure and closure under linear-erasing homomorphisms. We
turn to the study of the intersection closure and the closure under linear-erasing
homomorphisms of an arbitrary class of languages. We do not attempt to characterize
these classes but rather to relate them to classes obtained by combining 5yp and the
given class. The first results are concerned with the closure of a class under linear-
erasing homomorphisms.

THEOREM 2.1. Let c be a class of languages with the property that if L , then
L U{e}6 % If L c and h is a homomorphism that is linear-erasing on L, then there
exist homomorphisms f and g with f length-preserving, a language L1 c, and
a language L265fBNP such that h(L)=f(g-l(L1)TlL2). Thus, Hlin()___
H(H-l(c)/WasP).

Proof. Let L and let E be a finite alphabet such that L
__
*. Let h: E* - A* be

a homomorphism such that for some k and all w 6 L, [w[ _-< k max ([h(w)[, 1), so that h
is linear-erasing on L. If e h(L), let L1 =LU{e}; otherwise, let LI =L. Notice that
h(L1)= h(L) and Ll .

Let F {[w, b]lw E*, 1 _-< Iwl--< k, b A} be a set of new symbols. Let g: F* - Y_,*
be the homomorphism determined by defining g([w,b])= w for each [w, b]F, and
let f: F*-A* be the homomorphism determined by defining f([w, b])=b for each
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[w, b] F. Notice that f is length-preserving. Let L’= {[W1, b] [wn, bn]ln >= 1, each
[wi, bi] F, h(Wl.." Wn)=bl bn}. If eh(L), let L2=L’{e}; otherwise, let L2
L" Notice that (g-l(L1)fqL2)-{e}= {[Wl, bl]" [w,, b,][n >- 1, each [wi, bi] F,
h(wx Wn)=bl bn, wl wn Ll-{e}} so that f(g-l(L)f-)L2)=h(L)=h(L).

It suffices to show that L2 is in BNP. Let M be a deterministic Turing acceptor
with a one-way read-only input tape and with two pushdown stores to be used as
auxiliary storage tapes. Upon reading input [w, bl]"" [Wn, bn] in F*, M writes
h(wl)h(w2). h(w,) on the first pushdown store and simultaneously writes bl bn
on the second pushdown store. Having read the entire input, M empties the two
pushdown stores simultaneously while attempting to match their contents. The input
string [wl, bl]... [wn, b,] is accepted by M if and only if the two pushdown stores
have the same contents, if and only if h(Wl.." w)=h(Wl).., h(w,)=bl.., b,.
Thus, M accepts precisely the strings in L2. If m =max{[hi(a)[ la E}, then M
operates in time 2ran so that M operates in linear time. Clearly, each pushdown store
makes only one reversal. Thus L(M)= L2 is in BNP.

THEOREM 2.2. Let be a class of languages that is closed under inverse
homomorphism and that has the property that if L qg, then L {e} % Then the class
H(/BNP) is closed under linear-erasing homomorphism, that is,
nlin(n(’/BNP)) n(/=+---BNP).

Proof. If f and g are homomorphisms such that g is nonerasing and f is linear-
erasing on g(L) for some language L, then the result of composing f and g is a
homomorphism that is linear-erasing on L. Thus, Hlin(H(C/---BNe)) Hlin(/BNe).

The class me has the property that if Lme, then L {e}6BNe, and by
hypothesis, the class has this property. Thus, the class /5%Ne also has this
property. Hence, by Theorem 2.1, Hlin(C/Ne)_H(H-a(c/m,rr,)/.3Ne). For
any sets X and Y and any function f, f-l(x I’q Y) f-X(x) f-(Y), so that
H-I(c/,qBNe)H-I(c)/H-I(,BNe). By hypothesis is closed under inverse
homomorphism, and (as noted in Proposition 1.2) BNe is closed under inverse
homomorphism. Thus, H-a()/H-I(Ne)_ /NI,. Since Ne is closed under
intersection, me/BNe-----Ne and so (/kSme)/kNe /Ne. Thus,
Hin(H(C/BNe)) Hin(C/o’BNe) H(/=-BNe) SO that H(/kNe)is closed un-
der linear-erasing homomorphism. 71

COROLLAr. Let be a class of languages that is closed under inverse
homomorphism and that has the property that ifL % then L tA {e } % Then the closure
of under linear-erasing homomorphism is included in the class H(/Ne), that is,
Hlin(C)

Now we consider the intersection closure of a class of languages. Again we show a
relationship between this closur and a class obtained by combining BNP and the
original class.

THEOREM 2.3. Let be any class of languages that contains the language {1}*
and all of the singleton sets and that is closed under concatenation and inverse
homomorphism. For any k >-_ 1 and any choice ofL1, , Lk , there exist a language
C in , linear context-free languages M and Me, and a homomorphism h such that
h (C M1 ["] M2) L ["]" 1"] Lk and h is linear-erasing on C
Hlin(/LIN/LIN) Hlin(ANe).

Proof. Let L LI [’-’] [’] Lk and let E be a finite alphabet such that L c_ E*. Let A
be a set of new symbols in one-to-one correspondence with E, say A {61a E},
A I9 E , and let # be a new symbol, # A U E. Let a: A*--> E* be the homomor-
phism determined by defining a()=a for each A. Let /: A*->{1}* be the
homomorphism determined by defining/9() 1 for each A.
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-1 -l(Lk)#(-l({1}*)#)k. By hypothesis {#} andLet C.= L ( Of (L2) 70
{1}* are in and by choice L1, , Lk are in % Since is closed under concatenation
and inverse homomorphism, the language C is in % Notice that C=
{WlY2 ykZl #z#lwL, a(yi)Li for i>_-2, and ziA* for j_-> 1}.

Let M {wl # y2 # # y #y# #y#ylw 2,*, Yi A* for >-- 1, and
a(yl)=Wl} and let M2={wl#y2# #y#z#yff # #y#lwZ*, yi A*
for >-2, z A*}. Clearly both M1 and M2 are linear context-free languages.

It is easy to see that
L1 ’" IL L}. Let h" (Z CI A LJ { # })*-> E* be the homomorphism determined by
defining

h(a)=la for aeE,
e fora AU{#}.

Then h(C(’IM1F’IM2)=L. For any xC(-IMI("]M2, ]xl=2klh(x)l+2k so that h is
linear erasing on C 71 M1 [’] M2. [-]

By combining Theorems 2.2 and 2.3 we see that if is a class of languages with
suitable properties, then H(c/BNp) is closed under both intersection and linear-
erasing homomorphism. Thus we can relate the closure under intersection and linear-
erasing homomorphism of an arbitrary class of languages to a combination of and
BNP.

THEOREM 2.4. Let q be any class of languages such that (i) contains the
language {1}* and all of the singleton sets, (ii) c is closed under concatenation and
inverse homomorphism, and (iii) has the property that ifL c, then L U{e} . Then
H(q/mi,) is closed under intersection and linear-erasing homomorphism.

Proof. From Theorem 2.2, it is immediate that H(/Sfml,) is closed under
linear-erasing homomorphism. To show that H(/ml,) is closed under inter-
section, one fact is particularly useful. Recall that for any sets X and Y and any
function f, f(X)F! Y=f(X Fl f-l(Y)).

This leads to the following result.
CLAIM. For any classes .o and 92 of languages, H(l.)/’2

_
H(’i/H-l(’2)).

From the claim we see that

(1) H(A)AH(Ane) =__ H((ALf,)AH-I(H(ASp))).

Using the techniques of [7], especially those displayed in part (3) of the proof of
Theorem 1.1, one can show that

(2) H-I(H(<AUNp)) H(H-1(<AUNp)).
Both and BNP are closed under inverse homomorphism and so H-I(c/BNP)
H-I()/H-I(BNP)-- (/BNP. Thus from (i) and (2) we obtain

(3) H(Ae)AH(eAe)
_
H((A,)AH(<eA-%,)).

From the claim we see that

(4) (eAe,)AH(eAe) H(H- (<A)A(<A)).

Since A is associative and commutative and BNP is closed under intersection, and
since (as above) H-(A)_c A2’, (4) yields

(s) (A)AH(A) H(AAS).

From Theorem 2.3 we see that /<g
_
H(/BNP). Applying this fact and the

claim to (5) while recalling that 5Np is closed under intersection, and inverse
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homomorphism and that the composition of nonerasing homomorphisms is again a
nonerasing homomorphism, we obtain

(6) a_ H(H(rgANPAH-’(oBNP)))

H(H(CgAo’NPANP))

(7)

c_ H(H(CgASNp)) c_ H(Cgi%SNp).
Combining (3)and (6), we have

H(rgASBNP)AH(ofABNP) -- H((rfASNP)AH(of ASgSNP))_
H(H(cgASsNp)) H(cgASSNp).

Thus, H(cgABNp) is closed under intersection. 71
Recall that a semi-AFL is a class of languages containing the e-free regular sets

and closed under inverse homomorphism, nonerasing homomorphism, union, and
intersection with regular sets. An intersection closed semi-AFL is closed under
concatenation. If a semi-AFL contains the language {e}, then it contains the language
{1}* and has the property that for any language L, if it contains L, then it contains
LU{e}.

From Theorem 2.4 and results of [6]-[8], we have the following result.
THZORZM 2.5. If rg is a semi-AFL containing {e} and closed under concatenation,

then the intersection closure of cg is included in H(CgANP).
Using techniques from [6], it can be shown that certain alterations of the

hypotheses of Theorems 2.3 and 2.4 can be made without affecting the conclusions of
those theorems. For example, conditions (i) and (ii) of Theorem 2.4 can be replaced by
(i’) and (ii’) below:

(i’) rg is a nonempty class containing at least one nonempty language;
(ii’) cg is closed under marked concatenation, inverse homomorphism, and inter-

section with regular sets.

3. Use of intersection and linear-erasing homomorphic replication. In [5] the
proof that any language in SNP can be accepted in real time by a nondeterministic
machine with just three reversal-bounded pushdown stores as auxiliary storage uses a
technique commonly known as "tape-folding"" symbols are written on tape squares as
if the tape squares have several "channels" and at some later time the tape squares are
read in such a way that the contents of different channels are compared. A similar use
of this technique occurs in [4] where it is shown that a language is accepted in real time
by a nondeterministic multitape machine if and only if it is accepted in real time by a
nondeterministic machine with just two work tapes, one a pushdown store and the
other a nonerasing stack. This technique also is used in studying properties of deter-
ministic machines. The results in 2 suggest that the use of this technique in reducing
the number of working tapes needed to accept a language is in some way related to the
property of a class of languages being closed under intersection with languages in
OPBNP and thus a characterization of oBNP in terms of "algebraic" notions may clarify
the power of this technique. In [3] it is shown that ,:BNP is the smallest class containing
the regular sets and closed under the operations of intersection and "linear-erasing
homomorphic replication." Here we show that if a class has certain properties, then
the class H(cA=CBNP) can be obtained from and the class of regular sets by use of
intersection and linear-erasing homomorphic replication.
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Let n be a positive integer and let p be a function from {1, , n} to {1, R }. Let L
be a language and let ha,’’’, hn be homomorphisms. The language (p; ha,’’ ", hn)
(L)= {ha(w)(a) h,(w)(")]w L} is a homomorphic replication of type p on L. A class

of languages is closed under homomorphic replication if for every n >0 every
function O :{1, , n}--> {1, R }, every language L , and every n homomorphisms
ha,’" ,h,, the language (p; ha,"" ,h,)(L) is in 5f; and if for every n >0, every
function p: {1, , n }--> {1, R }, every language L , and every n homomorphisms
ha,’", h, each of which is linear-erasing on L, the language (p; ha,’", h,)(L) is in, then 5f is closed under linear-erasing homomorphic replication.

Clearly a class of languages closed under linear-erasing homomorphic replication
is closed under linear-erasing homomorphism.

Let p: {1, 2}-->{1, R} be defined by 0(1)=1 and O(2)=R. It is known that a
language L is linear context-free if and only if there is a regular set S and two
homomorphisms ha, h2 such that (p; hi, h2)(S)--L. Further, the homomorphisms hi,
h2 can be taken to be linear erasing on S.

The operation of homomorphic replication has been used in a variety of situa-
tions to characterize certain classes of languages [3], [9], [10], [12], [13]. Here we
consider classes of the form H(cCA,:BNP).

THEOREM 3.1. Let be any class of languages such that (i) c contains the
language {1}* and all of the singleton sets, (ii) is closed under concatenation and
inverse homomorphism, and (iii) c has the property that ilL % then L U{e} % Then
H(C/9aNp) is the smallest class containing the languages in and all of the regular
sets and closed under intersection and linear-erasing homomorphic replication.

Before proving Theorem 3.1, note that if c is a semi-AFL containing {e} and
closed under concatenation, then c satisfies (i)-(iii). Thus we have the following
corollary.

COROLLARY. If is a semi-AFL containing {e} and closed under con-
catenation, then H(CC/BNP) is the smallest semi-AFL containing the languages in
and closed under intersection and linear-erasing homomorphic replication.

The remainder of this section is devoted to the proof of Theorem 3.1. We assume
that the class c has the properties (i)-(iii) referred to in the statement of Theorem 3.1.

First notice that every language in and every language in 5faNP (hence, every
regular set and linear context-free language) is in H(/BNP). To see this, consider
L U ,BNP and a finite alphabet 5: such that L

__
5:*. Since {1}* c and is closed

under inverse homomorphism, E* % Since E* is regular, E* is in oBNP. Thus,
L L I"’1 Y_,* cAAOaNP

_
H(AaNP).

Second, notice that if La and L: are in H(/qaNP), then so is LaL:, that is,
H(C/BNP) is closed under concatenation. To see this, notice that L is in
H(/BNP), then for some A m % B m ,BNP, and some nonerasing homomorphism
ha" Y,* - A, La ha(Aa VIBa). Let 2: be a "copy" of 2a, that is, let 22 be a set of new
symbols, 2 VI2: , and let c: 2 - 2: be one-to-one and onto. Let h::
(Aa UY:)* be the homomorphism determined by defining h:(a) ha(a) for a Y-,a and
h:(a) a for a 2:. Since {1}* and c is closed under inverse homomorphism,
is in % Since is closed under concatenation and A, 2* % the language A2 is in
% Similarly, Ba2* is in .BNP. Thus, h.(AaY.,f’lBY.,)=ha(Aa VIBa)2"=LaY., is in
H(/caNP). Similarly, a copy : of L: can be constructed in H(/9aNP) so that
/:_2 and AL:H(A’SNp). Since H(/9BNP) is dosed under intersection,
LaY.,VIAaLz=LaL: is in H(C6’/9aNp). Since LaL: is the image of LaL. under a
nonerasing homomorphism and H(C/.aNP) is closed under nonerasing homomor-
phism, we have LaL: in H(C/aNp).
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LEMMA 3.2. The class H(C/5BNP) is closed under linear-erasing homomorphic
replication.

Proof. Let L be any language in H(/kBNP) and let Z be a finite alphabet such
that L_Z*. Let p be any function, p" {1,..., n}{1, R}, and for each 1,. , n,
let hi" Y-.* A* be a homomorphism that is linear-erasing on L. We must show that
(p; hx, h,)(L)={hl(W)(a)" h,(w)(")lw eL} is in H(/BNP).

First, for each 1,. , n, let fi" E* - A* be the homomorphism determined by
defining ](a)= hi(a) for each a 6E if p(i)= 1 and fi(a)= hi(a)R for each a 6E if
p(i)= R. Notice that for any w E*, fi(w) hi(w)(i) if p(i)= 1 and fi(wR) hi(w)) if
o(i)=R.

Second, for each 1,..., n, if p(i)= 1, then let Ai
{x # y # zl # # z, lx, y Z*, each z. A*, and z =/(yR)}, and if p(i) R, then let
Ai={xy#zl z,]x,yE*, each zi6A*, and Zi’--fi(xR)}, where # is a
symbol not in Z kJ A. Let Ao {x # xR # z # # z, Ix E*, each zi A*}. Now Ao f3
A f). 71A, {x # xR # ha(x)1) #. # h,(x)")]x E*}. Clearly each Ai is a linear
context-free language so that AoFIAxf)...f3A, is in H(/kWBNP) since BNP
contains the linear context-free languages and is closed under intersection (Pro-
position 1.2) and since 5fBNP

_
H(cC/BNp).

Third, let B L #E*(# A*)" so that B is in H(/kBNP) by choice of L and the
fact that H(/BNp) is closed under concatenation with regular sets. Since
H(/kBNP) is closed under intersection, B f3 (Ao f-)" FI A,) is in H(/k3fBNP). But

B f’)(Ao f’)""" FI A,) {x #xR #hi(x))# # h, (x)")[x

so that (p; hl,... ,h,)(L)={hl(W))... h,(w)")]wL} is the image of B FIAoF)
FlA, under a homomorphism that is linear erasing on B Fi AoFI... f3 An. Since

H(/kSFBNp) is closed under linear erasing homomorphism, (p;hl,..., h,)(L) is in
H(A).

Now we can prove Theorem 3.1. As noted above both and the class of regular
sets are included in H(/BNp). By Theorem 2.4, H(ABNP) is closed under
intersection, and by Lemma 3.2, H(CC/BNP) is closed under linear-erasing
homomorphic replication. Letting 0 be the smallest class containing every language
in and every regular set and closed under intersection and linear-erasing
homomorphic replication, we see that 0---H(/BNP). On the other hand, it has
been shown [3] that WBNp is the smallest class containing all regular sets and closed
under intersection and linear-erasing homomorphic replication. Thus 5BNp_ o, and
by choice of o, -0, so that %A,BNP ’0 since o is closed under intersection.
Since 0 is closed under linear-erasing homomorphic replication, w0 is closed under
nonerasing homomorphism so that H(/,BNP)___0. Thus H(/BNP) is the
smallest class containing the languages in and all of the regular sets and closed
under intersection and linear-erasing homomorphic replication.

4. Properties of ’BNPo Now we consider some properties of BNP. Recall that
for a language L, the Kleene / of L, L+, is defined to be L+= tJ i_>1 L i, where La= L
and L"+1 is the concatenation of L" and L, L"+= L"L. Recall that an abstract family
of languages (AFL) is a semi-AFL that is closed under concatenation and Kleene /.

For an arbitrary class c of languages, let () be the smallest AFL containing and
let n() be the smallest AFL containing and closed under intersection.

It is not known whether ,-BNP is closed under Kleene /. Clearly ,BNP is closed
under Kleene + if and only if oBNP is an AFL. We will develop other necessary and
sufficient conditions for /gBNP to be an AFL.
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Consider o%c(LIN). Since -n(LIN) contains LIN and is closed under intersection
and nonerasing homomorphism and since 5FBNe is the smallest class containing LIN
and closed under intersection and nonerasing homomorphism, we see that
H(ALIN)_ oc(LIN) and hence that o(mqe)C_ 5gc(uNe)___ -c(LIN). Since LIN
uNe, o%c(LIN)___ n(uNe) so that -n(LIN)= o%n(BNe). Also, from the results in
[6], [8], we see that n(LIN)=H(A(LIN)). From the results in 2, we see that
H(A-(LIN)) H(o%(LIN)ABNe)since 5ruNe H(/kLIN). Thus we have the follow-
ing result.

PROPOSITION 4.1. The smallest intersection-closed AFL containing the class of
linear context-free languages is the smallest intersection-closed AFL containing the class
uNe. A language is in this AFL ifand only if it is the nonerasing homomorphic image of
the intersection ofa language in mqe and a language in the smallestAFL containing the
class of linear context-free languages, that is, o%n(LIN) ’(UNe)=
H((LIN)ASfyp).

A class of languages is translatable if for every L in and every choice of two
symbols a, b that do not occur in any string in L, the language {awbln _>-0, w L} is
in [2], [15].

The following result is useful.
LEMMA 4.2 [2, 15]. If c is a semi-AFL with the property that @(c) is translatable,

then c is an AFL, that is, c (c).
Since ofn(BNp) is an AFL closed under intersection, -C(BNP) is closed under

e-free substitution. Since {a"cb"ln->0} is in LIN and hence in n(BNP), it is clear
that C(5NP) is translatable. Also, BNP is translatable.

We are interested in comparing the classes BNP, ff(BNP), and ofn(BNP). While
it is clear that BNP-----’(BNP)-----o%n(BNP), it is not known whether either of these
inclusions is strict. The next result speaks to this question.

THEOREM 4.3. Either ,(NP) is translatable and aNP o%(BNP)= ’Cq(=CBNP),
or ’(BNP) is not translatable andNP -(BNP) ,n(BNP).

Proof. Suppose that (BNP) is translatable. Since BNP is a semi-AFL and
(BNP) is translatable, Lemma 4.2 shows that BNP is an AFL. Thus, BNP
’(NP). But WNp is closed under intersection (Proposition 1.2) and (NP) is an
AFL so that 5fBNP is itself the smallest intersection closed AFL containing NP, that
is, ;BNP-- ,-(PBNP)"" ’("1 (9BNP).

Suppose that -(=BNP) is not translatable. Then ,(.BNP)?(z =QBNP since =---BNP is
translatable and ,-(.BNP)7 ,-(-’}(-BNP) since ,(,BNP) is translatable. Thus, PBNP
’(BNp) ’(’1(BNp).

Let us consider characterizations of the classes ---BNP, ’(BNP), and ’-f-)("BNP) in
terms of machines. Recall from Proposition 1.1 that a language is in BNP if and only if
it is accepted in real time by a nondeterministic Turing machine with three pushdown
stores as auxiliary storage which operates in such a way that in every computation
each pushdown store makes at most one reversal. From [6]-[8] we see that a language
is in ’-(’BNP) if and only if it is accepted in real time by a nondeterministic Turing
machine with three pushdown stores as auxiliary storage which operates in such a way
that in every computation (i) each pushdown store makes at most one reversal
between the times it is empty, and (ii) when any one pushdown store becomes empty,
it cannot begin to write again until the other two pushdown stores become empty (that
is, all three pushdown stores must be re-initialized before any one can be restarted).
Similarly, a language is in ’--f-)(’BNP) if and only if it can be accepted in real time by a
nondeterministic Turing machine with three pushdown stores as auxiliary storage
which operates in such a way that in every computation each pushdown store makes at
most one reversal between the times it is empty.
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In the above characterizations, if one removes the restriction that the machines
operate in real time and considers operation without time bounds, then the three types
of machines are equivalentmthey accept precisely the recursively enumerable sets [1].

Let PALe {wcwR[w {a, b}*} LJ {e} and recall that the class of linear context-free
languages is the smallest semi-AFL containing PALe. The smallest AFL containing
PALe is the smallest AFL containing the linear context-free languages and this class is
the smallest semi-AFL containing PAL+. Thus we see that ByP is an AFL if and only
if PALe+ is in ’BNP.

CONJECTURE 1. Each of the following statements is true:
(i) /gBNP is not closed under Kleene +
(ii) The language {wcwRc[w {a, b}*}+ is not in ---BNP;
(iii) BNP is not an AFL (-WaNP ’(BNP));
(iv) The smallest AFL containing ,./gBNP is not closed under intersection

((NP) (NP));
(V) The smallest AFL containing gBNP is not translatable;
(vi) ByP (,NP)
5. Applications. In this section we consider some applications of the results

presented in 2 and 3 and an open question.
Let us consider classes of languages accepted by certain restricted Turing

machines. In each case the Turing machines have a two-way read-only input tape,
finite-state control, and some auxiliary storage. For any k -> 1, let DSPACE ((log n)k)
(NSPACE ((log n)k)) be the class of languages accepted by those machines that are
deterministic (nondeterministic) and have a storage tape that is bounded in length by
(log n)k where n is the length of the input string. Let 2DPDA (2DSA, 2NEDSA) be
the class of languages accepted by two-way deterministic pushdown store acceptors
(respectively, stack acceptors, nonerasing stack acceptors), and let 2NPDA (2NSA,
2NENSA) be the class of languages accepted by the analogous nondeterministic
devices. If is any one of these classes, then consider H(). It is straightforward to
show that H() is closed under union, intersection, inverse homomorphism, noneras-
ing homomorphism, concatenation, and contains the linear context-free languages.
Hence, H(C) contains ’BNP and by the results of 2 and 3, H() is closed under
linear-erasing homorphic replication and under intersection. The same comments can
be applied to the class of full rudimentary predicates when this class is viewed as a
class of languages as in [14].

Now consider the class ByP. Let Q be the class of languages accepted in real
time by nondeterministic multitape Turing machines. Clearly, BNP -- Q. As noted in
[5], Q NP if and only if every context-free language is in aNP. Since all of the
context-free languages can be obtained from the Dyck set on two letters by means of
operations under which BNP is closed, every context-free language is in Byp if and
only if the Dyck set on two letters is in aNP.

CONJECTURE 2. The Dyck set on two letters is not in ’aNP.
Note that Conjecture 2 follows from Conjecture 1.
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APPROXIMATION ALGORITHMS FOR SOME ROUTING PROBLEMS*
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Abstract. Several polynomial time approximation algorithms for some NP-complete routing problems
are presented, and the worst-case ratios of the cost of the obtained route to that of an optimal are determined.
A mixed-strategy heuristic with a bound of 9/5 is presented for the stacker-crane problem (a modified
traveling salesman problem). A tour-splitting heuristic is given for k-person variants of the traveling salesman
problem, the Chinese postman problem, and the stacker-crane problem, for which a minimax solution is
sought. This heuristic has a bound of e + 1-l/k, where e is the bound for the corresponding 1-person
algorithm.

Key words. NP-complete problems, polynomial-time approximation algorithm, heuristic, worst-case
performance bound, traveling salesman problem, Chinese postman problem, stacker-crane problem, k-
person routing

1. Introduction. Routing problems that involve the periodic collection and deliv-
ery of goods and services are of great practical importance. Common examples of such
problems include mail delivery, newspaper delivery, parcel pickup and delivery, trash
collection, schoolbus routing, snow removal, and fuel oil delivery. The practical goals of
scrutinizing such problems are cost minimization and service improvement. Abstrac-
tions of these problems can be modeled easily and naturally with graphs.

Unfortunately, many of the interesting routing problems, including for instance the
well known traveling salesman problem, are NP-complete in the sense of Cook [3] and
Karp 10]. The problems we consider in this paper, the stacker-crane problem and three
k-person routing problems, are also NP-complete. It has been conjectured that there
exist no efficient exact algorithms for any of the optimization versions of the NP-
complete problems. Consequently, attention has been given to developing algorithms
that solve various NP-complete problems efficiently but only approximately [7], [8], [9],
[14]. We shall restrict our attention to approximation algorithms for routing problems
for which worst-case analysis has been performed.

Previous worst-case analysis of approximation algorithms for routing problems has
focused on the traveling salesman problem. Sahni and Gonzalez 16] have shown that if
the triangle inequality is not satisfied, the problem of finding an approximate solution
for the traveling salesman problem within any constant bound ratio of the optimum is as
difficult as finding an exact solution. Papadimitriou and Steiglitz [12] have derived a
similar result for local search algorithms.

If the triangle inequality is satisfied (or, equivalently, if the tour is allowed to visit
vertices more than once), then approximation algorithms with a constant worst-case
bound exist. Rosenkrantz, Lewis, and Stearns [14] have applied worst-case analysis to
several incremental (insertion) heuristics. They show that none of the algorithms
examined have a worst-case bound better than 2. This bound is the same as that yielded
by doubling up the edges in a minimum spanning tree. Recently, Christofides [2] has
developed an algorithm with a worst-case bound of 1.5, which involves forming a
minimum spanning tree and performing a minimum cost matching on the vertices of
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odd degree. We make use of Christofides’ techniques in achieving a worst-case bound of
1.8 for an algorithm for the stacker-crane problem.

The stacker-crane problem, which was brought to our attention by Rosenkrantz
[13], is a modified traveling salesman problem that requires that a set of arcs be
traversed, rather than a set of vertices visited. The problem encompasses practical
applications such as operating a crane or a forklift, or driving a pick-up and delivery
truck. The crane must start from an initial position, perform a set of moves, and return
to a terminal position. The goal is to schedule the moves so as to minimize total tour
length. No order is imposed on the moves, and no moves may be combined and
performed simultaneously.

We also consider several k-person routing problems: the k-traveling salesman
(k-TSP), the k-Chinese postman (k-CPP), and the k-stacker-cranes (k-SCP), for k >- 2.
These problems reflect more of the flavor of real world problems than 1-person
problems. When one salesman cannot handle a large territory, k salesmen are dis-
patched to collectively visit each city in the territory, under the constraint that no one of
the k salesmen has too large of a task.

We thus choose as our optimization criterion the minimizing of the maximum of
the k salesmen’s tour costs. This criterion differs from the minimizing of total tour costs
subject to each salesman visiting at least one city, as suggested byBellmore and Hong
[1], and also differs from minimizing total tour costs subject to no salesman visiting
more than p cities, as suggested by Miller, Tucker, and Zemlin [11].

We have found no worst-case analysis for any k-person routing problems in the
literature. Our results indicate that generalizatiorls of 1-person incremental algorithms
may not do well. The best bounds we have been able to achieve for incremental
algorithms for k-TSP have a multiplicative factor of k. In contrast, we have found that a
simple tour-splitting heuristic, where a reasonable tour for I person is split into k tours,
has better worst-case behavior. The bound increases only very modestly as a function of
k, so that if e is the bound on a 1-person algorithm, then the bound for our k-TSP,
k-CPP, and k-SCP algorithms is e + 1- 1/k.

We now proceed to some basic definitions. An undirected graph G (V, E)
consists of a set V of vertices and a set E of undirected edges. Each edge (u, v) connects
two vertices u and v in V. A mixed graph G (V, E, A) consists of a set V of vertices, a
set E of undirected edges, and a set A of arcs. An arc (t, h is a directed edge from to h,
both vertices in V. We call the tail of arc (t, h ), and h the head of arc (t, h ).

A multiset is a set with a function mapping the elements of the set into the positive
integers, to indicate that an element may appear more than once. A multigraph is a
graph G (V, E) in which E is a multiset.

The degree of a vertex is the number of edges and arcs incident on the vertex. The
indegree is the number of arcs directed into the vertex. The outdegree is the number of
arcs directed out of the vertex. A vertex is of even degree if the degree is an even
number, and is of odd degree otherwise.

Given a mixed graph G (V, E, A), a path is a sequence of vertices such that for
each adjacent pair of vertices vg and v+x, there is either an edge (v,/)i+1) or an arc
(v, vg+) in the graph. The first vertex in a path is called the initial vertex, the last is the
terminal vertex. A cycle is a path with identical initial and terminal vertices. A tour is a
cycle visiting all vertices in V, and a subtour is a tour visiting a subset of the vertices in V.
A k-tour is a set of k subtours, each visiting the initial vertex, and collectively visiting all
vertices in V.

Given a multigraph G (V, E), a route is a sequence of alternating vertices and
edges, covering all edges, such that each edge connects the immediately preceding and
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succeeding vertices. A subroute is a route which covers a subset of E. An arc (t, h) is
traversed by covering it in a direction from its tail to its head h.

A (maximum cardinality) matching E’ E of a graph G (V, E) is a (maximal)
subset of edges which share no vertices. A minimum-cost matching of G is a matching
such that the total cost of the edges between the paired vertices is minimum. Given a
partition V V1 (A V2, a bipartite matching is a matching of G’ (V, (V1 V2) fq E). A
spanning tree of a connected graph G (V, E) is a subgraph T (V, E’) of G which is a
tree. A minimum cost spanning tree is a spanning tree such that the total cost of the
edges E’ is minimum.

2. The stacker-crane problem. We define the stacker-crane problem (SCP) as
follows: Let G (V, E, A) be a mixed graph with a distinguished initial vertex vs. Let c
be a cost function from E LI A to the set of nonnegative integers, such that for every arc
there is a parallel edge of no greater cost. The optimization version is to find a tour
starting at vs and traversing each arc in A, such that the cost of the tour is minimum. The
recognition version is, given a positive integer C, decide if there is a tour of cost at most
C.

As stated previously, the stacker-crane problem is NP-complete. An instance of
TSP can be transformed into an instance of SCP as follows:

For each vertex vi in the TSP graph, create two vertices vit and Vh, and an arc
(IAit, Vih) of cost zero. For each edge (vi, vi), create edges (Vit, lAjt), (IAit, Vjh), (1)ih, Vit), and
(Vih, Vjh), and assign cost c(vg, vi) to each of the edges. (See Fig. 1 for an example of the
translation.) Choose any vertex vt and designate it the initial vertex.

0

c c

vjt Vjh

/...
FIG. 1. Translationfrom TSP to SCP.

A tour of cost at most C for TSP can be translated into a tour of cost at most C for
SCP. Just replace each vi in the TSP tour by "vii, Vih" to get an SCP tour. Conversely, a
tour of cost at most C for SCP can be translated into a tour of cost at most C for TSP by
changing Vh to Vi and deleting vg,, for all v in V.

We now consider approximation algorithms for SCP. We point out that there is a
fairly simple algorithm which consists of forming the analogue of a minimum-cost
spanning tree for the arcs, and then introducing an additional edge for each edge and arc
in the spanning tree. This algorithm will have a worst-case bound of 2, which is
approachable. In this section we shall present an algorithm with a better worst-case
bound.
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We require that a mixed graph satisfy the following properties:
1. Each vertex is either the head or the tail of at least one arc in A.
2. The cost function on edges satisfies the triangle inequality.
If a graph does not satisfy the preceding properties, Algorithm PREPROCESS will

transform the graph into an equivalent graph which satisfies these properties.
ALGORITHM PREPROCESS.
Input: A mixed graph G (V, E, A) and a cost function .
Output: A mixed graph G’= (V’, E’, A) satisfying properties 1 and 2, and a cost

function c’.
1. If v is not an end point of any arc, create a terminal vertex v and an arc (v,

of cost zero from the terminal vertex to the initial vertex. For all vi in V, create
edges (vi, vf) of cost c(vi, vs).

2. Insert all vertices which are endpoints of arcs into V’. Calculate the shortest
path between every pair of vertices vi and v. in V’, insert (vi, vj) into E’, and set
c(v, v) to the cost obtained.

We shall use the following notation in the analysis of the worst-case behavior of our
algorithm. Let C* represent the cost of an optimal tour, and let CA be the total cost of all
arcs.

We consider two strategies which depend on the relative size of CA as compared
with C*. If CA is large relative to C*, then the analogue of a minimum spanning tree for
the arcs will be small. An appropriate strategy in this case is to perform a minimum cost
matching on the heads and tails of arcs, and link the resulting cycles together with the
spanning edges. If CA is small relative to C*, then the problem is essentially a traveling
salesman problem. In this case shrink the arcs to nodes, perform Christofides’ algorithm
[2], and add certain edges corresponding to the arcs to make the tour traverse arcs
correctly.

Thus our algorithm consists of two algorithms, each handling certain cases well.
Each algorithm is run, and the better of the two results is chosen. This procedure will
guarantee a better worst-case bound than either algorithm alone. Since we know of no
efficient way to compute the exact ratio of CA to C*, it is difficult to know in advance
which of the two algorithms will guarantee a better worst-case bound.

We now present an algorithm which does well if the cost of the arcs is large relative
to the cost of the optimum tour. An example of Algorithm LARGEARCS applied to a
graph is shown in Fig. 2.

h4

t x,,

h

h4

h2
h FIG. 2. LARGEARCS applied to a graph.
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ALGORITHM LARGEARCS.
Input" A mixed graph G’ satisfying properties 1 and 2.
Output: A sequence of vertices representing a tour.
1. Find a minimum cost bipartite matching between the multisets of heads and tails

of arcs.
2. Initialize E" to be empty. For each edge included in the matching, associate a

direction with it, going from the vertex which is a head of an arc to the vertex
which is a tail of an arc, and insert it into E". (This results in m => 1 disjoint cycles
consisting of alternating edges and arcs.)

3. Let the m disjoint cycles be Ri, 1 <= -< m, with each Ri represented by a single
node ni. Form the inter-node distances from the original edge costs:

d(ni, ni)= min {c’(u, v)lu Ri, v Ri}.

Associate with (ni, nj) the particular edge (u, v) which yields the minimum cost.
4. Find a minimum cost spanning tree for the nodes {nill--< =< m}, using the

distance function d.
5. Rename each spanning edge in terms of the original vertices. Make two copies

of each edge, associating one direction with one edge, and the opposite
direction with the other edge, and insert these edges into E".

6. Call POSTPROCESS.
We next present an algorithm that performs well if the cost of the arcs is small

relative to the cost of the optimum tour. An example of Algorithm SMALLARCS
applied to a graph is shown in Fig. 3.

ALGORITHM SMALLARCS.
Input: Same as LARGEARCS.
Output: Same as LARGEARCS.
1. Represent each arc (ti, hi) by a node n. For each pair of nodes ni and nj, define

c’(n, ni) as the minimum of c(ti, ti), c(ti, h), c(hi, ti) and c(hi, hi). Perform an all
shortest paths algorithm using c’ to find the inter-node distance d(n, hi).
Associate with each edge (n, ni) the edges in the shortest path between ni and
ni.

2. Find a minimum cost spanning tree for the nodes {n}, using the distance
function d.

3. Identify nodes of odd degree in the spanning tree, and perform a minimum cost
matching on these nodes using the distance function d.

4. Rename the spanning edges and matching edges in terms of the vertices in V’.
Define G"= (V, E", A), where E" is the multiset of spanning edges and
matching edges. Consider the degree of vertices in G". For all arcs (u, v) whose
endpoints have odd degree, add the edge (u, v) to E" and associate with it the
direction opposite that of the arc. These arcs requiring no such edge shall be
called even arcs, with total cost Ck.

5. Find a tour which exactly covers E"LJ A, ignoring even arc directions. If the cost
of the even arcs which are traversed backwards is more than (1/2)C., then
reverse the direction of the tour.

6. Associate with each undirected edge the direction of the tour. For even arc that
is incorrectly traversed, add two edges to E", both with associated direction
opposite that of the arc.

7. Call POSTPROCESS.
We next present a postprocessing algorithm, and then finally the complete

algorithm with subroutine calls. Step I in Algorithm POSTPROCESS can make use of
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an algorithm for finding tours in directed graphs where all vertices have the same
indegree as outdegree, such as the algorithm in Edmonds and Johnson [4]. We complete
the example of Fig. 3 in Fig. 4, showing the effect of step 2 in POSTPROCESS.

h2

h3

112

\
\

t4 h4

h4

h2

t

h2

t
h4

FIG. 3. SMALLARCS applied to a graph.

ALGORITHM POSTPROCESS.
Input: A set of edges and arcs from which a tour can be constructed.
Output: A sequence of vertices representing a tour.
1. Given a set of arcs and edges with an associated direction, from which a tour can

be constructed, find the tour.
2. For any series of two or more consecutive edges in the tour, replace them with

one edge, thus eliminating the intermediate vertices.
3. For any two vertices vi and vj anchoring an edge in the tour, insert any vertices

that would create a shorter path between vi and vj. (Undo Step 2 of PRE-
PROCESS).

4. List the tour beginning at vs, the initial vertex, and finishing at vf the terminal
vertex.

ALGORITHM CRANE.
Input: A mixed graph G.
Output" A sequence of vertices representing a tour.
1. Call PREPROCESS.
2. Call LARGEARCS.
3. Call SMALLARCS.
4. Select the tour of smaller cost.
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FIG. 4. Postprocessing a tour.

We now verify that the tours created by LARGEARCS and SMALLARCS do in
fact traverse all of the arcs, and we analyze the cost of the tours in the worst case.

LZMMA 1. Algorithm LARGEARCS produces a tour which traverses all ofthe arcs,
and whose cost is at most 3C* 2CA.

Proof. The bipartite matching of heads and tails of arcs in step 1 produces a set of
edge disjoint cycles, each of which is consistent with arc directions. The indegree and
outdegree of each nodes are thus equal. The spanning tree edges created in steps 3 and 4
connect the cycles. Since two of each spanning edge are added, with one edge having the
opposite direction from the other, the indegree and outdegree of each vertex in G" are
still equal. Thus step 6 will produce a tour from E"U A.

The cost of the matching, including the arcs, in steps 1 and 2 will be at most C*. An
optimum tour is in fact a bipartite matching of heads and tails of arcs, and can be no
smaller than the minimum cost bipartite matching. The cost of the spanning tree edges
in steps 3 and 4 must be smaller than C*-CA, since all arcs must be included in the
optimum tour. Step 5 doubles the spanning edges, so that the tour produced will have
cost at most 3C* 2CA. 71

LEMMA 2. Algorithm SMALLARCS produces a tour which traverses all ofthe arcs,
and whose cost is at most (3/2)C* +(1/2)CA.

Proof. Step 1 has the effect of collapsing each arc to a single node. Steps 2 and 3
create a connected graph in which all nodes have even degree. A node actually
represents two vertices, the head and the tail of an arc. If the degree of a node is even,
then both vertices must either be of even degree or odd degree. If odd, then step 4 adds
an edge which makes both vertices even, so that after completion of step 4, all vertices
are of even degree. Steps 5 and 6 show how to augment the graph to allow the tour to
traverse arcs in the proper direction. Given a tour which ignores arc direction, step 6
adds two edges for each incorrectly traversed arc. One edge will create a cycle with the
arc, and the second edge can be traversed in a direction consistent with the tour. Since
two edges are added, the vertices will remain of even degree. Thus step 7 can produce a
tour from E" (.J A.

Step 1 has the effect of creating a traveling salesman problem. Since the minimum
inter-arc distances were selected, the cost of an optimum traveling salesman tour will be
at most C*-Ca. Steps 2 and 3 are Christofides’ approximation algorithm for the
traveling salesman problem, which guarantees a solution no worse than 3/2 times
optimal. Thus the cost of the spanning edges in step 2 and the matching edges in step 3 is
at most 3/2 times optimum. The cost of the edges added in step 4 is CA- C’A, since no
arc is shorter than its corresponding edge. The cost of the extra edges added in step 6 is
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at most 2.(1/2)C. The cost of all edges added in steps 4 and 6 is at most
CA C’A + 2 * (1 !2)C’A CA. The cost of the arcs, spanning edges, matching edges, and
additional edges is CA + (3/2)(C* CA)+ CA. [3

TI-IEOREM 1. IfC* is the cost ofan optimal tour]or the stacker-crane problem, and "is the cost of the tour generated by Algorithm CRANE, then

/C* _-< 9/5

The time complexity ofAlgorithm CRANE is O(max {I VI3, IA 13}).
Proof. If CA->_(3/5)C*, consider the results of Algorithm LARGEARCS, from

Lemma 1.

/C* (3C* 2CA)C*
<- (3C* (6/5)C*)/C* 9/5.

If CA < (3/5)C*, consider the results of Algorithm SMALLARCS, from Lemma 2.

/C ((3/2)C:g + (1/2)Ca )/C*
-< ((3 /2)C* + (3/ 10)C*)/C* 9/5.

We now consider the time complexity of CRANE. Algorithm PREPROCESS is
dominated by the all shortest paths algorithm [5], which requires O([V[3) time.
Algorithm LARGEARCS is dominated by the algorithm for weighted bipartite
matching. The weighted general matching algorithm of Edmonds and Johnson [4] as
implemented by Gabow and Lawler [6] can be used and will require O({AI3) time.
Algorithm SMALLARCS is dominated by the all shortest paths algorithm, which
requires O(IA [3) time, and the weighted general matching algorithm, which is no worse
than O(1VI3).

3. k-person routing problems. In this section we consider three different k-person
routing problems. We first show that the recognition versions of all three problems are
NP-complete. We then present and analyze heuristic algorithms which yield approxi-
mate solutions.

k-TSP (k-traveling salesmen problem, k > 1): Let G (V, E) be an undirected
complete graph with a distinguished initial vertex vs. A nonnegative integer cost
function is defined on E that satisfies the triangle inequality. A k-tour is a set of k cycles
that start from vs and collectively visit every vertex.

k-CPP (k-Chinese postman problem, k > 1): Let G (V, E) be an undirected
multigraph with a cost function defined on E. A k-route is a set of k cycles that start
from vs, and collectively cover every edge in the graph.

k-SCP (k-stacker-cranes problem, k > 1): Let G ( V, E, A be a mixed graph with
a cost function defined on ELI A. A k-tour is a set of k-cycles that start from vs and
collectively traverse every arc in the graph.

We define the cost of a k-tour as the maximum of the costs of each cycle, and an
optimal k-tour is a k-tour with minimum cost. Similar definitions apply to k-route. The
optimization version is thus a minimax problem and requires that given an integer k > 1,
we find an optimal k-tour. The recognition version is to decide, given a positive integer
C, whether a k-tour of cost at most C exists.

For k > 1, k-TSP, k-CPP, and k-SCP are all NP-complete. The k-partition
problem, which Sahni and Gonzalez [16] have shown to be NP-complete, can be
reduced to the k-person problems:

k-PP (k-partition problem, k > 1): Consider a multiset S {a 1,’’ ’, a,}, with
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A ’i=1 ai divisible by k. Decide if there exists a partition $1,’", Sk such that
,as, a A/k for all 1 =</" -< k.

k-PP can be transformed into k-TSP as follows: Let S ={a1,’", a,,} be an
instance of k-PP. Form a complete graph G (V, E), where V {vs, vl, v2," , v,,}.
For each vi vs, set c(v, vi)= a. For all pairs vi v,, vj v, set c(vi, vj)= ai + ai. Let
C (2/k) 2= a.

k-PP can be reduced to k-CPP as follows: Let S {al,..., a,,} be an instance of
k-PP. Form a multigraph with a single vertex v, and an edge of cost a for every element
in $. Let C (l/k) =a a.

k-SCP is shown to be NP-complete by reducing k-TSP to it, performing the same
transformation as in our reduction from TSP to SCP.

3,1, Approximation algorithms [or k-TSP. We shall consider two basically differ-
ent methods for building a k-tour. The first method is to build k subtours simultane-
ously, modifying a heuristic o an incremental nature that generates an approximate
solution for 1-person problems. The second method is to build a k-tour by splitting a
good tour for 1 person into k subtours.

For the traveling salesman problem, there are several well known heuristic
algorithms that find a tour by adding vertices one by one to a subtour. Among these are
the nearest neighbor, nearest insertion, cheapest insertion, and farthest insertion
algorithms, which have been analyzed by Rosenkrantz, et al., [14]. We shall consider
generalizations of the nearest neighbor and nearest insertion algorithms to handle k
salesmen. We shall find these generalized algorithms to perform rather poorly in worst
case.

Let R (vl,’", vi..) be a subtour, where vii v... For a vertex u not in R, we
define the distance from u to R by c (u, R) min {c (u, v)lv e R }. The cost of inserting a
vertex u between vp and vp+l, l<=p<m, is c(v, u)+c(u, vp+)-c(vi,, vo+). We say
that a vertex u is inserted into a subtour R if u is inserted between two vertices in R with
the minimum cost, and denote it by R (u). The cost c (R) of a subtour R is the sum of
costs of all edges in R. Let R,...,Rk be k subtours. We define their cost
c(R1," , Rk) as the maximum of the costs of each subtour, that is, c(R1, Rt)
maxl_<_i<__ {c(Ri)}.

AtGorTI-IM k-NEARINSERT.
1. Start with k subtours Ri (v, v), 1 =< -< k, where v is the start vertex.
2. For each ], 1-<] =<k, find a vertex u- not currently in any subtour such that

c (ui, R) is minimal.
3. Let be such that c(R1,..., Ri (ui),’’’, RI)is minimum. Insert ui into the

subtour Ri.
4. If (R1,. , R) covers all vertices, then stop. Otherwise go to step 2.
LEMMA 3. If is the cost of the largest of the k subtours generated by algorithm

k-NEARINSERT, and C’ is the cost o[ an optimal tour ’or one salesman, then

(/C* < 2.

Proof. Let (R1,"" ,R) be a k-tour with R=(vs, v,..., v.., v). Let G=
(V,E) be the complete subgraph of G, where V ={v, v, vi,.’,}. Suppose the
subtour R has been built by adding vertices vp, vp),..., vpi.,,) in this order,
where p is a permutation of (il, i2," i,,). Then R is a tour of Gi that is obtained by
the 1-person nearest insertion algorithm on G (V, E). Thus if F is the cost of an
optimal tour of Gi, then c(R)/F <2 [14, Thm. 3]. Since max__<_<_ {c(Ri)}, and
F <- C* for all i, 1 <= <- k, then Ck/C* < 2. 13
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THEOREM 2. I]’ k is the cost of the largest of the k subtours generated by algorithm
k-NEARINSERT, and C’ is the cost of the largest subtour in an optimal solution of
k-TSP, then

,/C’ < 2k,

and the bound is approachable.
Proof. By Lemma 3, C < 2C1". By the triangle inequality C1" < kC. Thus C/C <

2k. To show that the bound is approachable, we consider the following example. Let Gn
be a graph of n vertices shown in Fig. 5, which is taken from 14, Thm. 4]. Let the cost of
all edges not shown be 2. Let R’, (Vl, v3, vn, v,-1, vn-3, Vl) be a tour for the
single TSP obtained by 1-NEARINSERT. Then c(R’)= 2(n- 1)and C* n.

Vl

U V

V4 Us

/)6

FIG. 5. Gaoanda 1-tourby 1-NEARINSERT.

Consider the graph Gk,, which is k copies of G, with v in common. We denote
the vertices of the jth copy G.,kn as Va vi,1, v’,2,""", vi,n. The cost of edges in
is the same as in G,. The cost of edges between vertices in different copies,
vj.p and vi,,, is 0 if p =m; is 1 if [p-m f= 1, or if p 1 and m =kn; and is 2
otherwise. A k-tour by k-NEARINSERT is (R1," .,R), where for each
1 -<j =< k, Rj (v,l, v.,3, , v. ,, vi,k,-1 vj k,-3 vi 1) with c(Ri) 2(kn 1) Thus
C,=2(kn-1). On the other hand, an optimal k-tour is (R*,...,R),
where RI* =(vl, va,2, v2,2, "’, v,2, Vl,3, "", v,3, "’, vi,,,,’", v,,,,, va), "",

R (Vl, v1,(-1),+1, ", v,(-a),+, ", va,,, ", vk,,, Vl). Thus c(R)= n + 1, and
C n + 1. Hence

C,/C 2(kn- 1)/(n + 1)= 2k- 2(k + 1)/(n + 1)
which approaches 2k for large n. [3

The following notation is used in describing the algorithm k-NEARNEIGHBOR.
Let R (vii, , vim) be a path. We call vii the initial vertex and Vim the terminal vertex
of R. A vertex u is added to R by connecting u to the terminal vertex, and is denoted by
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ALGORITHM k-NEARNEIGHBOR.
1. Set each of the k paths initially to the initial vertex, that is, R. (vs) for all/’,

2. For each f, 1 <=/"-< k, let uj be the vertex nearest to the terminal vertex of R..
3. Let be such that c (R1, , Ri <- ui, , Rk ) is minimum. Add ui to Ri.
4. If there are vertices remaining to be added to a path then go to step 2.

Otherwise build a k-tour from the R.’s by connecting their terminal vertices to
their initial vertices.

LEMMA 4. If k is the cost of the largest of the k subtours obtained by k-
NEARNEIGHBOR, and C* is the cost of an optimal tour for one salesman, then

’./C < (1/2)log n + 1.

Proof. We use the result in [14, Thm. 1];

I/C’ <- (1/2) [log n] + 1/2.

A proof similar to that for Lemma 3 then applies.
THEOREM 3. Ifk is as in Lemma 4, and C is the cost of the largest subtour in an

optimal solution of k-TSP, then

’k/C < (k/2)log n + k.

Also, there is a graph for which C/C > (k/6) log n.

Proof By the triangle inequality, C* <-_kC, and by Lemma 4, /(kC)<
(1/2) log n + 1. Thus /C’ < (k/2) log n + k. The second assertion can be proved as
follows: Consider the complete graph G,,_a (V, E) in [14, Thm. 2], where IVI n
2" 1. Use an argument similar to that in Theorem 2 to show that ’k > (n/3) log n and
C < 2n/k. f-]

We now describe an algorithm which employs a very simple tour-splitting heuristic.
Given a tour for one traveling salesman, the algorithm splits the tour into k subtours of
more or less equal cost. Obviously, the worst-case behavior depends on the (generally)
nonoptimal tour which is split into k subtours. When a tour obtained by Christofides’
algorithm is used, this simple heuristic is far superior to the heuristics already analyzed,
in terms of worst-case behavior. In the algorithm, Cmax denotes max c(va, vi), and for
any path R, t(R) denotes its terminal vertex. An example of splitting a 1-tour into a
3-tour is shown in Fig. 6.

l.)p(2)+ UP(I)+I

/,, / /"
\ / /
\ / /,, / /

’t,, \1 .1_1- //

FIo. 6. Splitting, a 1-tourinto a 3-tour.
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ALGORITHM k-SPLITOUR.
1. Find a 1-tour R (v, V2,""", Vn, /)1) with c(R)= L, where /)1 is the initial

vertex.
2. For each/’, 1 -</" < k, find the last vertex vp(i) such that the cost of the path from

Vx to vo(. along R is not greater than (f/k)(L-2cmax)+Cmax.
3. Obtain the k-tour by forming k subtours as R =(/21,’", Vp(x), Vx), R2--

(Vl, /)p(1)+1,’’", Vp(2), /-)1),""’, gk (/-)1, Vp(k-1)+l,""", Vn,
THORFM 4. IfC is the cost of the largest of the k subwurs generated by Algorithm

k-SPLITOUR, and C’ is the cost of the largest subtour in an optimal solution of k-TSP,
then

2k/C<-e + l-1/k

where e is the bound ]’or the single traveling salesman algorithm.
Proof. The costs of the paths from Vl to vp(1) and from vp(k-1)+l to Vl along R are

each no greater than (1/k)(L- 2Cmax)-t-Cmax. For each/’, 1 <=/" <= k- 2, the cost of the
path from vo0)+ to vo0./ 1) is no greater than (1 /k)(L 2Cmax). Thus for each , 1 -</" -< k,
the cost of the tour Rj does not exceed (1/k)(L- 2Cmax)+ 2Cmax. Therefore,

k max c (R.) -< (1 /k )(L 2Cmax) + 2Cmax

<-(L/k)+2(1-1/k)cmax.

Due to the triangle inequality, C’ >-(1/k)C*l and Cmax<=(1/2)C’. Using these
with L<-eC, we obtain <=(1/k)ekC’+2(1-1/k)(1/2)C’, which yields

’ *=/C <e+l-1/k. [3
COROLLARY 1. There is an 0(I V[3) approximation algorithmfor k-TSP with bound

Proof. In step 1, we find a 1-tour R using Christofides’ algorithm [2]. Since R can be
found in O(]VI3) time, and c(R)/C* <= 3/2= e, the result is immediate.

The bound in the corollary is tight if the algorithm in the proof is employed..An
example for k 2 which realizes the worst case bound of 5/2- 1 !2 2 is shown in Fig.
7. All edges shown in Fig. 7(a) have unit cost, while all other edge costs are determined
by the shortest path along the edges shown. An optimum 2-tour is shown in dotted lines
in Fig. 7(a). Figure 7(b) shows a 1-tour that could be produced by Christofides’
algorithm in solid lines, and a 2-tour that could result from our algorithm in dotted lines.

3.2. Approximation algorithms for k-CPP and k-SCP. The tour splitting heuristic
yields a good bound for the Chinese postman problem, since an optimal 1-route for the
Chinese postman problem can be obtained in polynomial time by using the algorithm of
Edmonds and Johnson [4]. Let R (Vl, eil, vi2, ei2," , vi,,,, ei,, vl) be the 1-route so
obtained. Let L c(R) and let Rv,, denote the path (vl, eil, via," ", vin), with n <-m.
We denote the cost of a shortest path from. a vertex v to u by s(v, u). Define Smax
as (1/2)max{s(vl, vij)+c(vi,vii+l)+S(Vii+l,V)} and for each ], l<=]<k, Li=
(]/k)(L- 2Smax)+ Smax. Figure 8 shows the building of a k-route, and Fig. 9 shows a
completed 4-route.

ALGORITHM k-POSTMEN.
1. Find an optimal 1-route R (v, eil, vi, ..., v,,, ei,,, vl)using the algorithm in

[4], where v is the start vertex.
2. For each f, 1 _-<] -<k, find the last vertex v,(.) such that c(Ro,,)<-Lj.
3. Let ri=Li-c(Rv,,). For each ], l<-f<k, if ri+s(vp,(), Vl)_-<

C (l.)p’(j), IAp’(j)+ 1) r + s (Vp,()+l, v 1), then Vp(j) Vp’(]). Otherwise 1.)p(j) 1.)p,(j)+ 1.
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4. Let R (vl, ei, vi2," ", vp()), R2 (Vp(1), "., Vp(2)), Rk (vp(k-l)," ,
v). Buildthe k-route by connecting v to both the initial and terminal vertices
of the R.’s with shortest paths to transform R into a subroute.

C2"=12m+3 6m 2

(a)

FIG. 7. Worstcasefor 2-TSP.

(b)

36m + 6

1)p,(])+

t)p’(j- 1)

%(L: -2 Sma,,)....
-(L 2 * Smax) q- Smax

FIG. 8. Buildinga k-route.
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FIG. 9. A 4-route.

We note that k-POSTMEN is more complicated than k-SPLITOUR. I the split
point falls somewhere in the middle of an edge, then the algorithm must decide in which
subtour to include the edge.

THEOREM 5. The algorithm k-POSTMEN produces k in O([ V]3) time such that

C,IC’ <- 2-11k.
Proof. We consider the jth subroute Rs, 1 =< j =< k. Since each edge in the graph must

be covered, Smax (1/2)C. By the definition of Smax,

Hence

S(#A1, #Ap’(.i))-I- C(#Ap’(]), #Ap’(])+l)’+" S(#Ap’(/’)+I, #A1)< 2Smax.

min {s(vl, v,’u))+ rs, c(v,,u), vp’0-)+l)- rs + s (#Ap,(/-)+l, #A1)} Smax.

Similarly,

min {s(vl, Vp’(]--l))-" r]-l, c(#Ap,(]-l), Vp,(]-l)+l)-r]-i + s(#Ap,(]-l)+l, Vl)) Smax.

The worst case for the flh subroute R is when it starts from/-)1, reaches #Ap’(s-1), continues
to v,,(i)+l along R and finally back to va. But in this case S(Vl, vo,(i-t))+ rs-1 -<-Smax and
C(#Ap’(i), #Ap’(i)+l)--ri-Jr’S(l.)p’(j)+l, Ol)Smax. Thus c(Ri)<- Smax+(1/k)(L-2smax)W Smax.
Since L <-_kC and Smax<-(1/2)C’,

c(Rj) 2Smax(1- l/k)+C -< C(1- l/k)+C C(2-1/k).
Other cases for Ri can easily be shown to satisfy the above inequality. Hence, we obtain

2- l/k. m
Finally, we present a tour splitting algorithm for the k-stacker-cranes problem. The

algorithm uses the same methods as k-SPLITOUR and k-POSTMEN with differences
in detail. If a split point falls on an edge, a similar procedure is used as in k-SPLITOUR.
If the split point falls on an arc, then a similar procedure as in k-POSTMEN is used.
R (vl, Ui2," #Aim, #A1), R,,, L, Cmax and L (j/k)(L 2Cmax)+ Cmax are as previously
defined.

ALGORITI-IM k-CRANES.
1. Find a 1-tour R =(v, vi2,"’, vi,,, v) for the single crane problem with

c(R)= L, where v is the initial vertex.
2. For each j, 1-<_/" <k, find the last vertex vp,(s)such that c(Ro,,,>)<=Ls
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3. Let ri=Lj-c(Rvp,,). For each L l<-J <k, if (vp,(.), vp,(i)+l) is an edge, then
Vo(i) vp,(i), and the terminal vertex of Ri is vp,(j) and the initial vertex of Rj+I is
vo(i)+l. Suppose (vo,(i, vp,(.)+l) is an arc. If

C (/.)1, Vp’(]))-" rj C(1)p,(j), Vp,(])+l)-- r] .4- c(up,(])+l,

then v,.)= v,,i) and the initial vertex of Ri+l is v,i). Also if (v,i)_, vo.)) is an
arc, then the terminal vertex of R is v,i), and if it is an edge then the terminal
vertex of Ri is vo_1. If

C(/)I, Vp’(]))’" r] > C(1)p,(]), Vp,(])+l)-- r] -I- c(1)p,(])+l,

then Vpej)=/)p,(j)+l and the terminal vertex of Ri is Vp(). Also, if (vpi),
is an arc, then the initial vertex of Rj/ is v,i and otherwise the initial vertex of
gi+l is vp(i)+ 1.

4. For each ], 1 =< ] _-< k, construct the ]th subtour Ri by connecting v to the initial
vertex of R and the terminal vertex of Ri to v with direct edges.

THEOREM 6. Algorithm k-CRANES produces such that

C/C <=e + 1- 1/k

where e is the bound for a 1-crane algorithm.
Proof. A proof which is a combination of the proofs of Theorems 4 and 5

applies.
COROLLARY 2. There is an approximation algorithm of O(max {I VI3, IAI3}) time

complexity for k-SCP such that

C/C < 14/5- llk.
Proof. In Step 1, a 1-tour may be obtained by using the algorithm in 2, for which

e=9/5.

4. Conclusion. In developing an approximation algorithm for the stacker-crane
problem, we have applied a mixed strategy approach. Our algorithm consists of two
efficient algorithms, each of which handles certain extreme cases well, so that the overall
behavior of the algorithm is improved. We have formulated k-person routing problems
as minimax problems. We have presented a tour-splitting heuristic, a method by which
approximate solutions for multirouting problems can be obtained from good approxi-
mate solutions of simple routing problems.
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RUDIMENTARY PREDICATES AND RELATIVE COMPUTATION*

CELIA WRATHALL?

Abstract. A class of languages RUD derived from the class of rudimentary relations is studied. Two
characterizations of RUD are established, one using linear-time relative computation and the other using
language-theoretic operations. Also, some connections between RUD and classes of languages defined by
resource-bounded Turing machines are given.

Key words, rudimentary predicates, formal languages, relative acceptance by oracle machines, charac-
terization using closure properties

1. Introduction. The rudimentary relations were defined in [23] as a string
analogue of the constructive arithmetic relations. The class of rudimentary relations is
the smallest class containing the concatenation relation (which holds for (x, y, z) if and
only if xy z) and closed under the Boolean operations, explicit transformation and
linear-bounded quantification, while the constructive arithmetic relations are defined
from the addition and multiplication relations using the same operations. When
numbers are represented by strings, the classes of rudimentary and constructive
arithmetic relations are equal [2]. In this paper, the rudimentary relations are viewed
as a class RUD of languages through an encoding of relations to languages, and two
characterizations of RUD are established. These characterizations develop a natural
analogy between the class of rudimentary relations and the class of arithmetical
relations, which may be defined as the smallest class containing the recursive relations
and closed under the Boolean operations, explicit transformation and quantification
[21].

Machine models for language acceptance generally operate by using symbol-by-
symbol scanning and manipulation of strings, and the basic operation on strings is
concatenation. Thus the class RUD, based on concatenation, is a natural candidate for
a class of languages to study in connection with classes of languages defined by
resource-bounded Turing machines or other automata, or closure properties.

Resource-bounded relative computation has arisen recently as a method of
formalizing the notion of "efficient" reduction of one decision problem to another.
This process can be viewed both as a restricted Turing reducibility [21] and as a means
for transforming languages or for generating a class of languages from a given
language. Taking the latter view, it is shown here that RUD is the smallest (nonempty)
class of languages that is closed under relative acceptance in linear time by non-
deterministic "oracle machines" (Theorem 3.10). Notice that the arithmetical sets
may be defined in this way using unrestricted relative acceptance [21]. Further, the
class RUD is shown to be the smallest class containing the regular sets and the
language {0" l":n->0} and closed under certain operations (Theorem 3.12). These
characterizations of RUD give rise to conditions for the rudimentary relations to be
equal to Grzegorczyk’s class , [11].

To simplify the proofs of the characterizations of RUD, a sequence of classes of
languages r, k -> 0, is defined, with RUD U r. Here r0 is the class containing
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supervised by Professor Ronald V. Book. The work was supported in part by the National Science
Foundation under Grants MCS 76-05744 and DCR 74-15091.
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only the empty set and a language is in O’k+l if it can be recognized nondeter-
ministically in linear time relative to some language in trk. The structure tr0

_
trl C2 0"2

is called the "linear hierarchy." The classes in the linear hierarchy can also be
defined using alternations of suitably bounded quantifiers (Theorem 4.2).

In 2, notation is reviewed and the definitions of the rudimentary relations and of
oracle machines are given. Section 3 contains the facts about oracle machines and
about the class RUD of rudimentary languages that are used in proving the charac-
terizations, followed by the proofs of the characterizations. In 4, further results
about the linear hierarchy are presented.

2. Preliminaries. This section begins with a review of some definitions and
notation from formal language theory and of notation for classes of languages accept-
ed by resource-bounded Turing machines. The definitions of the class of rudimentary
relations and a derived class RUD of languages are then discussed, and certain basic
properties of RUD are established. Finally, oracle machines, the model used here for
time-bounded relative computation, are described.

2.1. If S is a finite set of symbols, called an alphabet, then S* denotes the free
monoid generated by the symbols in S. The elements of S* are strings (finite
sequences) of symbols from S; the operation in S* is termed concatenation and is
denoted by juxtaposition of the strings. The identity element of S* is the empty string,
denoted by e. Thus S*={e}(.J{Sl...s,,’n>-l, sl,’",sneS} If n->l and x=
sl s, is a string in S* (si e S for 1 _<- n), then the length of x, denoted Ix I, is n
]e O. A language is a subset of S* from some alphabet S.

The term "homomorphism" is used for monoid homomorphisms h" S*- T*
where S and T are alphabets. If L_S*, then h(L)={h(x)" x eL} is the image of L
under the homomorphism h. Certain restricted types of homomorphisms are of
interest"

(i) h is length-preserving if for all a e S, Ih (a)[ [a[ 1;
(ii) h is nonerasing if for all a e S, [h (a)[->_ 1; and
(iii) h performs linear erasing on a language L

_
S* if there is constant k such that

for all w e L, Iwl--< k. max {Ih(w)l, }.
If h" S* T* is a homomorphism, then the "inverse homomorphism" h- is the
mapping of T* to subsets of S* defined by h-l(y) {x e S*" h(x) y}. If L T*, then
h-l(L)={x eS* h(x)eL}.

If L, L: are languages, then the product of L1 with Le is the language
LiL.={xy’xeLl, yeL2}. The Kleene * of L is the language LI*=
{e}O{xxx... Xk" k >=l, xieL for l_<-i _<-k}. The Kleene + of Lk is L=L-{e}.

A family of languages is closed under complementation if whenever L 6 and
S is any alphabet such that L

_
S* also S*-L {x e S* x L} is in . If is a family

of languages, then co- denotes the family containing exactly the complements of
languages in 5; that is, co- {S*-L" L S* in }.

The family of regular sets is the smallest family of languages containing the finite
languages and closed under the operations of union, product and Kleene *. The reader
is assumed to be familiar with the basic properties of the regular sets, and of the
context-free languages (see, e.g., [13]).

The cross-product of two sets U and V is denoted by U V. The cross-product of
V with itself m times is [V]" --’((Vl,""", Din)" Di e V for 1-<i <=m}; thus [S*]" is the
set of m-tuples of strings over an alphabet S. A subset of [S*] is an m-ary string
relation.
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In order to use the tools of formal language theory to investigate string relations,
we combine a tuple of strings into a single string, as follows. Suppose S is an alphabet
and # is a symbol not in S. If x 1, , x,, are strings in S* (m _-> 1), then (x 1, , x,,) is
a string over the alphabet [S U{4#}]m of length n =max {[x[ l_-<i_-<m} given by
(X 1," Xm) Z Zn where, for 1 _-</" -_< n, zj [zj 1," ", Zjm], each Zjk E S O { :: }
and, for 1 <-_i <-m, z lizzi’"z,i xi #"-Ixil. For example, suppose S {0, 1}; then
(000, 101, 11) [0, 1, 1][0, 0, 1][0, 1, 4# ]. The intention of this encoding, due to Myhill
[17], is to describe the writing of rn strings on m "tracks" of a Turing tape, so this
example should be read as

0 0 0
{000, 101, 11)= 1 0 1

1 1 4#

If R is an m-ary relation over S, the language encoding of R is 0(R)
{{xl,..., x,): (x,..., x,,)E R}. Notice that if m 1 (i.e., if R is a language), then
O(R)=R.

The choice of this "parallel" encoding was based on technical considerations; the
results here will hold for other reasonable encodings, e.g., for the sequential encoding
o’(R) {Xl Xm :: (Xl,""" ,Xm)eR}.

The model for Turing acceptor used here has a (one- or two-way) read-only input
tape and multiple work tapes (see, e.g., [13]). It may be deterministic or nondeter-
ministic. The language accepted by a Turing machine M is denoted by L(M).

Let t:N-N and s:N-N be nondecreasing functions, with t(n)>-n for all
n 6 N. (Here N denotes the natural numbers.) A Turing acceptor is said to operate in
time t(n) if for every input string x every computation of the machine on x takes at
most t(Ix I) steps. A Turing acceptor is said to operate in space s (n) if for any input x no
more than s(Ixl) tape squares are visited on any one of the work tapes during any
computation on x. We use log n to denote the function whose value at n is the length
of the binary representation of n.

The notation used here for families of languages defined by resource-bounded
Turing acceptors is as follows. For a time bounding function t(n):

DTIME(t(n)) {L(M)IM is a deterministic Turing acceptor that operates
in time bound t(n)};

NTIME(t(n)) {L(M)IM is a nondeterministic Turing acceptor that operates
in time bound t(n)}.

It is known [4] that for any constant c and any Turing acceptor that operates in time cn
(i.e., in linear time) there is a nondeterministic Turing acceptor that accepts the same
language and operates in time n (i.e., in real-time); hence NTIME(n)-
LI {NTIME(cn) c _-> 1}. Also, define DTIME(lin)- U {DTIME(cn)Ic _>- 1}.

For a space bounding function s(n):

DSPACE(s(n )) {L(M)IM is a deterministic Turing acceptor that operates
in space bound s (n)};

NSPACE(s(n))= {L(M)IM is a nondeterministic Turing acceptor that operates
in space bound s (n)}.

The class DSPACE(n) is equal to Grzegorczyk’s class g’ [19]; that is, it contains
exactly the encodings of those relations.
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2.2. The class of rudimentary relations (or attributes) was first defined by Smul-
lyan [23]. The following definition, in a more general form than the original, is based
on that given in [ 15].

DEFINITION. 1) The following operations are the rudimentary operations.
(i) Boolean operations" The Boolean operations are union, intersection and

difference of relations over the same alphabet.
(ii) Explicit transformation" An explicit transformation of a relation R is

obtained by adding redundant variables, identifying or permuting variables, or sub-
stituting a string for a variable. That is, Q

_
[S*] is defined by explicit transformation

from R
_
[S*]" if and only if (Xl, ,Xn) Q(t,.’., t,,)eR where, for l_-<i _-<m,

t is a string containing symbols from S or the variables x,..., x (or both). For
example, tl might be x2 or a string w e S* or Xl wx2.

(iii) Bounded existential quantification" Suppose R ___[S*]n/, n_->0. A relation
Q_[S*]/ is defined by bounded existential quantification from R if and only if
Q={(Xl,.’.,x, y)" for some z eS* such that Iz[-<ly[, (Xl,’’’ ,x,,z)eR}.

2) For an alphabet S, the concatenation relation Cs on S* is defined by Cs
{(x, y, z)" x, y, z e S*, xy z}. The class of rudimentary relations over S is the smallest
class of string relations containing Cs and closed under the rudimentary operations. A
relation will be said to be rudimentary if it is rudimentary over some alphabet S.

The definition of the rudimentary relations in [23] restricts them to the alphabet
{1, 2} and in [2], for each m _-> 1, separate classes of m-rudimentary relations are
defined; in both these definitions, the operation of explicit transformation is restricted
to a simpler form, in which each term t is either a constant string or one of the
variables. It is shown in [15] that, if S has m symbols, then the class of relations that
are rudimentary over S (as defined above) coincides with the m-rudimentary rela-
tions. Strings on an alphabet S with m symbols may be viewed as the m-adic notations
of natural numbers, giving rise to a one-to-one correspondence between S* and N.
Under this correspondence, the class of rudimentary relations is equal to the class of

0constructive arithmetic relations [2], [23] and is contained in Grzegorczyk’s class ,
[11]. (It is not known whether the containment , _

is proper.)
DEFINITION. RUD is the class of language-encodings of rudimen.tary relations:

RUD {O(R)" R a rudimentary relation}.
PROPOSITION 2.1 [15]. A string relation R is rudimentary if and only if the

language O(R) is rudimentary. Hence, the class RUD is exactly the class of unary
rudimentary relations ("rudimentary events").

Proof. For m _-> 1, let T,, {(x, ., x,,, z)" z (Xl," ", Xm)} (where some fixed
alphabet is assumed). Then T,, is rudimentary for each m; the proof relies on the fact
that such relations as "lxl lYI" and "a is the ]xlth symbol in y" are rudimentary.
Recall that ](X1,""", x,)[ =max {[x[" l<-i<-m}. For any relation R, O(R )= {z there
exists xa,"’,Xm with [x[--<[zl for l_-<i_-<m such that (Xl,...,x,,,z)T,, and
(Xl,...,x,,)R} and R ={(xa,...,x,,)" there exists z such that [z[_-<max [x[, z
O(R) and (xa,..., x,,, z)6 T,,}. The types of quantification used in these expressions
can be replaced with bounded existential quantification (and explicit transformation
and union); therefore R and O(R) can be defined from each other and T, by use of
rudimentary operations. []

The following proposition expresses the effect on O(R) of applying rudimentary
operations to a relation R.

PROPOSITION 2.2. If a relation Q is defined using rudimentary operations from a
relation R, then O(Q) can be defined from O(R) and languages in DTIME(lin) by
application of Boolean operations, length-preserving homomorphism and inverse
homomorphism. Specifically"
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1) IfR, R’
_

[-S*]" and # S, then O(R LJ R’) O(R tA O(R’), O(R CI R’) O(R f3
0(R ’) and 0(R R ’) 0(R) 0(R’);

2) If Q is defined from R by bounded existential quantification, then there exist a
regular set Lo, a homomorphism h and a length-preserving homomorphism h’ such that
0(O) h’(Loh-l(O(R))); and

3) If O is an explicit transformation of R, then there exist a language L
DTIME(lin), a regular set L2 and homomorphisms h and h2, with h length-preserving,
such that 0(0) h(L (3 h(O(R))) U L.

Proof. Verification of 1) is straightforward.
For 2), suppose that O is defined by bounded existential quantification from R,

with O,R_[S*]"+1 and O(Q),O(R)_T* where T=[SCI{#}]"+. Let L0
{(Xl,..., x,, y, z) "[z[_-< [y[, x, y, z S*}; then L0 is a regular set. Let h" ([S
{ # }],+2), T* be the homomorphism determined by defining h ([ba, ., bn+2]) e if
bl b, bn+2-- 4 and h([b," ", bn+z])=[bl, .., bn, bn+2] otherwise. Let
h" ([S J{ # }],+2),_> T* be the length-preserving homomorphism determined
by defining h’([b,..., b,+2])= [ba, b,+]. Then h((x,...,x,, y, z))
(x,...,x,,z) and, v)hen [z[=<ly[, h’((x,’..,x,,y,z))=(Xl,...,x,,y); so that
O(Q) h’(Lof3h-l(O(R))).

For 3), suppose O
_
IS*] is an explicit transformation of R IS*I". Then there

are terms tl,...,t, formed by concatenation from S* and Xl,’",x,, such that
(x, , x,,) 6 O if and only if (ta, , t,) 6 R. From the form of the terms, for each i,
1_-<i =<n, there are constants co(i),.", c,,(i) such that Itil<=co(i)+ca(i)lxal+ .+
cm(i)]xml. Let k=max{eo(i)+ "+Cm(i)’l<=in}. For each string w in S* with
1-<lwl =< k, let [w] be a new symbol; let U be the set of these symbols and let V_ U
be the set {[w]’wS*,lw[=k}. Let g’(UU{#})*S* be the homomorphism
determined by defining g(#)=e and g([w]) w. Let L1
for l_-<i _-<n, [z [_-<[(x, x,,)[, g(zi)=t(Xx, ,x,,) and either z =e or zie V’U}.
Since each term is a concatenation of some of the x’s and strings in S*, L1 can be
accepted in linear time by a deterministic Turing machine, so L DTIME(lin). Let
T=[St_J{#}]mx[uO{#}]. Let hi" T*([SIA{#}]")* and h2" T*-([SIJ{#}]")*
be the homomorphisms determined by defining for a,...,a,,SCl{#} and
bl,’",bnUi..J{}, hl([ax,"’,am, b,’",bn])=[ax,’",am] and h2([ax,’-"
a,,, ba, ..., b,])=(g(b),. ., g(b,,)). Notice that h is length-preserving and,
when y=(xl,’",x,,,Zl,’",z,) is in L1, hl(y)=(x,-",Xm) and h2(y)=
(g(zl), ", g(z,,)). Let L2 {e}(30(O), so that L2 is either {e} or and is therefore a
regular set. Then O(Q)=h(LafqhI(O(R)))UL2. l-]

2.3. We now turn to an informal definition of the model for relative computation
that will be used to characterize RUD. These "oracle machines" differ from the
"query machines" of [1], [7] only in that the oracle tape is erased after an oracle call;
the definition is essentially that used in [ 16].

DEFINITION. An oracle machine is a multitape Turing acceptor with an
added dynamic capability. A computation of an oracle machine M depends on both
an input string x and an oracle set A, which may be any language over the tape
alphabet of M. The machine M has three distinguished states q?, Yes and No, along
with its initial and final states, and one of its work tapes is distinguished as the oracle
tape. At any point during a computation of M on x relative to A, there are two
possibilities:

(i) The current state of M is not its query state q? (although it might be one of
the response states Yes, No). In this case, the next step of the computation is
determined by the transition function of M, as for an ordinary Turing acceptor.
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During such steps, M can read from and write on its oracle tape, as well as its other
tapes.

(ii) M has entered its query state q?, in order to make an oracle call. In this case,
the next step is determined by the string on the oracle tape and the oracle set: if the
(nonblank) contents of the oracle tape is the string z, then the next state is Yes if z e A
and No if z A. During a step that is an oracle call, the oracle tape is erased (i.e., reset
to blanks) but the configuration of the other work tapes and the input tape is
unchanged.

The oracle machine M is deterministic if its transition function allows at most one
move at any step, nondeterministic otherwise. The transition function is undefined for
the query state, so moves from that state are uniquely determined by A. M is said to
accept x relative to A if and only if some computation of M on x relative to A reaches
an accepting state. Let M(A) denote the set of strings accepted by M relative to A.

DEFINITION. Suppose t: N -N is a nondecreasing function which satisfies t(n) >-
n. An oracle machine M is said to operate in time t(n) if, for any input x and any oracle
set A, every computation of M on x relative to A halts in at most t(Ix I) steps. (An
oracle call costs one step.) Notice that the property of operating in time t(n) is
independent of the oracle set.

Time-bounded oracle machines share many of the properties of other resource-
bounded abstract automata and proofs about Turing machines can often be easily
extended to apply to them (e.g., for closure properties, for separation of classes based
on increasing time bounds). Attention here is restricted to linear time bounds.

DEFINITION. 1) An oracle machine is termed a linear-time oracle machine if it
operates in time cn +d for some constants c, d.

2) If is a class of languages, then NL()={M(A):A e, M a nondeter-
ministic linear-time oracle machine}.

It is not hard to see that NL({}) =NTIME(n); this will be discussed in Pro-
position 3.1.

We view NL(. as an operator that extends a class 5f by adding to it the languages
that can be accepted in linear time relative to some language in . The following
definition provides the notation for iterated application of NL(. ).

DEFINITION. Let f be a class of languages. Define NL()= &e, and for k -> 0,
NL/() =NL(NL()). Define NL*()= U {NL(): k->0}. That is, NL*()is
the smallest class of languages satisfying f__c and NL () _c %

If f is a nonempty class, then NL(), so if NL ()_ and is nonempty,
then NL*({})_c. Therefore NL*({}) is the smallest nonempty class that is closed
under NL(. ).

3. Characterizations of the rudimentary languages. Two characterizations of
RUD are proved in this section. The first characterization states that RUD=
NL*({}); that is, RUD is the smallest nonempty class that is "closed under" NL(. ).
In order to prove that RUDc__NL*({}), it is sufficient to show that languages
encoding concatenation are in NL*({}) and that NL*({}) is closed under the
operations used (in Proposition 2.2) to express the effect of the rudimentary opera-
tions. For the reverse containment, an induction proof is used to show that for all k,
r
_
RUD where r NL ({}). The induction step is based on a representation of

the languages accepted by time-bounded oracle machines that yields a simple
representation of o-+ in terms of complementation and length-preserving
homomorphism applied to languages in o-. The second characterization states that
RUD is the smallest class containing the regular sets and the language {0" 1": n => 0}
and closed under the Boolean operations, inverse homomorphism and length-
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preserving homomorphism. Notice that both of the classes proven equal to RUD have
inductive definitions, as the smallest class containing certain basis sets and closed
under certain operations. Since the basis sets in each case are simple, we may take the
fact that these classes are equal to RUD as providing information about the expressive
power of the operations.

We begin with a definition of classes of languages that decompose NL*({}).
DEFINITION. Define ro={}. For k->_0, define cr+=NL(cr). That is, o-+

consists of the languages accepted by nondeterministic linear-time oracle machines
relative to languages in cry.

It is clear from this definition that o’ =NL({}) for k=>0; therefore Uy
NL*({}). The collection of classes {cro, cry, cr2,"" "} will be referred to as the "linear
hierarchy". The linear hierarchy bears the same relationship to the class NTIME(n) as
the "polynomial-time hierarchy" [24] does to U NTIME(n). The classes cr for
k _-> 1 remain the same if or0 is taken to be DTIME(lin) rather than {}.

Except for the trivial case k 0, it is not known whether o- cr+. A proof of
either proper containment or equality must rely on properties specific to the classes
rather than only on general properties of the operator NL(. since classes of recursive
languages c and (’2 can be found such that (1 NL(I) but (2 NL(C2). (The class
c2 can be constructed by employing techniques used in [ 1] for polynomial time.)

The following proposition contains some basic properties of the classes in the
linear hierarchy.

PROPOSITION 3.1.
1) r NTIME(n).
2) For all k >= O, O’k J CO-O’k O’k +1.
3) For each k >- 1, O’k is closed under union, intersection, product, Kleene *, inverse

homomorphism and linear erasing homomorphism.
Notice that closure under complementation for Crk is not asserted in 3); this

closure property would imply that the linear hierarchy collapses at the k th level, i.e.,
that cr U icri (see Proposition 4.1).

Proof. 1) A Turing acceptor may be viewed as an oracle machine that never
consults its oracle, so that NTIME(n)NL({A}) for any language A. In particular,
NTIME(n)

_
NL({})= cry. On the other hand, from an oracle machine M, a Turing

machine M2 can be easily constructed that will assume a response of "no" to any
oracle call of M and otherwise act like M, so that L(Mz)=Ma(J). The Turing
machine M2 will also operate in the same time bound as M. Therefore era
NL({})

__
NTIME(n).

2) For any alphabet S, deterministic oracle machines D and D. can be con-
structed that both operate in time n + 1 and are such that for any L__S*, DI(L)--
D.(S*-L)=L. If Ltr then L =D(L)tr+l, and if L co-o- then S*-Lok so
that L D(S* L) trk /.

3) Closure under Kleene *, inverse homomorphism and linear erasing
homomorphism follows from simple extensions of the usual Turing machine con-
structions for these operations. The operations of union, intersection and product
differ from the other three in that (possibly) two oracle sets are involved. If, however,
M1 and M are nondeterministic linear-time oracle machines with a common oracle
set C, then it is again easy to extend the usual constructions to yield, for example, a
nondeterministic linear-time oracle machine M such that M(C)=M(C)fqM.(C).
Also, if A is an oracle set for M and/3 is some other language, then a nondeter-
ministic linear-time oracle machine M can be constructed such that M(A)=
MI(A CI $B) where , $ are two new symbols" M acts like M1 except for marking
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the strings on its oracle tape with . Combining these ideas, we can conclude that if
is either a singleton class or a class that is closed under product (with regular sets) and
union, then NL(C) is closed under union, intersection and product. Since o’0 {} is a
singleton, an induction proof will show that each o- is closed under union, intersection
and product.

The properties given in Proposition 3.1 can be restated as properties of the union
of the linear hierarchy. The following corollary also holds for NL*({A}) where A is
any language and for NL*(), if is closed under union and product.

COROLLARY 3.2. NL*({}) is closed under the Boolean operations, product,
Kleene *, inverse homomorphism and linear erasing homomorphism, and contains
NTIME(n).

The next corollary is of more immediate interest for the characterization of RUD.
It may be proved by combining Proposition 3.1 with the relationship between rudi-
mentary operations and language operations as given in Proposition 2.2.

COROLLARY 3.3. The class of string relations {R: 0(R)6NL*({})} is closed
under the rudimentary operations. Suppose R, R’ are relations such that O(R), O(R’)
O k. Thegl

1) 0 (R U R ’)
2) if 0 is defined from R by bounded existential quantification, then 0(O) trk;

and
3) if O is an explicit transformation of R, then 0(0) rk.
The closure properties in Proposition 3.1 have simple proofs because the classes

in the linear hierarchy were defined using automata. However, for an induction proof
that trk

_
RUD for each k, it is useful to have a definition of trk+a from trk using

operations on languages. To achieve this, we first establish a representation of lan-
guages accepted by time-bounded oracle machines.

THEOREM 3.4. 1) Suppose M is a nondeterministic linear-time oracle machine and
A is an oracle set for M. Then there exist a deterministic linear-time oracle machine D
and a length-preserving homomorphism h such that M(A)= h (D(A)).

2) LetD be a deterministic linear-time oracle machine with tape alphabet S and let
A
_
S* be an oracle set for D. Then there exist homomorphisms ha and hz, with h

length-preserving, and a language L DTIME(lin) such that D(A)= h(Lfqha(L’))
where L’=( IA U 2(S*-A))* with ::1, z:2S.

Proof. Some notation will be useful in the proof. If F is an alphabet and k is an
integer, k _->1, let Fk={[w]:wF*, l=<[w[-<k}. That is, for each nonempty string
w F* of length at most k, [w] is a new symbol, and Fk is the set of these symbols. For
x F*, x/k (Fk)* is defined as follows. Suppose Ixl=mk +j, m >-0, O<=j<-k-1. If
j=0, then x/k=[Wl][W2]... [w,,] where X=Wl’" w,, and [wl=k for l<=i<=m; if
j=>l, then x/k=[Wl]..’[Wm][y] where x=wa...w,,y, Iwl=k for l<-_i<-m and
lY] =J. If L _F*, let L/k ={x/k: x L}. Note that F*/k is a regular set.

1) Part 1) is proved by applying to oracle machines a technique used in [5]; the
deterministic machine is supplied with both an input string and a "choice" string that
describes the transitions made by the nondeterministic machine in an accepting
computation on the given input.

Suppose a nondeterministic oracle machine M operates in time cn + d and has
input alphabet T. Let k c + d. Suppose M has at most m choices of transition at any
step and let V ={v0, v,..., Vm} be an alphabet of rn + 1 distinct symbols. ("Vo"
represents a call on the oracle, the only move possible from the query state.) Let
,= T(Vk [..J{})={[b, #] b T}U{[b,[w]] b T, w V*, l_-<lwl=<k} where

Vk. Let A be an oracle set for M.
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The deterministic oracle machine D will have input alphabet 2; and operate as
follows. Given the empty string as input, D follows all the computations of M on e,
using its oracle just as M would, and accepts e if and only if M does. Since any
computation of M on e (relative to A) can have at most d steps, there are only finitely
many computations for D to check. For nonempty input strings, D accepts only
strings of the form (x, u/k)E* with x T+, u V+ and ]u/kl<-[x[. Given such an
input, D follows (if possible) the computation of M on x as described by u, again using
its tapes as M would. The details of the simulation are straightforward. D can be
constructed to operate in linear time; since M operates in time cn +d and cn +d <-kn
for n _-> 1, for any x e, x M(A) if and only if there is an accepting computation ofM
on x relative to A with at most k Ix[ steps if and only if there is some u V+ such that
(x, u/k)6D(A). Let h" Z*- T* be the length-preserving homomorphism determined
by defining h([bl, b2])--bx for bl T, b2 Vk I..J{ #}; thenM(A)=h(D(A)).

2) Suppose D is a deterministic oracle machine that operates in time cn +d and
has input alphabet T and tape alphabet S. Let # 1, # 2 S be two new symbols and
U=SU{#I, # 2}. Let Z T Uk U { # }), where k c + d.

Let R___Z* be the regular set R ={(x, y)’x T+, y U*/k, [x ___> [y [}. Let
h2" E*- U* be the homomorphism determined by defining h2([b, # ])=e and for
wU*, l_-<[w[-<k, bT, h2([b,[w]])=w. Then if A_S* and L’=
(# 1A I..J : 2(S*-A))*, we have hl(L’)fqR ={(x, u/k)’x r+, u L’, [xl>-[u/k[}.

Let D’ be the following deterministic Turing acceptor, with input alphabet Z. D’
rejects its input unless it is of the form (x, u/k) with x T+, u U* and ]u/k[ _-<[x]. On
an input of this form, D’ acts as D would on input x, using the information in
u 9d: iUl :: imUm instead of oracle calls; that is, D’ checks that D would query its
oracle about Ul,. , u,, (in that order) and D’ continues from the "yes" state if ii 1
and from the "no" state if ii=2, l_-</’_-<m. D’ accepts (x, u/k) if and only if the
answers in u lead D to accept x. Now since D operates in time cn + d and the oracle
tape is erased after an oracle call, if during a computation on x, D queries its oracle
about strings u a,..., Urn, m _-->0, and receives "answers" il,"" ", ira, then m +[ua[ +
..+[Uml<=c[xl+d<-__k[xl for x Ce; hence if u= ili1 ::imUm then [u/k[<=lxl.

Further, for any oracle set A, the answers in u are correct relative to A if and only if
u 6(#xA U #2(S*-A))*=L’. Therefore, for any x T+, x eD(A) if and only
if there exists uU* such that (x,u/k)L(D’) and uL’; or xD(A) if and
only if there exists y U* with lyl_-<lxl such that (x, y)L(D’)fq(h(L’)fqR).

Y_,* T*Let h be the length-preserving homomorphism determined by defining
hl([bl, b2])=bl. Let L=(L(D’)fqR)U(D(A)fq{e}); since R and (D(A)fq{e}) are
regular sets and D’ can be constructed to operate in linear time, L 6 DTIME(Iin).
Then D(A)= hl(Lfqh -1

2 (L’)). [-]

The constructions in the proof of Theorem 3.4 can be made uniform in the oracle
set A by allowing the homomorphism hi to perform some erasing (or by ignoring the
empty string). The uniform constructions can also be applied to oracle machines which
do not necessarily operate in linear time, yielding the following generalization of the
representation to arbitrary time bounds.

PROPOSITION 3.5. Suppose M is a nondeterministic oracle machine which operates
in time t(n) and has tape alphabet S. Then there exist homomorphisms hi and h2 and a
language LtDTIME(lin) such that for any oracle set A_S*, M(A)=
h(Llvt f-l hf(( # 1A 2(S*-A))*)). Further, the homomorphism hi has the property
that for any w eLu, Iwl<-t([h(w)[).

Proof (sketch). The language Lt is given by" Lt ={(x, y, z)" the transitions
described in y and the information given in z about the oracle set cause M to accept
x}. The homomorphisms ha and h2, then, satisfy hl((X, y, z)) x and hz((X, y, Z)) Z.
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Since M operates in time t(n), if (x, y, z)6 Lt then ]z[ _<-[y[ <= t(]x])so [(x, y, z)]
t(]x ]) t(]hl((X, y, z))[). [3

Theorem 3.4 is the basis for the following simple characterization of the lan-
guages in r (k => 2).

COROLLARY 3.6. For k >-_2, a language L1 ___E* is in r if and only if L1
h(A*-L2) where L2 r_a and h" A*- Z* is a length-preserving homomorphism.

Proof. For k_>-2, let ={h(A*-L)’L_A* in cry_l, h a length-preserving
homomorphism}. Since from Proposition 3.1, co-o-_a _r and o is closed under
length-preserving homomorphism, for each k => 2,

_
o.

For the reverse containment, suppose L cr for some k _->2. Combining the
representations given in Theorem 3.4, L =hl(Lf-]hl(L’)) where hi is a length-
preserving homomorphism, h2 is a homomorphism, LDTIME(lin) and L’=
(IA U 42(S*-A))* for some language A _S* in O’k- 1. To show that L1 k, it is
therefore sufficient to prove" (i) trk-1 1.3 CO-rk-1

_
Ygk, (ii) DTIME(Iin)_ Ygk and (iii)

is closed under union, intersection, product, Kleene *, inverse homomorphism and
length-preserving homomorphism.

(i) It is apparent from the definition that co-trk_a

_
Ygk. TO see that O’k-

suppose A trk-; then since k ->2, A =M(B) for some language B O’k-2 and some
nondeterministic linear-time oracle machine M. From Theorem 3.4 part 1), there is a
length-preserving homomorphism h and a deterministic linear-time oracle machine D
such that A h(D(B)). Suppose D(B)

_
T*; then a straightforward construction will

yield a deterministic linear-time oracle machine D such that D(B) T*-D(B). Since
B E O’k-2 and/ is a linear-time oracle machine,/(B) E O’k-1, SO A h(T*-IO(B))e

(ii) Since DTIME(Iin)_cNTIME(n)=crl and trl ___rk-1 __c k for k _->2,
DTIME(lin) _c k.

(iii) The following fact about classes of languages that possess certain closure
properties is proved in [9] (see Theorems 1.2 and 2.2).

Claim. If c is a class of languages containing the regular sets and closed under
union, intersection, product, Kleene *, inverse homomorphism and nonerasing
homomorphism, then the class {h(L)’Leco-% h a length-preserving homomor-
phism} is closed under the same six operations.

The properties of the classes crk given in Proposition 3.1 ensure that this claim
applies to them, so k is closed under the required operations for each k _-> 2.

We now consider some properties of the rudimentary relations.
PROPOSITION 3.7 [ 18]. If R is a string relation such that O(R) NSPACE(Iog n),

then R is rudimentary.
Proof. If R [S*]" and eS, let or(R) ={Xl ::x2 :: Xm ::" (Xl,""" ,Xm)ER}.

It is shown in [18] that R is rudimentary if there are constants k (k => 1) and e
(0 < e < 1) such that or(R) is accepted in time n and space n by a nondeterministic
Turing machine with two-way read-only input and one work tape (to which the space
bound applies). In the proof, rudimentary predicates are constructed which represent
sequences of steps of the Turing machine on a given input.

It is easy to see that o-(R) NSPACE(Iog n) if and only if O(R) NSPACE(log n)
and that any language in NSPACE(log n) can be accepted by a device which satisfies
the conditions of the theorem cited above; therefore, if O(R) NSPACE(log n), then
R is rudimentary.

COROLLARY 3.8. RUD is closed under nonerasing homomorphism and inverse
homomorphism.

Proof. Suppose h" S* -* T* is a nonerasing homomorphism and L S* is in RUD.
Let R=((x,y)" h(y)=x, x T*,yS*} and R2={(x,y)’yL, x T*}. Then
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O(R1)DSPACE(logn) and R2 is an explicit transformation of L, so RIR2 is
rudimentary. Since h is nonerasing, for y S*, lY[--< Ih(y)] so h(L)= {x T*. for some
y S* with [y I--< Ix I, (x, R 11"] R2} is rudimentary.

If g" S* T* is an arbitrary homomorphism and L_c T* is in RUD, let O1
{(x, y)" y g(x), y T*, x S*} and 02 {(x, y)" x S*, y L}. As before, O1VI 02 is
rudimentary and therefore 03 {(x, z): for some y
is rudimentary. Let m =max {Ig(a)l a S}; then Ig(x)l_-<m for any x S* and so
g-l(L) {x (x, x’) 03} and g-l(L) RUD. fi

COIOLLAIY 3.9. 1) The class of context-free languages is contained in RUD.
2) NTIME(n)

___
RUD.

Proof. Part 1) is also given in [15], [29]. A simple proof uses Proposition 3.7 and
Corollary 3.8. If L is any context-free language, then there exist a length-preserving
homomorphism h, a homomorphism h2 and a regular set L’ such that L=
hl(L’ f’lhl(D2)) where D2 is the Dyck set on two letters. (A proof of this form of the
Chomsky-Schiitzenberger theorem may be found in [3].) Any regular set is in
DSPACE(log n) and hence is rudimentary; also D2 DSPACE(log n) [20], so D2 is
rudimentary. Since RUD is closed under intersection, length-preserving homomor-
phism and inverse homomorphism, any context-free language must therefore be in
RUD.

Part 2) follows from 1) since (with the use of [4]) for any language L NTIME(n)
there exist a length-preserving homomorphism h and (deterministic) context-free
languages L1, L2, L3 such that L h (L11"] L2 (-’1L3). 1-]

Since the class of context-free languages is not closed under intersection, proper
containment holds in part 1) of this corollary. Whether the containment NTIME(n)___
RUD is proper is not known; it is proper if and only if NTIME(h) is not closed under
complementation.

All the preliminary results necessary for the characterizations, of RUD have now
been established.

THEOREM 3.10. RUD NL*({}). That is, RUD is the smallest nonempty class of
languages c that satisfies NL(C)___ %

Proof. To see that RUD_cNL*({}), first notice that for any concatenation
relation C, O(C) can be accepted by a (deterministic) Turing machine that operates in
linear time, so O(C)NTIME(n)c_NL*({}). From the definition of RUD and the
properties of NL*({}) given in Corollary 3.3, we can conclude that RUD_
NL*({}).

For the reverse containment, from Corollary 3.9, al NTIME(n)_ RUD. Con-
tinuing by induction, suppose o-

___
RUD. From Corollary 3.6, o-,+ {h(L)’Lco-

o, h a length-preserving homomorphism} and RUD is closed under complementation
and (from Corollary 3.8) length-preserving homomorphism. Therefore o’k+l is also
contained in RUD.

While it is known [17] that RUD_c DSPACE(n), whether this containment is
proper remains open. Theorem 3.10 gives rise to the following conditions for the
containment to be proper.

THEOREM 3.11. 1) RUD DSPACE(n) if and only if there is some k >-1 such
that o-k DSPACE(n).

2) If the containments rl c_ r2" are all proper, then the rudimentary relations
are properly contained in g 2

Proof. Part 2) follows easily from 1) since DSPACE(n) consists of the languages
2 relations [19]that encode the g,

The "if" direction of 1) is obvious, since each r is contained in RUD. For the
other direction we use the fact that the class DSPACE(n) is "principal"" there is a
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language LIE DSPACE(n) with the property that for any L DSPACE(n) there is a
homomorphism h such that L-{e} h-l(L1) [25]. If RUD DSPACE(n), then La E

RUD LJ rj so there is some k => 1 such that L o’k. Then since crk is closed under
inverse homomorphism and union with {e}, DSPACE(n), so DSPACE(n)=
Ok. 1"]

0 2Recall that the question of whether , ’, remains open. Since RUD
_
q

q, DSPACE(n), the equality RUD= DSPACE(n)would imply , .
The parallel between the arithmetical sets and RUD suggested by the use of a

restricted Turing reducibility in Theorem 3.10 extends to another characterization of
the two classes. Based on [12], the arithmetical sets may be viewed as the smallest
Boolean-closed full AFL containing the language {0" 1 n -> 0}, where a "full AFL"
[8] is a class of languages closed under union, intersection with regular sets, product,
Kleene *, inverse homomorphism and (unrestricted) homomorphism. Restricting the
homomorphisms used to those that are length-preserving yields the following charac-
terization of RUD.

THEOREM 3.12. RUD is the smallest class of languages containing the language
L0 {0 1" n => 0} and the regular sets and closed under the Boolean operations, inverse
homomorphism and length-preserving homomorphism.

Proof. Let 0 denote the class of languages described in the statement of the
theorem. From Corollary 3.9, the basis sets for o are rudimentary, since Lo is a

context-free language and all regular sets are context-free. From the definition and
Corollary 3.8, RUD is closed under the Boolean operations, inverse homomorphism
and length-preserving homomorphism. Therefore 0---RUD.

It is proved in [27] that any context-free language can be defined from L0 and
regular sets by use of the Boolean operations, inverse homomorphism and length-
preserving homomorphism, so any context-free language is in 0. If L is a language in
DTIME(lin)_ NTIME(n), then there exist a length-preserving homomorphism h and
context-free languages L1, L2, L3 such that L h(L1 [")L2f"IL3) [4], so L 6o and
therefore DTIME(lin)_0. Now the encoded concatenation relation O(Cs) is in
DTIME(Iin) for any alphabet S and, since 5o is closed under the Boolean operations,
inverse homomorphism and length-preserving homomorphism and contains
DTIME(lin), from Proposition 2.2 the class of relations {R:O(R)6o} is closed
under the rudimentary operations. This class of relations therefore contains the
rudimentary relations and so RUD_o. l-]

A version of this characterization with the context-free languages as the basis sets
is proved in [29]. Either nonerasing or linear-erasing homomorphism may also be
used in Theorem 3.12.

4. The linear hierarchy. In this section, some further properties of the linear
hierarchy are considered.

We first establish conditions for the linear hierarchy to be finite. By Corollary
3.11, if it is infinite then RUD is properly contained in DSPACE(n).

PROPOSITION 4.1. For all k >= 1, the following are equivalent"
(i) O’k-- Ucr.
(ii) CO-trk is closed under nonerasing homomorphism.

(iii) rk is closed under complementation.
Proof. If (i) is true, then O’k RUD so also CO-trk RUD and, since RUD is closed

under nonerasing homomorphism, (ii) is true. Recall from Corollary 3.6 that O’k/

{h (L)’L CO-O’k, h a length-preserving homomorphism}; therefore if (ii) is true then
O’k+l C2 CO-Ok and so O’k CO-Ok. This containment implies that CO-Ok O’k, i.e., that O"k
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is closed under complementation, since r is closed under union with and intersection
with regular sets. (Note that if L=Z*-L2 and L2= A*-L3, then La (Z*-A*)U
(* (’]L3).) Finally, if (iii) is true then r is closed under both complementation and
length-preserving homomorphism, so (again with the use of Corollary 3.6) r+
From this, an induction argument will show that, for all/’, o-i

_
r and (i) is true. [-1

The next theorem gives a characterization of the classes in the linear hierarchy
based on the number of alternations of (suitably bounded) quantifiers. The class RUD
is easily seen to be closed under both the following forms of quantification; they are
introduced in order to state the characterization more easily.

Notation. Let P be a string predicate. The abbreviation (:iy)P(x, y) is used for
the expression (y)[ly[<-[x[ and P(x, y)]. Dually, (’y)P(x, y) abbreviates (/y) [if
lYl _-<[x[ then P(x, y)]. In both cases, the quantifiers are assumed to range over strings
on the appropriate alphabet.

Notice that for L
_

S*, L’
_

T*, if x L:> (::ly )x [(X, y) e L’] then x S*-L
(Vy)x [(x, y) e T* L’].

THEOREM 4.2. For all k >-1: a language L is in r if and only if there is some
language L’ 6 DTIME(lin) such that

x LC(Byl)x(Vye)x"" (Oy)x[(X, y,"’, y)L’].

The quantifiers in this expression alternate between existential and universal, so
that the jth quantification (from the left) is (:iyi) if is odd, and (/yi) if is even.

Proof. This theorem is an almost direct consequence of Corollary 3.6, due to the
close correspondence between existential quantification and homomorphisms. The
constructions for the basis and induction steps are the same and are therefore com-
bined. For notational convenience, let k _-> 1 be odd.

First, suppose that for LzeDTIME(lin), a language L1 ____S* is defined by:
xeLC:(:lya)x(VY2)’"(qy)x[(X,y,"’,y)eL2]. Let T=SU{#} and let
h" ([T]Z)* T* be the length-preserving homomorphism determined by defining for
a, b T, h([a, bl)= a. Define R {(x, y). [y[ <_-Ix I}, a regular set; notice that for z
(x,y)R, h(z)=x. Let L3={(z, y2,’..,y)’z is of the form (x, yl) and
(x, y, , y) e L2} and let L4 be the language defined from L3 by: z
(:::]Y2)z (ytc)z [(Z, Y2,’’’, y)L3]. Then L h(R-L4), since for z
(x, yl)R, [ZII--[X[ and so Zl:L4Cz>(fy2)x (:::]Yk)x[(X, Yl, Y2, yk)GL2].
If k > 1, then (since L3 DTIME(lin)) by the induction hypothesis L4 0",-1 so L Ok.

If k 1, then L2=L3 and R-L4=R fqL2 is in DTIME(lin) so L16 NTIME(n) crl.

Conversely, suppose L r. Then for k 1, from [4] La h (T*-L2) where
L2 DTIME(Iin) and h is a length-preserving homomorphism; for k > 1, from Corol-
lary 3.6, L1--h(T*-L2) where L2o’/-I and h is a length-preserving homomor-
phism. In either case, we see that there is a language L36DTIME(lin) such that
Z L2C::>(Zly) ([ytc-1)z[(Z, Yl,""", yt,-)L3], using the induction hypothesis if
k > 1 and taking L3--L2 if k 1. Let L4={(x,z, Yl,’’’, Yg-1)" h(z)--x and
(z, yl, , y-a) e L3}. Then L4 DTIME(lin) and (since h is a length-preserving
homomorphism) x LC:>(Zlz)(/y) (=ly_a)[(x, z, Yl,’’’, yg-1)L4]. ["!

If r0 were defined to be DTIME(lin) rather than {} (which yields the same
classes for k _-> 1), then Theorem 4.2 would hold for all k ->-0.

Each of the classes r is "principal", that is, can be generated from a language in
the class by use of certain operations. This property can be used to distinguish
between the classes in the linear hierarchy and some classes defined by resource-
bounded Turing machines.
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THEOREM 4.3. For all k >- 1, there is a language Ak O’k with the properties that:
(i) ]’or every L6trk there is a homomorphism h such that L-{e}=h-l(Ak); and
(ii) trk +1 NL({Ak}).

The languages A1, A2, are defined uniformly from Ao with the use of a
particular nondeterministic linear-time oracle machine Mo: Ak+=Mo(Ak). The
machine Mo is constructed along the lines of the "universal" Turing machines in [6],
[25]; further details may be found in [26]. If we use the closure properties given in
Proposition 3.1, part (i) of this theorem implies that for all k->1, O’k---
{h-l(Ak), h-l(Ak I,,J{e}) h a homomorphism}.

For each k, the language Ak is a "hardest" language for trk with respect to
deterministic time-bounded or space-bounded recognition, in the same sense that the
language exhibited by Greibach [10] is a hardest context-free language. Thus, for
example, Ak can be accepted by a deterministic Turing machine in polynomial time if
and only if every language trk can be so accepted.

Assume the linear hierarchy to be finite, so that RUD trk for some k -> 1. Since
Ak RUD, from Theorem 3.12 Ak can be defined from the language L0
{0nln n => 0} by use of SOlile number of applications (say M) of the Boolean opera-
tions, inverse homomorphism and length-preserving homomorphism. But from
Theorem 4.3, trk ={h-(Ak), h-(Ak O{e}):h a homomorphism}. Therefore, if the
linear hierarchy is finite, then for any rudimentary relation R, O(R) can be defined
from L0 by at most M + 2 applications of the Boolean operations, inverse homomor-
phism and length-preserving homomorphism. Conversely, if a language L is obtained
from L0 by use of k of these operations, then L trk. Hence the linear hierarchy is
infinite if and only if RUD cannot be generated from one language by use of a
bounded number of applications of the Boolean operations, inverse homomorphism
and length-preserving homomorphism. Also, in view of the proof of Theorem
3.11, RUD is properly contained in DSPACE(n) if and only if DSPACE(n)
cannot be generated from L0 by a bounded number of applications of these
operations.

Recall from Proposition 3.7 that DSPACE(log n) and NSPACE(log n) are con-
tained in the rudimentary relations, hence contained in U {r "/" => 1}. Whether either
of these families of languages is comparable to any O’k is not known; however, the
structure of the classes trk revealed in Theorem 4.3 gives partial reformation on this
question.

PROPOSITION 4.4. For all k >-1, O"k is not equal to either DSPACE(log n) or
NSPACE(log n).

Proof. As remarked previously, Theorem 4.3 implies that for all k _-> 1, O"k

{h-a(Ak), h-(Ak U{e}): h a homomorphism}. However, such a representation (as a
class generated by a single language under those operations) cannot hold for the
classes DSPACE(log n) and NSPACE(log n): they are each the union of an infinite
hierarchy of classes that are closed under inverse homomorphism and union with {e}
[14], [22]. U

By use of a similar proof, this proposition can be generalized to
DSPACE((log n)J) and NSPACE((Iog n)J) for all/" -> 1.

Neither DSPACE(log n) nor NSPACE(Iog n) is known to be closed under
nonerasing homomorphism; their closure under this operation has the following
consequences for the linear hierarchy.

COROLLARY 4.5. 1) If NSPACE(log n) is closed under nonerasing homomor-
phism, then NTIME(n) is not closed under complementation.
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2) If DSPACE(log n) is closed under nonerasing homomorphism, then the linear
hierarchy is infinite (and, in particular, NTIME(n) is not closed under complemen-
tation).

Proof. 1) If NTIME(n) is closed under complementation then, from Proposition
4.1, NTIME(n) RUD, so NSPACE(log n)

_
NTIME(n). But if NSPACE(log n) is

closed under nonerasing homomorphism, then NTIME(n)
___
NSPACE(log n) since

NSPACE(log n) contains the Dyck sets and regular sets and is closed under inter-
section and inverse homomorphism. Since NTIME(n)# NSPACE(log n), a con-
tradiction results if both closure properties are assumed.

2) Suppose DSPACE(Iog n) is closed under nonerasing homomorphism. It is also
closed under the Boolean operations and inverse homomorphism and contains
{0nln:n>=0}; hence from Theorem 3.12, RUD_DSPACE(logn), so RUD=
U {crj j => 1} DSPACE(log n). If in addition the linear hierarchy is finite, then there
is some k such that RUD=crk =DSPACE(Iog n), contradicting Proposition 4.4;
therefore the linear hierarchy must be infinite.

5. Summary. We have seen two characterizations of the rudimentary relations
that are restricted versions of characterizations of the arithmetical sets. For the
characterization RUD= NL*({}), the analogy between the two classes of relations
follows through to the levels of the linear and arithmetical hierarchies, defined either
using "r.e. in" or using alternations of quantifiers, with suitable restrictions in the
linear case.

A question arises from the characterization of RUD given in Theorem 3.12: can
any rudimentary (but nonregular) language be used in place of {0 1 :n => 0}? Or is
there a family of languages lying strictly between the regular sets and RUD that is
closed under the Boolean operations, inverse homomorphism and length-preserving
homomorphism? A related question is whether any nonregular context-free language
generates all the context-free languages under these operations.

Another set of questions concerns the structure of RUD, whether, e.g., a
representation as in Theorem 4.3 holds for all of RUD, with some language A in place
of Ak. From Proposition 3.1 and Theorem 4.3, each class o’k is a "principal AFL" [8];
therefore the linear hierarchy is infinite if and only if RUD is not a principal AFL
(although it is an AFL). Also, if RUD is not principal, then RUD is properly
contained in DSPACE(n).

Two extensions are possible. First, as in [26], [28], the results can be translated
into polynomial bounds, to investigate the polynomial hierarchy [24] and the class of
"extended" rudimentary relations [2]. Second, the results can be "relativized" by
considering an arbitrary language A in place of the empty set. With a natural
definition of "rudimentary in A" and RUD(A) (where RUD= RUD()), it can be
shown that RUD(A)=NL*({A}) and, when A is added to the basis sets, that
Theorems 3.12 and 4.2 hold.
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FINITE CAPACITY QUEUING SYSTEMS WITH APPLICATIONS
IN COMPUTER MODELING*

A. G. KONHEIM’ AND M. REISER"

Abstract. A queuing system with a buffer of unlimited capacity in front of a cyclic arrangement of two
exponential server queues is analyzed. The main feature of the system is blocking, i.e., when the population
in the two queues attains a maximum value M, say, new arrivals are held back in the buffer. The solution is
given in form of polynomial equations which require the roots of a characteristic equation. A solution
algorithm is provided. The stability condition is given in terms of these roots and also in explicit form.
Limiting cases which are of practical interest are discussed. These limiting cases lead to a better under-
standing of some popular approximation techniques.

Key words, queuing systems, blocking, finite waiting room, generating function method, multi-
programming with job queue

1. Introduction., The system control programs of multiprogrammed computers
are typically built around two queues, often called eligible queue and multiprogramo
ming queue. Jobs in the eligible queue are ready to receive service but must wait while
jobs in the multiprogramming queue are those actively sharing the resources CPU,
channels and I/O devices. A component of the system control program, called the
scheduler, regulates the flow of jobs in and out of the multiprogramming queue. This
situation is depicted schematically in Fig. 1.

The reason for multiprogramming is to make use of resources which can be
utilized in parallel. However, in order to avoid inefficiencies, the number of jobs in the
multiprogramming queue, called the level of multiprogramming, needs to be carefully
controlled. This control is one of the functions provided by the scheduler.

In this paper, we shall analyze the model of Fig. 2(a) with a fixed upper level of
multiprogramming denoted by M. The EXECUTE box of Fig. 1 is replaced by two
servers, server 1 representing the CPU .and server 2 representing a typical I/O device
(such as a paging device, for example). The CPU queue and the I/O queue together
make up the multiprogramming queue. After completion of a compute interval of the
CPU, a job either leaves (probability 7T1,3), joins the I/O device (probability 77"1,2)or
goes back to the eligible queue once more (probability 1--Trl,3--Trl,2). The cyclic
arrangement of CPU and I/O queues corresponds to the alternating sequence of
compute and I/O intervals which typically characterizes the behavior of computer
programs (also called jobs). We may also allow jobs to depart after having received an
I/O service (probability 7"/’2,3). In our model, the scheduler simply checks the level of
multiprogramming K, say, upon arrival of a job. If K <M, the job is admitted at the
CPU; if K- M, the job is held back in the eligible queue which is then said to be
blocked. Note that this operation of the scheduler is typical for conventional multi-
programmed computer systems where the fixed upper level of multiprogramming
corresponds to a certain number of initiators. In the case of virtual memory systems,
M is often allowed to fluctuate. However, storage constraints impose an upper level in
this case too.

The probability assumptions we make are Poisson arrivals (with rate A) and
independent exponentially distributed service times (rate/z 1, /2,2 respectively).

Traditionally, the EXECUTE box of Fig. 1 is analyzed by closed queuing models,
often called central server models [8]. A closed model implies a fixed level of

* Received by the editors February 19, 1976, and in final revised form September 9, 1977.
5" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
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multiprogramming. While the closed models were quite successful in their prediction
of CPU utilization and throughout they are not capable of analyzing overall delay
times. In order to get an estimate of the time spent in the WAIT box of Fig. 1, closed
models are sometimes combined in a hierarchical manner [6], [7]. Such hierarchical
models, however, are only approximations to the true solution. It is our objective to
give an exact and analytical solution. We realize, that our model is still idealized. The
Poisson source, the stochastic routing rule, the exponential servers and the limitation
to only one job class may all be challenged. However, since a realistic model seems
quite intractable, we feel that we have to approach the problem with a series of
models, each one typical for one particular aspect. Such analytical solutions, then
provide the foundation for and add credibility to approximate models.

Our analytical treatment in fact yields insight into the systems behavior over the
entire parameter space. We shall isolate the average number of cycles in the CPU-I/O
loop as the most critical parameter. Depending on this parameter, the system either
exhibits complete hierarchical decomposability or may not be decomposable at all.
We conclude that for the range of parameter values typical for computer systems, the
hierarchical modeling technique is quite accurate.

There are only a few solutions to queuing systems with blocking in the literature.
A special case of the system in Figs. 2(a), 2(b) has been analyzed in [1]. Results
without feedback, but under more general statistical assumptions at server 1 are found
in [2] and for the special case of M 1 in [3].

SCHEDULER

ELIGIBLE
QUEUE "/ WAIT

MULTIPROGRAMING
QUEUE /
/

EXECUTE

NO

FIG. 1. Schematic diagram of the structure of a multiprogrammed computer system.

2. Analytical results.
2.1. Problem iormulation. We shall study the exponential service queuing system

5t of Fig. 2(a). The state at time is defined to be the vector valued random variable
Xt- (X1), Xz), X3)) where Xi) is the number of jobs waiting or in service at the/th
queue. Since always either

(i) 0_-<X1) -+-X2) -<M and X3) --’0, or
(ii) X) +X2) M and X3) > 0,

we can reduce the dimensionality of the state by defining Yt=(Yx), y2))where
yfl) xl) +X3) and y2) X2).

We shall only be interested in the stationary state probabilities {P,i} of the process
Y which are defined by Pi,i limt_+o Pr{Y and y2)_.j}. The process Y is an
irreducible continuous time Markov process: hence {Pi,i} always exist.
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WAIT

IIII
X(:s)

X(1)+X(]_<M

EXECUTE
"1

X(I)
j

X()-
L ..J

FIG. 2(a). The queuing system S#M as it relates to the block diagram o]’Fig. 1. Note that we may also allow
departures from the I/0 server (not depicted).

X
(:)

X
(I)

y(’)

FIG. 2(b). The queuing system M with full generality 0]’ routing. The meaning 0]’ the parameters are:
1,/x:z: rates 0]’ the exponential service processes, ’rrl,3: probability of leaving after a CPU service, "rrl,2:
probability 0]’ requiring an I/0 service atter a CPUservice, 1 "rrl,2- "rrl,3: probability o]’joining the wait queue
atter a CPU service, "rr2.3: probability 01 leaving a]ter an I/0 service, 7r2, probability o] requiring another
CPU service after an I/0 service, 1- ’rr2,- "rr2,3: probability 0]’ joining the wait queue a]ter I/0 service, A:
arrival rate, rate 0t departure process ]rom CPU, rate 01 departure process from I/ O, a2: rate o] arrival
process at the I/0 server,/2: rate o[ process routed trom I/0 to CPU, M: capacity (X(1) + X(2)<-M).
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The stationary probabilities satisfy a system of linear equations. For simplicity of
notation, we define ca =/2,17"/’1,3, a2--/.17"/’1,2, fll --/A,27"g2,3 and/32 =/./,27"/’2,1 We will also
assume, that the rates/Xl and/x2 are normalized such that A 1. There results

(la)
(1 + aa + a2 if"1 + fl2)Pi,j Pi-l,i "k- fl2Pi-l,i+l d" [lPi,i+l

+OglPi+,i+oz2Pi+l,i_l (O<i <o, O<]<M),

(lb) (l+fll+fl2)Pi,M--Pi-l,M+Ot2Pi+l,M-1 (0< <eo),

(lc) (l+al+aZ)Pi,o=Pi_l,O+zpi_,l+lPi,a+oaPi+,o (0< <co),

(ld) (l++2)po,i=apo,i+x+ozxpa,i+o2px,i-x (0</<M),

(le) (1 + fll nt-/2)P0,M a2Pl,M-1,

(lf) P0,0 I1P0,1 q- alP1,0.

The system (1) is homogeneous and hence always admits the solutions pi,j =0
0<_-i< and 0<_-/"<-M. Under certain conditions, however, a nonnull absolutely
surnrnable solution exists (i.e., pi,j # 0 for some and/" and i,i ]pul < ). If such a solution
exists the system is said to be stable, unstable otherwise. If (1) admits a stable solution,
then the {Pu} are strictly positive and the proper probabilities are found after nor-
malization of this solution, i.e.,

(2)
i=0/=0

The unconstrained solution of oW is well known. If we set M oe and omit
equations (lb) and (le) from the set of equations (1) we find that the probabilities {Pu}
satisfy the simple product-form solution

(3)

with

(1- p,)(1- pz)ppi2
P’i= 0

if/91 < 1 and/92 < 1,
otherwise (for >= 0, j >= 0)

and

(5) 02 fll "-F (ill -{" fl2)1.
02

To study (1), we introduce generating functions as follows:

(6) Pi(z) E PiaZ (0 <- ] <- M),
i=0

where z is a complex variable of modulus at most one. The linear system (1) translates
directly into an equivalent system, namely

(7) F(z)P(z) A(z)_po

where P(z)= [Po(z ), Px (z ), .,Pt(z)]’, _po= [po,o, po,a,’",po,t]’, r(z) is the
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(M + 1)x (M+ 1)matrix

-bo(z)
uOl2

(8)

-c(z)
b(z)
012

A(z) is the (M + 1) x (M + 1) matrix

-d(z)- d(z)
uOl2

(9)

-c(z)
b(z) -c(z)

d(z)

b(z)

0 -a2 d(z) 0

2 0

and b(z), c(z), d(z), bo(z), bM(Z)polynomials, defined by

-c(z)
bM(Z)-

(10) b (z) -a + (1 + a + 2 "[- + 2)Z Z
2

(11) C(Z)=lZ "b2z2,

(12) d(z)--al +(Ol +a2)z,

2(13) bo(z) -121 +(1 +al +a2)z -z

and

(14) bM(z)=(l+Ba+2)z--z.
Since __P(0)=po we obtain from (7) [F(0)-A(0)]po=0. However, we have F(0)-
A(0)=--0 which leaves P_o undetermined. Clearly, additional conditions are required.

Except for those values z which cause det [F(z)] to vanish, we may write the
solution of (7)as

(15) _P(z)= r-(z)A(z)p_o
or formally

(16) Pi(z) N-(p_o, z )/DM(z ), 0 <= ] <- M,

where Du(z)= det [F(z)] is a polynomial of degree 2M and N.(p_o, z) is a polynomial
of degree at most 2M-1 which is a linear functional of po. Now by definition, Pi(z)
(0-<] =<M) is required to be analytic inside the complex unit disk {z" Iz[ < 1} and
continuous on its boundary {z’[z[= 1}. Therefore if the characteristic equation
Du(z)--0 has any roots in the closed unit disk we require the numerators N.(_po, z)
(0=<] <=M) to vanish at those points. Thus each such root, sr say, provides one
additional condition N.(po, sr) -0 on _P0.

We shall subsequently give a recursive derivation of D(z) and show that if9 is
stable we always have the right number of independent equations to determine p0.
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2.2. Recursive solution. The tridiagonal form of A(z) allows us to simplify the
solution of (7). By means of successive backward substitution, we can express P(z)
(0-<_] <M) in terms of P(z) and the boundary values {po,-, po,-2,""" Pod}. A
straightforward computation yields

M-1

(17) Pi(z)= AM-i(Z)PM(Z)+ E Po,iAI-i(z)
l=]

where {Ai(z)} are polynomials defined recursively by

(18a) Ao(z)= 1,

(185) A(z)= b,(z)/o,,

(18c) Al(Z)-’l---[b(z)Al_x(z)-c(Z)Al_2(z)] (1 <l <oo).
2

A relation for PM(Z) is found by substituting P(z) and Po(z) as given by (17) into the
first equation of (7). We find the relation

-c (z)P(z ) + bo(z )Po(z ) d(z )po,o

[-c(z)A-l(Z)+ bo(z)AM(z)]Plvt(z)

+ [-c (z)AM-z(Z)+ bo(z )AM-1(Z)]P0,M-

+ [--C (Z)AM-3(Z + bo(z)AM-2(z )]Po,M-2

+’’" + [b0(z)- d(z)]po,o 0.

It is easy to see, that polynomials bo(z)-d(z) and -c(z)A(z)+bo(z)al_(z)
(l 1, 2,. .) have zeros at z 0 and at z 1. We define therefore

Do(z)= [bo(z)-d(z)]/(z(z 1))= 1

(19)

(20)

and

(21) Dl(Z)-- [bo(z)Al(Z)-C(Z)Al-l(Z)]/(z(z 1))

Now, we may rewrite (19) as follows

(22) PM(Z)=

(0< l<o).

po,oDo(z)+po,xDa(z)+ +Po,M-1DM-I(Z)
DM(Z)

The polynomials {Di(z)} are linear combinations of the recursively defined poly-
nomials {Ai(z)}. Hence, they satisfy the same recursion with the following initial
conditions

(23a) Do(z) 1,

(23b) DI(Z)= __1 [_(a+a)+(l+a+a2+a3++B2)z_z2],
O2

(23c) D,(z)=I---[b(z)D,_I(Z)-C(z)D_2(z)] (1 <l <co)
O2

where 8 {T1(1 -+- 2)nt- a21.
Equation (22) expresses PM(Z) in form of a rational function. The analyticity

argument yields for each root sr of DM(Z)= 0 which is inside the closed unit disk (i.e.,
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Irl-< 1) a linear relation for the {p0,i}, viz.

M--1

(24) E po,,D,(()= O.
I=1

2.3. The characteristic equation. Further study of the problem requires informa-
tion about the roots of the characteristic equation DM(z)=O. We introduce the
generating function

(25) @(z, w)-- E WIOl(Z)
/=0

for which we obtain from the recurrence (23)

1-w/o 1-w/o
(26) @ (z, w)

1 (b(z)/a2)w + (c(z)/c2)w 2 [1 w/r+(z)][ 1 w/r_(z)]

where r/(z) and r_(z) are the roots of the quadratic a2-b(z)w+c(z)w2=O. DI(Z)
can be obtained from (26) by partial fractions. In general, such a partial fraction
expansion does not yield rational results. There are, however, some special values of z
for which closed form expressions for Ol(z) can be obtained. We summarize those
results in

LEMMA 1. For 1, 2,. we find
(27) Dl(Z)--’(--1/O2)lz2l+o(z 21-1) asz-oO,

(28) Dl(0) (1 nt-/Ol. 1)(--Ogl/Ol2)l,

[ Pl-- I (P---Z)I-- p2--1
ifpl C p2,

(29) Dl(1) ,Pl -/92 /91 -/92

(l + 1)- lip ifp [91

[2 1 131 ]l(30) DI(P-(a )
1 if- 2 [21 1 nt- 2

and

(31)

with

[ ?.+_.1_ 1]’Ol(p-l )
I-61 -’t- o2 3

(32) /9; =/1 + (1 +/32) al
ce+a2

Proof. Equation (27) follows directly from the recursion (23). The proof of (28) to

(31) requires straightforward but extremely tedious computations. We found the use
of an automatic symbol manipulation system [4] an essential help.

LEMMA 2. Assume 01 < 1 and 02 < 1. Then, there exists an integer l*, say, such that
Dl(1)>--O for 0<=1<=1* andDl(1)<O for l*<l<oo.

Proof. Assume that pl<p2. Then A--(pl-1)/(pl-O2)>O, B=(p2-1)
q"(O1--O2)>0 and y=pl/p2<O. Dl(1)=Ay-B is monotonically decreasing
with I. Since D/(1)> 0 and Doo(1)< 0, an 1" with the properties of Lemma 2 exists. We
assume now that 01>/92 Then A<0, B<0 and 3,>0. DI(1)=B-AT is again
monotonically decreasing. The existence of I* follows from the fact that Do(l)= 1 > 0
and Doo(1)=-o0 < 0. Finally, it is easy to see, that 1" also exists for pa p2. Q.E.D.
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LEMMA 3. 02 and 03 are related as follows"
03 >= 1 =>p2 >= 1 and 03 < 1 :>p2 < 1.

Proof. Define rrl,3/(rrl,3+rrl.2)=al/(al +a2),
/31/(/31 +/32), t22 =/x2(rr2,3 + rr2,1) and

0 77"2,3/(71"2,3 -!- 77"2,1)

(33) x()= [o +/( )1,

(34) y()= :[o + (a o)] +.
Clearly pl x() and pl y(). The parameters are constrained by b2 )0, 0 0 __--<
1, 0_-< <-1. The curve x() vs. is a hyperbola, y() vs. is a straight line. x()
intersects y() at 1 0 and 2 (1 i1)/(/.2 "+" 1 --i1). The corresponding function
values are x(1) y(1) =/31 and x(2) y(2) 1. The assertion of Lemma 2 follows
easily by arguments from elementary calculus (which we omit). Q.E.D.

Define r/_ min {p-l, pl} and rt+ =max {O-, pl}. We are now ready for
TI-IEOREM 1. Assume’al > O. Then DM(Z)= 0 has 2M real and single roots

’M.2, ", ’M,-I, rt,l, rt,2, , riM,M+1 which have the following properties:
1) There are M roots in (0, q_) andM roots in (q+, co) which interleave as follows

with the roots Of DM-l(Z):

and

’O+ < 7M,2 < 7"/M-1,2 <

2) There are at least M- 1 roots in (0, 1), viz.

0<’M.I(’M,2 <" "((M.M-I<I.

Proof. 1) Let be a quantity sufficiently large Then by Lemma 1, sign [Dl(t)]
(--1)1, DI(rl+)>O, Dl(l-)>O and sign [D(0)] (-1)g. Assume that D/-2(r) 0. Then,
since c(z)> 0 for all 0< z < co we have sign [Dr(()] =-sign [D_2(r)].

2) Dl(Z)=0 has two roots 0<rtl,l<rt- and rt/<rtl,2<co since DI(0)<0,
Dl(rt-)> 0, Dl(rt/)> 0 and Dl(x)< 0.

3) D2(z)=0 has four roots which interleave with the roots of Dl(Z)=0, viz.
0 < sr,l < rtl,1 < r/2,a < rt- and r/+ < rt2,2 < rtl,2 < rt2,3 < co. This follows the fact that
Do(r/i,1)= Do(r/,2) 1 >0 and hence D2(0)>0, D2(rtl,1)=-c(r/,l)<0, D2(r/-)>0;
D:(+)> 0, D2(/1,2) --C (f/1,2) < 0, Dz()> 0.

4) The fact that DM(Z) has 2M roots which interleave with the roots of DM-I(z)
is proved by induction. We assume that DM-(z) and DM-z (z) have interleaving roots.
Then we find the following signature of DM(Z):

D(rt-)> 0,

DM(’OM-I,1)< O since DM_2(’rlM_I.1) > O,

DM((M-1,M-2)> O

(--1)MDM((M-I,1)<O

since DM-2((M-1.M-2)< O,

since (- 1)MDM-2((M-I,)> 0,

(--I)MDM(O)>O
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and

DM(r/+)> 0

DM(’rIM-1,2) < O

DM(nM-1,3)>O

(--1)MDM(*?M-1,M)<O
(--1)D(K)) O.

since DM-2(M-1,2)> O,

since DM-2(’qM-1,3) < O,

since (--1)MDM-2(rIM-1,M)> O,

We have accounted for 2M sign changes and hence for 2M real and single roots which
interleave with those of DM-I(Z) 0.

5) If r/_<_-- 1, then assertion 2)of Theorem 1 clearly holds. So let us assume r/_> 1
which implies pl < 1 and p3 < 1 and by Lemma 3 also 02 < 1. Now by Lemma 2, we
know that an l* exists, such that Dr(i)_->0 for O<-l<-_l* and Dr(l)<0 for l* </<co.
We now refer to Fig. 3. From the interleaving property and from the signs of {D(1)}
follow that exactly one branch {r/,l, 1, 2,...} crosses the line z 1. This implies,
that the M-1 roots (M,1, (M,2,’’’, M,M-1 are below z 1 and hence in the interval
(0,1). Q.E.D.

If c =0 then ’=0 becomes a multiple root of D(z)=0. The interleaving
property still holds for the remaining nonzero roots. Since this case was treated in
detail in [1], we omit its discussion here for the sake of brevity.

0.4

0.2

0.I

FIG. 3. Roots of the characteristic equation DM(z) 0 vs. M. The parameter values are c 1.2, ll 0,
#2--3.
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2.4. The existence of a stable solution. It is the object of this section to investi-
gate conditions under which a stable solution exists and to show that for a stable
the boundary values can be obtained from the following system of linear equations

M-1

(35) E po,lD,((,,) O,
/=0

k=l,2,...,M-1.

Our main result is summarized in
THEOREM 2. The system 6M has a stable solution if and only if the characteristic

equation DM(z) has exactly M-1 roots ,1, (t.2, (t,IVt-1 in (0, 1). In this case,
the system of linear equations (35) determines positive boundary values {Po,i} up to a
constant factor, which follows from normalization.

Proof. Necessity. 1) Assume that 6et is stable and that D(z) 0 has K >M 1
roots in (0, 1]. Then (35) is augmented by the conditions

M-1

(36) Po,lOl((M,k) 0,
/=0

k=l,2,... ,K-M+1.

We assert that no positive solution {p0,} exists which contradicts the assumption of
stability.

2) Assume on the contrary that a positive solution does exist. Then from the first
equation of (36) (i.e., k 1)we have

M-1

(37) 2 po,D(z) 0
/=0

as z r/t, (from above).

But from the interleaving property of the roots and from Dl(*l-)>O we have
Dt(rtt,1)> 0 for 0 <- <M which contradicts (37).

Sufficiency. 3) We consider now the case that Dirt(z) has exactly M-1 roots
’t,1, rt,2, , srt,t-1 in (0, 1). Then (35) provides M- 1 equations for M unknowns,
hence a nonnull solution always exists.

4) A solution _P0, say, of (35) makes the {Pi(z)} defined by (17) and (22) analytic
inside the unit disk and continuous on its boundary. Therefore, values {Pi,i} can be
obtained which are L1-bounded and which are also a solution to system (1). But by the
theory of Markov processes, (Foster’s Theorem) a L1-bounded solution must also be a
positive solution.

5) It remains to be shown that _po (po,1, Po,2, Po,t-1) is determined by (35)
up to a constant factor.

6) Assume on the contrary, that another vector q =(ql, q2,’", qt-1) exists
which satisfies (35) and which is linearly independent of the vector of possible
components po. We assert, that an e positive and sufficiently small can be chosen such
that (1-e)_po+e_q substituted for _/2o in (22)also defines a positive solution to (1). But
this cannot occur since the {pi,i} are uniquely determined.

7) To show the existence of such an e, we rewrite (16) in form of partial fractions,
viz.

(38)
Pi(z) 2 z ipi,i Ni(po, z)/DM(Z)

i=0

M+I

Z z’ Z R(eo)n
i=0 k=l
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where the {Ri,k(P0)} are linear functionals in P0. A continuity argument shows that

E z’ E Ri((1 e)p_o+eq)p’
i=0 k=l

also defines a positive solution to system (1) for e sufficiently small.
COROLLARY 1. If Pl < 1 and p2 < 1, then 6M is stable iffDM(a)< O.
Proof. By Lemma 3, pl < 1 and p2 < 1 implies r/_ > 1. Hence there are at most M

roots in (0, 1). Thus, stability requires, that the largest of these roots, r/M,1, falls into
1 < r/M.1 < r/_. Since DM(I-)> 0 this requires DM(1)< 0. Q.E.D.

COROLLARY 2. The stability of , i.e., the condition pl < 1 and p2 < 1 is a
necessary condition for stability of 6M. Furthermore, if is stable, there exists an M*
such that 6M is stable for M* <M< and unstable for 0 <-M <= M*.

Proof. Assume that 6eM is stable and that pl => 1 or p2 => 1. This implies r/__-< 1
(Lemma 3). But r/__< 1 implies that there are at least M roots in (0, 1] which
contradicts the assumption of stability. The existence of M* follows from Corollary 1
and Lemma 2.

The property of stability is a condition on the parameters h, /-1, /-/,2, {TTi,i} and M.
We give an explicit form of this condition in

COROLLARY 3. 6eM is stable if and only if

where

(39) AM

AM>h--1

M M
Pl --P2
M+I M+I

Pl --P2

M 1
M+lp

ifpl P2,

ifp Pl P2.

Proof. Assume 01Y 02. We may rewrite (39) as follows

Clearly AM > 1 implies Pl < 1 and 02 < 1 as M->oe. Therefore by Corollary 1, DM(1)<
0 is a necessary and sufficient condition for stability. A simple computation shows that
DM(1) as given by (29) may be written as

1 -(p1/02)M+I
(41) DM(1) [1 --AM].

1 --Pa/P2

Since the first term of (41) is always positive

(42) DM(1)<0 implies 1--AM< 1. Q.E.D.

The region of stability in the (01, p.)-plane is depicted in Fig. 4 for various values
of M.

Corollary 3 has a simple physical interpretation in terms of the system owM. The
quantity AM in (39) is the departure rate of the saturated system and Corollary 3 states
simply that for stability, the arrival rate A must be smaller than this (maximum)
departure rate AM. For a more general class of systems without feedback, this inter-
pretation of the stability limit is found in [5].

If the system 5M is saturated, then each job departing from stage 1 is immedi-
ately replaced. Thus, the two servers act as a detached closed queuing system with

1-(02/p1)M 1 1-(pl/p2)M 1
(40) AM l_(p2/Pl)M+l Pl 1--(Pl/P2)M+I P2
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population M. In this case, AM is the throughput of the branch labeled zrl,3 in Fig. 5. It
is a simple exercise to derive (39) from the well known solution of the closed
exponential server system.

--8
0.8

:4

0.6 = 2

M=I

0.4

0.2

0.2 0.4 0.6 0.8 1.0
FIG. 4. Stability chart for various values ofM. 5ft is stable, if its operating point (pa, 02) lies towards the

origin of tire stability curves.

XM THROUGHPUT
II

FIG. 5. A closed queuing system related to the stability condition of Corollary 3.

2.5. Algorithmic solution. If is stable, then by (35) we have a set of positive
boundary values which make {Pi(z):O<-_j<-M} analytic inside the unit disk and
continuous on its boundary. By considerations given in 2.1, we know that the
functions {Pi(z): 0 =<]-<M} are proper rational functions in z. Hence we may obtain
{Pid} by partial fractions as follows

M+I

(43) Pid 2 -iR,krl M,k (0 <-- j <-- M)

where Ri,k N(rlM,, )/D’(rIM,, ).
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(44)

It is not difficult to see, that

Ri,, AM-i(rIM,k )RM,, (0<]<M).

We are now ready to summarize the solution in algorithmic form:
Step 1. Calculate the polynomials {Di(z): 0 <= j <= M} using the recursion (23).
Step 2. Check for stability (i.e., pa < 1, p2 < 1 and DM(1)< 0). If 5e*M is unstable,

then stop (Corollary 3).
Step 3. Determine the roots of the characteristic equation DM(Z)= O.
Step 4. Determine a solution {p0*j, 0<-j-_<M} of (35).

M-l"Step 5. Compute NM(Z) /=0 Po,lDl(Z).
Step 6 Compute the residues {RM,k --NM(O-1M,k)/DM(PlVt,)" 1 <= k <=M + 1}.
Step 7. Compute the polynomials {Aj(z):O<=] <=M} using the recursion (18).
Step 8. Compute the residues {Ri, AM-i(rtM,)RM. 0 --</" < M}.
Step 9. Obtain the normalization constant

M M+I

G Y. R,/( --TIM,k).
/’=0 k=l

=yy+xStep 10. The solution is Pi,i Ri,krI M,k/ G.
It is not difficult to implement this algorithm on a digital computer. Polynomials are
conveniently represented as arrays. A set of subroutines for polynomial addition,
subtraction, multiplication and division is useful. A simple root finder is sufficient
since we know that all roots are real and single. Good use can be made of the
interleaving property of the roots. We found APL to be particularly well suited for this
kind of problem.

3. Numerical results, special cases and approximate solution.
3.1. Regimes of operation with numerical examples. We now revert to a dis-

cussion of our original system OWM of Fig. 2(a). From the six parameters M, h, it l, t2,

rrx.3 and 7rl,2, only four play an essential role. Clearly, we can always choose units of
time such that h 1 (as we have done throughout 2). Furthermore, the queue size
distribution is invariant under the transformation

and

/-1 ’’)/-1 -, 1(7gl,3 q-7/’1,2),

77"1,3 "9’ 7/’1,3/(7/’1,2 -[- 7/’1,3)

7r1, -- (1--) 77"1,2/(7/’1,2+7/’1,3)

since a a, a2, 1 and f12 are not affected. M, /-1, 2 and define an equivalent system
without overall feedback. We call such a feedback loop a nonessential loop.

It will be more convenient to use the quadruplet (M, pl, p2, ) instead of
(M, t2 x,/x2, ) since pl, p2 and are restricted to the interval (0, 1). Subsequently, we
consider M to be a fixed parameter. The triplet (pl, P2, q) defines an operating point
of 5eM. We call 5eM nondegenerate, if its operating point is in the domain

tM {(Pl, 02, )" tO1 >0, 02 >0, /M > 1, O< < 1}.

As an example, 64 is depicted in Fig. 6. Clearly, tM contains all possible stable modes
of operations. It is often useful, to interpret as a measure of 03, the average number
of cycles a job makes between server 1 and server 2. The quantities 03 and are
related by

(45) 03 (1- )/.
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We can identify regimes of operations of 5t according to three criteria, namely
1) The ratio 3’ pl/p2. If 3’ is small, then the second server is the bottleneck. If 3"

is around unity, we have a balanced load and if 3" >> 1 then the first server is the
bottleneck.

2) The value of ht. If ht is close to unity, then the operation point is close to the
stability limit and hence 6et is close to saturation. On the other hand, At >> 1
means light load condition.

3) The value of b. b close to zero means a high value of 03, the average number of
cycles. On the other extreme, b close to unity yields small 03.

The expected values of X), X(:) and X(3 for the various regimes are given in Tables
1 (a), l(b) for the cases M 2 and M 4. (See Fig. 6 also.) It is interesting to observe,
that while E{X} and E{X(2} are quite insensitive to changes in b, E{X(3)}, the
average queue length of the buffer may vary strongly with b.

Operating points on the boundary of ?t define degenerate systems 5et.
Meaningful solutions can be defined for degenerate systems only by means of a
limiting process. The following is a list of degenerate cases"

(i) 01 =0 or p2--0. The defining limit is txla) or tz2-o. The solution
becomes that of a simple M/M/1 queue.

(ii) At 1. 5et is saturated and no steady state probabilities exist for X
(X(1), X(2), X(3)). However, one can still define marginal probabilities for (X(1), X(Z)).
In a saturated system, the input buffer is nonempty with probability one. Hence each
departing job is immediately replaced. Therefore the two queues operate like the
closed system of Fig. 5.

(iii) b 0. The defining limit is b 0 such that pl and p2 are constant which
implies txl oo and txz 0. As b 0, jobs circle around queue 1 and queue 2 more
and more and do that faster and faster. In analogy with the processor shared queue
discipline, we call this case "shared processors". We will give the solution in 3.2.

(iv) b 1. The defining limit is b 1 such that pl and/92 are fixed. This implies
/x2 0. Thus as b 1, the second queue is visited by fewer and fewer jobs but these
jobs are likely to be held in service for longer and longer periods of time. We shall give
the solution in 3.3 where we will show that this case is always unstable.

0.50

FIG 6. The domain 74 of nondegenerate systems with M 4. The points in the (/91,/92) plane are used as
operating points in Table (b).
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M=2
=0.1

TABLE l(a)
Average queue lengths of 62 in various regimes (see Fig. 6).

1.05

1.25

10

0.1

10

0.1

1 2 82

1.06 9.54 95.36
1.57 14.17 14.17

10.60 95.36 9.54

1.26 11.35 113.52
1.88 16.87 .758

12.61 113.52 11.35

E{X(1)} E{X(2)} E{X(3)}

1.764 .103 18.214
.941 .941 18.926
.103 1.764 20.168

1.379 .085 2.603
.758 2.778
.085 1.379 2.882

=0.5

1.05

1.25

10
1
0.1

10

0.1

1 2 82

1.06 1.06 10.60
1.57 1.57 1.57

10.60 10.60 1.06

1.26 1.26 12.61
1.88 1.88 1.88

12.61 12.61 1.26

E{X(1)} E{X(2)} E{X(3)}

1.764 .103 18.230
.940 .941 23.454
.103 1.765 35.814

1.379 .085 2.606
.757 .759 3.440
0.85 1.381 5.116

=0.9

1.05

1.25

10

0.1

10

0.1

1 2 82

1.06 .12 1.18
1.57 .18 .18

10.60 1.18 .12

1.26 .14 1.40
1.88 .21 .21

12.61 1.40 .14

E{X(1)} E{X(2)} E{X(3)}

1.764 .103 18.370
939 .942 64.263
.102 1.766 176.650

1.379 .085 2.625
.752 .762 9.420
085 1.385 25.210

3.2. The degenerate system & = 0. In this section, we consider the case of shared
processors, i.e., the limit --> 0 such that pl and p2 are held constant. Since

(46) /-1-" 1/(01)

and

(47) /x2 (1 )/(/xe),

&-->O implies /21->o and tze-->. Substituting al l/p1, a2=(1-)/(pl&), /31=0
and fie (1 )/(pe) into (26) and taking the limit b -->0 yields

1- wipe
(48) (z, w)=

1--(1--pl/P2)ZW +(pl/P2)Z2W 2"

The denominator of (48) has the roots r+(z)=p2/(plz) and r_(z)= 1/z. The poly-
nomials D(z) follow from a partial fraction expansion of (48) as follows:

(49) D(z) gzl-l(z-h)
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M=4
=0.1

1.05

1.25

Pl/P2

10
1
0.1

10

0.1

TABLE l(b)
Average queue lengths of 64 in various regimes (see Fig. 6).

1.05 9.45 94.51
1.31 11.81 11.81

10.50 94.51 9.45

1.25 11.25 112.51
1.56 14.06 14.06

12.50 112.51 11.25

E{X(1)} E{X(2)} E{X(3)}

3.459 .105 16.540
1.833 1.833 17.655
.105 3.459 18.377

2.325 .087 1.675
1.351 1.352 1.981
.087 2.325 1.860

=0.5

1.05

1.25

10

0.1

10

0.1

1 O2 2

1.05 1.05 10.50
1.31 1.31 1.31

10.50 10.50 11.05

1.25 1.25 12.50
1.56 1.56 1.56

12.50 12.50 1.25

E{X"} E{X} E{X}

3.459 .105 16.541
1.830 1.835 22.197
.105 3.460 33.067

2.325 .087 1.675
1.346 1.356 2.484
.087 2.327 3.344

=0.9

1.05

1.25

/91/02

10

0.1

10
1
0.1

1.05 .12 1.17
1.31 .15 .15

10.50 1.17 .12

1.25 .14 1.39
1.56 .17 .17

12.50 1.39 .14

E{X(1)} E{X(2)} E{X(3)}

3.459 .105 16.542
1.823 1.840 63.222
.105 3.462 165.268

2.325 .087 1.675
1.330 1.367 7.033
.086 2.331 16.674

where At is given by (39)and
1 -(Pl/02)TM

(50) gl
1 --(Ol/P2)

It is interesting to note that g is the normalization constant for the closed system of
Fig. 5 with jobs. The degree of Dl(Z) as given by (49) is only M instead of 2M. A
careful study of the limiting process (which we omit) reveals that as -+ 0, r/,g--> m
(2 =< =<M + 1). Thus we have the roots srv, 0 (1 =< -<M- 1), r/,x a and r/,g
oo (2<-i <_-M+ 1). Since now (=0 is a root of multiplicity I-1, the system (35) does
not provide a sufficient number of equations. We augment (35) by

M-1

(51) E poaDk}(o) =0, k= l,2,. ,M-2,
/=0

where Dk}(z) denotes the kth derivative with respect to z. The system of linear
equations (35) and (51) has only two nonzero diagonals. Thus it can be solved in
closed form yielding

(52) po,i p2, O<-j <-M.
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Now we can obtain {pi,j} from (17) and (22) by a straightforward (but tedious)
computation. There results

g-lppi2 if +j <=M,
(53) Pi,j g-p-Pi21 MM--(i+J) if +j >M

where g is the normalization constant. We shall give an interpretation of (53) in 3.4.
Mean queue sizes for the shared processors case are given in Table 2 for the same
parameter values as in Table 1.

TABLE 2
Average queue lengths of2 and 54 in the limit of shared processors (i.e., dp--> 0

such that pl and p2 remain constant).

M=2

AM

1.05

1.25

10

0.1

10

0.1

101 102

.94 .09

.63 .63

.09 .94

.79 .08

.53 .53

.08 .79

E{X’} E{X

1.764 .103 18.212
.941 .941 18.359
1.03 1.764 18.212

1.379 .085 2.603
.758 .758 2.695
.085 1.379 2.603

M=4

1.05

1.25

10

0.1

10
1
0.1

101 P2

.95 .10

.76 .76

.10 .95

.8O .O8

.64 .64

.08 .80

3.459 .105 16.540
1.833 1.833 17.086
.105 3.459 16.540

2.325 .087 1.675
1.352 1.352 1.917
.087 2.325 1.675

3.3. The degenerate system = 1. The opposite of shared processors is the
degenerate system, defined by the limit b--> 1 such that p and p2 are constant. Since

Ix2 (1 b)/(O2b), b -* 1 requires Ix2 - 0. The limits of D (z), b (z) and c (z) are found
as follows

PX 2(54) Ox(z)--[p- +(l+p- )z-z ],

(55) b(z)p71 +(l+pT)z-z2,

(56) c(z)O

where e 1- b. The recursion (23)yields

(/91 2]/.(57) Dt(z )--> \---/ [p-f1 +(1 + p-f )z
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From (57) we find the roots of the degenerate system b 1 as follows: rt,i 1
(I=<i-<M+I), rtM,l=l, r/vt,i=p]

-1 (2-<i-<M+l). Since r/vt,a=l, this system is
always unstable.

3.4 Hierarchical decomposition, an interpretation of the shared processors case.
Define the system population K --X(1)-[-X(2)-[-X(3). From (53)we find

(58) Pr{K k} g gkPz if k -<_ M,
g-lgMotA-k if k >M.

Since/92/I-- gl-1/gl, we may rewrite (58)as follows

(59) Pr{K =k}=
g ifk<_M,

/=1Al

I 1 1----M-k ifk>M.
/=1 Al AM

But (59) is the solution of a M/M/1 system with queue-dependent rates/x(k), which
are defined by

lk if k<--M,
(60) /x(k)=

AM if k > M.

Thus for the degenerate system 5Pvt, b 0 (shared processors)we find the distribution
of the system population identical to the queue size distribution of an equivalent
M/M/1 system, whose rate function is obtained from the closed system of Fig. 5. The
decomposition of Sevt into an open "outer model" (the equivalent M/M/1 queue) and
a closed "inner model" is shown schematically in Fig. 7. It is easy to obtain the

OUTER MODEL

INNER MODEL

FIG. 7. Schematic representation of a hierarchical decomposition oft.
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marginal distribution Pr {X(3)-- i} from (59). The marginal distributions Pr {X(1)= i}
and Pr {X(2)=/’} are found as a weighted sum of the M closed system solutions.

The decomposition of a queuing system with blocking into an open outer model
and a closed inner model is frequently used in practice to get approximate solutions
for more complicated networks with blocking [6], [7]. For the example of 6et, we have
now given the precise condition under which such approximations are valid, namely
that b be small or in other words, that the average number of cycles be large. The
accuracy can be estimated from the graphs E{X(3)} vs. 4’ which are given in Fig. 8.

40

10

0.2 0.4 0.6 0.8

FIG. 8. Average queue size of the buffer vs. cb for M. The value for dp 0 is the one obtained by a

hierarchical model.

4. Conclusions. We have given an analytical formulation of the blocking problem
in terms of generating functions. This technique is applicable to other blocking
systems. For example, the rate of the servers may be made a function of their local
queue size. Other blocking mechanisms, too, can be considered such as buffers with
resume levels, i.e., service resumes only after the population in the finite capacity
subsystem has shrunk below a resume threshold N (N <-M). The generation function
method, however, becomes impractical if the dimensionality of the limited capacity
systems goes beyond two (e.g., two I/O servers).

An alternate method is of course a numerical solution of the system of linear
equations (1). A suitable truncation of the y(2) dimension is required. Such a system
may be interpreted either as a loss system of a finite source system. We have obtained
such numerical solutions by standard elimination methods for block tri-diagonal
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systems [9]. Such finite systems do exhibit similar behavior especially as the sensitivity
to the parameter & is concerned. Our results will be discussed in detail in a different
paper.

We wish to comment, however, that it was the analytical solution which yielded
considerably more insight. The so-gained intuition has led us to pose the appropriate
questions to a numerical model. It is very unlikely that we would have found the
fundamental influence of & by purely empirical methods.

Acknowledgment. The authors are grateful to the help of J. H. Griesmer and R.
D. Jenks with the SCRATCHPAD system. Symbolic computations have helped at
various places.
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PARALLEL COMPUTATIONS IN GRAPH THEORY*

ESHRAT REGHBATI (ARJOMANDI)" AND D. G. CORNEIL$

Abstract. In parallel computation two approaches are common, namely unbounded parallelism and
bounded parallelism. In this paper both approaches will be considered with respect to graph theoretical
algorithms. The problem of unbounded parallelism is studied in 2 where some lower and upper bounds on
different graph properties for directed and undirected graphs are presented. In 3 we mention bounded
parallelism and three different K-parallel graph search techniques, namely K-depth search, breadth-depth
search, and breadth-first search. Each parallel algorithm is analyzed with respect to the optimal serial
algorithm. It is shown that for sufficiently dense graphs the parallel breadth-first search technique is very
close to the optimal bound.

Keywords. parallel computation, graph algorithms, graph connectivity, depth-first search, breadth-first
search, breadth-depth search, dense graphs

1. Introduction. ,The problem of parallel computation has been considered from
two different points of view. One is to permit some fixed number, say K, of processors
to be available. This notion is called bounded parallelism, K-parallelism or K-
computation. For a given problem assume that the current best time bound for
sequential computation is 7" steps. Our goal then, is to have a 7"/K step K-parallel
algorithm. Trivially, any K-parallel algorithm which requires fewer than T/K steps
yields an improved serial algorithm. The second case, which is referred to as unboun-
ded parallelism, involves an arbitrarily large number of processors being available. In
this paper we will be looking at both approaches. Much work in producing and
analyzing parallel algorithms has been done in different areas, such as matrix cal-
culations [7], [14], sorting [3], evaluation of polynomials [13] and arithmetic expres-
sions [6], etc. Definitions not given in this paper are standard and may be found in
Harary [8]. Throughout the paper, K refers to the number of processors, n refers to
the number of nodes of a graph, and all logarithms are to base 2.

In analyzing parallel algorithms it is necessary to clearly define the model of
computation. Although many parallel computers (such as the CDC Star 100, Bull
Gamma 60, and Illiac IV)could be used as the model of computation, for many
problems a more flexible and powerful theoretical model is essential. The model used
in this paper for unbounded parallelism is as follows"

The model consists of sufficiently many identical processors and a sufficiently large
memory with unrestricted access. Each processor is capable of performing Boolean and
comparison operations in unit time. This unit time is called a step. It is assumed that the
input data is stored in the memory before the computation starts. Each processor takes its
operands from the memory and after a step stores the result in the memory. At any unit of
time only one processor may change the contents of any one memory location. The
parallel complexity of the computation is the number of steps used to produce the output
in the memory.

The above model is very similar to that used by other researchers [7]. The model
used for bounded parallelism is a slight modification of the above model. Namely, it is
assumed that K identical processors, each being capable of performing arithmetic
operations and comparisons, are available.

* Received by the editors December 11, 1975, and in revised form June 10, 1977. This work was

supported by the National Research Council of Canada.
N620R, Department of Computer Science, York University, Downsview, Ontario M3J 1P3.
Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A7.
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In 2 we prove some lower and upper bounds on the complexity of algorithms for
determining different graph properties for directed and undirected graphs. All the
lower bounds are lq(log n) and upper bounds are O(log2 n). The number of pro-
cessors used for achieving these upper bounds is n 3.

Many different serial graph algorithms employ depth-first search. In 3 we
introduce and analyze various K-parallel graph search techniques. Two cases are
distinguished, namely h-sparse and h-dense graphs. By an h-dense graph it is meant
that the number of edges in the graph is >= h n/2. For each of the K-parallel search
techniques, a value f(K) is determined so that for h-dense graphs where h >f(K), the
particular K-parallel technique is superior to any serial search technique. A graph is
called h-sparse if the number of edges is less than n. hi2. It is shown that for
sufficiently dense graphs two of these parallel search techniques achieve bounds which
are very close to optimal. By optimal we mean that if an optimal sequential algorithm
takes T units of time, then our K-parallel algorithm takes T/K + (small lower order
terms) units of time. In K-parallel search algorithms the key point is to assign
processors to the edges emanating from a node rather than to different nodes. Namely
when the graph is dense enough, a better bound is achieved by keeping the processors
busy looking at the edges. In the case of h-sparse graphs since there aren’t enough
edges emanating from a node to keep the processors busy we have to start looking at
more than one node at a particular time. In [1] we have presented a few pathological
cases which show how some techniques for assigning processors to the nodes behave
badly. Hence the question of handling h-sparse graphs in the case of bounded
parallelism remains unsettled.

2. Some lower and upper bounds for unbounded parallelism. Among all the
known graph representation structures, the adjacency matrix seems to be a proper
data structure in the case of unbounded parallelism. One reason is that checking the
existence of an edge is very fast and does not involve any search; another reason is
that because of the large amount of parallelism in matrix manipulations we can view
the graph as a Boolean matrix and try to interpret graph problems as matrix manipu-
lation problems. In this section it is assumed that the graph is represented by an
adjacency matrix A.

In the following we present some lower bounds for the complexity of algorithms
for determining different graph properties. In the proof of Theorem 2, algorithms
which determine various connectivity properties are presented. The output from all
these algorithms is an integer vector INDEX and a Boolean matrix. The nonzero
elements of INDEX are row numbers of the Boolean matrix which represent the
connected components.

In proving lower bounds for unbounded parallelism, the following result (referred
to as the fan-in theorem) is often used:

THEOREM 1 (Munro and Paterson [13]). Suppose the computation of a single
quantity Q requires q >-_ 1 binary arithmetic operations. Then the shortest K-computation
of Q is at least

[((q+ 1)-2rlga)/K] + [logK]steps ifq>-2 rg:,
and

[log (q + 1)] otherwise.

As defined by Knuth [12]’ 12(f (n )) denotes the set of all g(n)such that there exist positive constants c
and no with g (n)>= c f (n) for all n >-no.
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Most efficient serial graph algorithms assume that the graph is represented by a
list of adjacencies which is normally in the form of a linked list. It is easily seen that
O(n) steps are necessary and sufficient for an unbounded parallel algorithm to
transform a (linked) list of adjacencies to an adjacency matrix. To transform an
adjacency matrix to a (sequential or linked) list of adjacencies O(log n) steps are
necessary and sufficient (the necessity follows from the fan-in theorem).

Many researchers have studied the problem of determining lower bounds for the
serial computation of various graph properties under the assumption that the graph is
represented by an adjacency matrix. The following result follows immediately from a
result by Kirkpatrick [11]"

COROLLARY 1. TO determine any nontrivial digraph (undirected graph) property,
in the worst case, at least 2n-2 (/- n-2) entries of the adfacency matrix must be
examined.

From the fan-in theorem one immediately sees that in unbounded parallelism a
lower bound of flog n] +c (c a constant) is obtained for all nontrivial graph pro-
perties. For many classes of graph properties (which include connectivity in undirected
graphs, weak, unilateral, and strong connectivity in digraphs, etc.) various researchers,
namely Kirkpatrick. [11], Rivest and Vuillemin [15], and Best, van Emde Boas and
Lenstra [5] have shown lower bounds of f(n2). For these properties, the unbounded
parallel lower bound is [2 log (n)] -c’ (c’ a constant).

We now turn our attention to determining upper bounds for some connectivity
problems.

THEOREM 2. The following connectivity problems can be reduced in O(log n) time,
using n 3 processors, to c (a constant) transitive closure computations"

finding connected components in an undirected graph

finding weakly connected components in a digraph

finding strongly connected components in a digraph

(c= 1),

(c= 1),

(c 2).

COROLLARY 2.1. The upper bound on the connectivity problems mentioned in
Theorem 2 is O(log2 n).

Proof. The result follows since the best known upper bound on the transitive
closure computation is O(log2 n).

Note that any improvement of the bound for transitive closure computation will
improve the bound for the connectivity problems. In [2] we have shown that the
number of unilaterally connected components may grow exponentially with the
number of nodes. Hence the result of Theorem 2 is not applicable to unilateral
connectivity.

Proof of Theorem 2. We present algorithms which demonstrate the reduction of
connectivity problems to the transitive closure computation.2 We do not present the
proof of correctness or the details of the timing (see [1] for more details).

ALGORITHM 1. Finding connected components in an undirected graph. The first
step of the algorithm finds A*, the reflexive transitive closure of A. A* contains all
the information about the connected components. The rest of the algorithm extracts
the connected components from A*. Namely it finds the distinct rows of A* and stores
the row numbers in INDEX. Each distinct row represents a connected component.

Recently D. S. Hirschberg [9] has also given an O(log2n) algorithm for finding connected
components in an undirected graph using O(n2) processors.
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1. Find A*, the (reflexive) transitive closure of A.
2. Find the position of the first nonzero entry for each row of the matrix A* and

build vector INDEX as follows:

INDEX (i)= the position of the first nonzero entry in row i.

3. Construct an n x n matrix, M, which is initially set to zero; now set:

M(INDEX (i), i)= 1 for i= 1,..., n.

The column numbers of the l’s in each row of M correspond to the identical rows
of A*.

4. Repeat step 2 for matrix M. If row is all zeros set INDEX (i)= 0. Since the
row numbers of identical rows in A* are now the nonzero elements of a row in M, this
time the nonzero elements of INDEX will be representatives from each connected
component. Namely if INDEX (i)= j > 0, then the l’s in the jth row of the transitive
closure matrix represent the nodes in one of the connected components.

Algorithm 1 may be used directly for finding the weakly connected components
of a digraph.

ALGORITHM 2. Finding strongly connected components. In this algorithm a
matrix is constructed. The connected components of are exactly the strongly
connected components of A.

1. Find A*, the transitive closure of A.
2. Construct the cycle matrix C as follows [4]

c0 air x a.
The digraph represented by C contains all the edges of the digraph represented by A,
which belong to a directed cycle.

3. Construct matrix as follows"

Cij Cij V Cji.

4. Find the connected components of d, by using Algorithm 1. The connected
components of are exactly the strongly connected components of A.

3. Bounded search techniques. A very powerful technique widely used in serial
graph algorithms is depth-first search [16]. In this pattern of search, each time an edge
to a new vertex is discovered, the search is continued from the new vertex and is not
renewed at the old vertex until all edges from the new vertex are exhausted. This
invokes an ordering on the edges which is destroyed if we allow more than one node at
a time to be searched or more than one edge from a node to be looked at. Thus
depth-first search seems to be inherently serial.

Suppose we are given K processors and a graph problem such as finding the
connected components or growing a spanning tree (forest) in a graph. How fast can we
solve these problems? In this section we present some bounded search techniques for
searching a graph. Throughout this section, it is assumed that the graph is represented
by a list of adjacencies (each list uses sequential storage allocation). For analyzing our
algorithms some operations are considered as active and we will be concerned only
with those operations. Serial and K-parallel search techniques presented in this paper
are analyzed and compared by means of counting active operations. One visit to a
node will be considered as one active operation. When a node is selected for search,
each processor looks at one edge emanating from that node. Each processor deter-
mines whether the node it is looking at is a new node, and forms a partial list of all new
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nodes which it has found. At various stages during the K-parallel search, the partial
lists found by each processor are linked together and added to the list of new nodes.
This linking operation is also treated as active. Note that in both serial and parallel
computation, the operations involved in the construction of the (partial) list of new
nodes kept by each processor and the selection of new nodes for search are not
considered to be active. If we had considered these operations to be active, then a
lower order term of c.n, c =< 2, would be added to the time. If we count only the
active operations, then the serial upper bound on all considered search techniques,
using an adjacency list as the graph representation would be T1 Y’= (degi + 1). This
time bound is optimal. As mentioned previously the best possible bound for a
K-parallel algorithm is TI/K.

In this section we introduce three different graph search techniques, namely
K-depth search, breadth-depth search, and breadth-first search. It is shown that for
sufficiently dense graphs the breadth-first search algorithm achieves a bound which is
very close to optimal.

(a) K-depth search. In this technique once a node is picked we simultaneously
look at K edges emanating from that node. Then one of the most recently discovered
nodes is selected for search and the search continues from there. Namely, we are
doing a depth-first search with breadth K at each node. After a node has been looked
at for the first time, the corresponding entry of a vector which is initially set to zero is
changed to one. Suppose each processor determines whether the node it is interrogat-
ing is a new node. We then add the new nodes found at this step to a LIFO list for later
search. A node is not deleted from this list until all its adjacencies are exhausted.

Depth-first search has proved to be a very powerful technique in serial compu-
tations. Namely for many problems we would like to traverse the graph as deeply as
possible by going to a new node each time. Once we have a K-parallel model, it seems
natural to use a K-depth search technique. This technique seems more attractive for
algorithms which employ depth-first search, though we have not yet found a practical
application for it.

Now let us see how fast we can add the new nodes to the list of unexamined
nodes. After K edges emanating from a node have been searched, some of the
processors have found new nodes. It is obvious that the new nodes found at each step
can be added to the list of new nodes in [log K] + 1 steps. The time bound of this
search technique if we count only the active operations is as follows"

T +.=
where the term ([logK] +1) is the time spent for adding the new nodes found
adjacent to a node being visited, and the term [(degi + 1)/K] is the number of times
we visit node i. Hence"

(1) T, _-< T1
[log K] + 1

+ n. ([log K] + 1).
K

Thus the reduction factor is ([log K] + 1)/K with an additive term of n. ([log K] +
1). Note that in this search technique, in order for ([log K] + 1)/K to be less than 1, K
must be _>-4. This search technique is superior to the serial search techniques for
h-dense graphs where h >_- [log K] + 17. The superiority increases as h increases.

Figure 1 represents graph G and a K-depth search with K 2 performed on it.
(b) Breadth-depth search. In part (a) of this. section we showed that by using a

K-depth search technique, we can reduce the serial time bound by a factor of
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FIG. 1. K-depth search on G. Edges are numbered in the order in which they are scanned. (Note that the
edges that are scanned simultaneously are given the same number.)

([log K] + 1)/K. In this section we show that by using a breadth-depth search tech-
nique, a reduction factor of 1/K can be achieved. In a breadth-depth search technique
once we are at a node, we look at all its adjacencies. Then one of the most recently
discovered nodes is selected and the search is continued from there. While a node is
being searched, each processor keeps track of the new nodes it has found. These
partial lists are linked together and added to the list of new nodes when the list of
adjacencies for the node currently being searched is exhausted. Counting the active
operations we get the following time bound:

T= L([I+I+[logK]+I)
i=1

where [log K] + 1 is the time spent on node for keeping track of the new nodes
discovered adjacent to it and [degi/K] + 1 is the time spent on node i, once it is
selected for search. Simplifying T, we get the following"

(2) T2 <-_ Tx/K + n ([log K] + 3).

Now the reduction factor is 1/K with the additive term of n. ([log K] +3). The
K-parallel breadth-depth search is superior to the serial search techniques for h-
dense graphs where h_-> [log K] +7. As before the superiority increases as h
increases.

K=2
2 5 (6)

(3)// (2) (4),

(2) (1) (4)

4"1"%x

7 (9)

6

’(7)

;8

(8)

9

FIG. 2. Breadth-depth search on the graph of Fig. 1. Edges are numbered in the order in which they are
scanned. (Notice that the edges that are scanned simultaneously are given the same number.)

Figure 2 represents a breadth-depth search performed on the graph of Fig. 1.
Sequential breadth-depth search is widely used in shortest path algorithms (see

[10]) and PERT networks. In [1] we have shown, using the above search technique,
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that a bound similar to relation (2) above can be obtained for many shortest path and
PERT network problems.

(c) Breadth-first search. We now show that by using a breadth-first search tech-
nique, the additive term in relation (2)can be reduced further. In a breadth-first
pattern of search we start from a node and all the processors are employed for
exhausting its adjacencies. A node at distance from the start node is searched before
the nodes further from the start node. When the nodes at distance from the start
node are being searched, each processor keeps track of new nodes at distance + 1
which it has found. After all the nodes at distance have been searched, we join the
partial lists made by the different processors.

The reason for linking partial lists together is to prevent wasting time when we
want to pick a new node for search. Namely, if only a few lists are nonempty then we
are wasting time by looking at all the lists in order to find a nonempty one. Now let us
ascertain the complexity of this search:

T ,l(rdegi] )+ 1 + (the distance of the furthest node
/K from the start node), rlog K]

where [degi/K] + 1 is the time spent on each node, once it is selected for search and
flog K] is the time spent for linking the partial lists of new nodes found by each
processor at every distance from the start node. Hence"

(3) T3 <- T1/K +L flog K] + 2n

where L is the distance of the furthest node from the start node. If our graph is
sufficiently dense L is very small; in fact, it is not hard to prove that if the degree of
each node in our graph is => K, then L _-< 3 q 1, where n q (K + 1) + 1 and q _-> 1.
(See [1] for a proof.) Hence for sufficiently dense graphs, L is at worst of the order of
n/K. Thus in this pattern of search the reduction factor is 1/K and the additive term is
L. flog K] +2n. The K-parallel breadth-first search is superior to the serial search
techniques for h-dense graphs where h => flog K] +5. Once again the superiority
increases as h increases.

(2)
e

2 5 (7)

(2) (4)

(1)

(6)//

7 (6)

(4)

6

9

K=2

FIG. 3. Breadth-first search on graph of Fig. 1. Edges are numbered in the order in which they are
scanned. (Notice that the edges that are scanned simultaneously are given the same number.)

Figure 3 represents a breadth-first search performed on the graph of Fig. 1.
The breadth-first search technique introduced above can easily be used to find the

connected components of an undirected graph and the arc shortest paths in a uniform
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positive arc weight network [10]. The time bound of the algorithms for solving these
problems is very close to the bound given in relation (3) above. (For more appli-
cations of the search techniques introduced in this section see [1].)
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In the formula marked (*) on page 625 the two terms involving summation should
be subtracted rather than added. In the equation which immediately precedes this the
two terms in parentheses should be added rather than subtracted.

We are indebted to Dr. Paul Purdom for pointing out this correction.
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DATA MOVEMENT IN ODD-EVEN MERGING*

ROBERT SEDGEWICKf

Abstract. A complete analysis is given of the number of exchanges used by the well-known Batcher’s
odd-even merging (and sorting) networks. Batcher’s method involves a fixed sequence of "compare-
exchange" operations, so the number of comparisons required is easy to compute, but the problem of
determining how many comparisons result in exchanges has not been successfully attacked before. New
results are derived in this paper giving accurate formulas for the worst-case and average values of this
quantity.

The worst-case analysis leads to the unexpected result that, asymptotically, the ratio of exchanges to
comparisons approaches 1, although convergence to this asymptotic maximum is very slow.

The average-case analysis shows that, asymptotically, only 41- of the comparators are involved in
exchanges. The method used to derive this result can, in principle be used to get any asymptotic accuracy.
The derivation involves principles of the theory of complex functions; in particular, properties of the
F-function and the generalized Riemann ’-function are integral to the solution. Intermediate results in the
analysis may be applicable to the average-case analysis of other merging methods, and the final portion of
the derivation illustrates the utility of the "gamma function" method of asymptotic analysis.

Key words. analysis of algorithms, odd-even merge, merging networks, merge-exchange sort, sorting
networks, gamma function, zeta function

1. Introduction. Suppose that we have two sorted arrays B[1],..., B[N] and
C[1], , C[N] which we wish to merge into a single sorted array A[1], , A[2N],
The straightforward algorithm

i:=]:=I;B[N+I] C[N+l]:=oo;
loop for k := 1, 2,..., 2N:

if B[i]<e[]] then A[k]:=B[i]; i:=i+1
else A[k] := C[]]; ]:=]+1

repeat

has been shown to be the "best possible" way to solve this problem (see [13, p. 199])
in that it requires the minimum number of comparisons between keys, not counting
the sentinel keys. However, this method may not be appropriate if, for example, we
wish to build hardware to do the merging, since it requires space for the output array
and its comparison sequence depends on the arrangement of the input.

The "odd-even" merge introduced by K. E. Batcher in 1964 [3], [4] is a well-
known method for merging in place with a fixed comparison sequence. To satisfy the
in place condition we assume that the first sorted input array is stored in the odd
positions A[I], A[3], , A[2N- 1] of the output array, and the second sorted input
array is stored in the even positions A[2], A[4], , A[2N] of the output array. Such
files are called 2-ordered, and merging is equivalent to sorting 2-ordered files. Then

* Received by the editors March 7, 1977, and in revised form October 3, 1977.

" Computer Science Program and Division of Applied Mathematics, Brown University, Providence,
Rhode Island 02912. This work was supported by the National Science Foundation under Grant MC575-
23738.
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Batcher’s method may be implemented as follows:

loop for ]:= 1, 2,...,N"
if A[2j- 1] > A[2]] then A[2j- 1] := A[2]];

repeat;
loop for := 2 , 2 -, 1"

loop for ] := 1, 2, , N-"if A[2]]>A[2] +2- 1] then A[2]]:= :A[2j +2- 1];
repeat;

repeat;

In this program, notice that the only statements which actually operate on the data are
the "compare-exchange" statements of the form

if A[2/] > A[2j + 28 1] then A[2j]: :A[2j + 28-1];
and these are performed in the same order regardless of the input. Because of this, it is
convenient to describe the algorithm as a merging network as in Fig. 1, which shows
the algorithm operating on a typical 2-ordered file of sixteen numbers. The numbers
move from left to right, encountering "compare-exchange" modules on the way. Each
module exchanges its inputs, if necessary, to make the larger number appear on the
lower line after passing. (Modules which actually perform exchanges are boxed in
Fig. 1.) The networks for N 1, 2, 4, 8, and 16 are shown in Fig. 2. Notice that the
networks are composed of stages (an initial stage plus one for each value of 8) within
which all of the compare-exchanges can be overlapped. This makes Batcher’s
algorithm particularly useful when parallelism is available.

Figure 3 shows the networks for N 1, 2, 4, 8 and 16 with the comparators
arranged somewhat differently to illustrate why the method is called the "odd-even"
merge. First the "odd" members of the input files (A[1], A[5], A[9],. and A[2],
A[6], A[10],...) are merged, and, independently, the "even" members of the input
files (A[3], A[7], A[ll],. and A[4], A[8], A[12],...) are merged. After this, it
turns out that a single stage of compare-exchange modules connecting A[2] with A[3],
A[4] with A[5], A[6] with A[7], etc., will complete the sort. Batcher gave a complete
inductive proof that his method is valid, using this approach [2] (see also Knuth [13,
pp. 224-225]). Knuth gives another proof [13, exercise 5.2.2-10] which we shall
examine in some detail below.

To determine the running time of a program, we need to be able to determine the
frequency of execution of each of its instructions. In the program above, these

FIG. 1.2-sorting a file of 16 elements.
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FIG. 2. Odd-even merging (2-sorting) networks.
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N 2

N 4

N 16

FIG. 3. Odd-even merging networks ,(alternate arrangement).



242 ROBERT SEDGEWICK

frequencies can be determined from N, the number of items in each file to be merged,
and the following three quantities:

Amthe number of stages,
B--the number of exchanges, and
C--the number of comparisons.

More precisely, A is the number of times a new value is assigned to 8, C is the number
of times the tests "A[2j- 1]> A[2j]" and "A[2]]> A[2 +2- 1]" are performed
and B is the number of times these tests are successful.

The values of A and C are clearly independent of the input distribution. They do
depend on the number of elements being merged, and we will write Ar and Cr to
denote their values for an N xN merge. On inspection of the program, we see that

AN [lgN] +1 (lg N log2 N)

and, counting the number of times the loop index ] changes, we have

C’ N + E (N- 2’)
Jig N] >k

which evaluates to

(1) CN=N([lgN] + 1)-2 r’m + 1.

The number of comparisons is of order (N log N) so Batcher’s merging algorithm
cannot compare with the straightforward O(N) algorithm on a serial computer.
However, if parallelism is available, the comparisons on each stage can be performed
independently, and the merge can be completed in [lg N] + 1 parallel stages. Also,
R. W. Floyd [13, p. 230] has shown that any merging method which can be represen-
ted as a network must use at least 1/2 N lg N + O(N) comparators to 2-sort N elements,
so Batcher’s method is, in this sense, nearly optimal.

The value of B does depend on the input distribution, and the subject of this
paper is the analysis of the maximum and average values of this quantity when a
random 2-ordered file is sorted. This is listed as an open problem b Knuth [13, p.
135]. The practical importance of this problem may be limited, since the method is
best suited to a parallel implementation, and exchanges might not significantly affect
the running time of a truly parallel implementation. However, it is essential to know
the value of/ for serial implementations, and, as we shall see, the analysis of B is of
some theoretical interest. Our understanding of Batcher’s method is incomplete
without an understanding of how often it does exchanges. Moreover, the methods and
results of the analysis may be applicable to the study of other algorithms.

To deal with the number of exchanges, it is useful to examine Knuth’s alternate
proof that the odd-even merge is valid. The proof is based on a natural cor-
respondence between 2-ordered files of 2N elements and paths connecting opposite
corners of N xN lattice diagrams. An example of this correspondence is shown in
Fig. 4. Starting at the upper left corner, we form a path whose kth segment goes down
if the kth smallest element is an odd position in the file, and to the right if the kth
smallest element is in an, even position in the file. We shall denote the lattice point
reached after steps down and ] steps to the right by (i,/’). The path must end up at
(N, N) since there are N even positions and N odd positions, and the correspondence
is clearly unique. One can think of the final sorted file as a chain with 2N links, and the
path as the unique arrangement of the chain adhered at the upper left corner with
each link vertical if the corresponding element is in an odd position in the file and
horizontal if the corresponding element is in an even position in the file.
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The sorted array corresponds to the diagonal path through the lattice whose first
segment is vertical (the dotted line in Fig. 4), and the merging process consists of
transformations from an arbitrary path to that particular path. As mentioned above,
Batcher’s method can be divided into [lg N] + 1 stages of independent compare-
exchange operations. The proof that the odd-even merge is valid consists of showing
that the stages correspond to "folding" (interchanging horizontal and vertical) the
path about certain diagonals in the lattice diagram.

For example, the first stage, which compare-exchanges A[2] with All], then A[4]
with A[3], then A[6] with A[5], etc., corresponds to folding the path about the main
diagonal. To show this, we first note that any path can be divided into sections which
are either "high" (totally above the diagonal)or "low" (on or below the diagonal).
(The path in Fig. 4 consists of a low section followed by a high section.) Now, the fth
comparison in the first stage results in an exchange if and only if the fth horizontal
path segment (which corresponds to A[2]]) appears before the ]th vertical path
segment (which corresponds to A[2j-1]). But this can happen if and only if both
segments are above the diagonal. Therefore, all elements represented by high path
sections are involved in exchanges and no elements represented by low sections are
involved in exchanges. After the exchanges, low sections are unchanged, and
horizontal and vertical are interchanged in high sections, making them low. In other
words, the whole path is reflected down about the diagonal.

The first stage folds down about the main diagonal, ensuring that the path falls
below the main diagonal, and successive stages fold up about the diagonal 8 units
below the main diagonal, ensuring that the path falls in a "band" between that
diagonal and the main diagonal. After the stage when 8 1 the path must coincide
with the main diagonal, and the corresponding permutation is sorted. Figure 5 shows
the sample 2-ordered permutation in Fig. 4 being sorted. Shaded areas are the areas
within which the path is guaranteed to fall, and each stage "folds" the shaded area in
the middle. The reader may wish to check the correspondence and the proof by seeing
that successive paths in Fig. 5 correspond to successive permutations in Fig. 1. (In
particular, note that there are no exchanges on the third stage, and the path is
unchanged.)

This proof that Batcher’s method is valid also gives us an easy way to count the
number of exchanges used to sort any particular 2-ordered permutation. First, we
notice that if any segment on the path is on the main diagonal, then the element
corresponding to it will not be involved in any exchanges during the sort (since it is in a

08
i0 24 26 34 35

44

88 89

95

99

FIG. 4. Lattice path .for 2-ordered permutation of Fig. 1.
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FIG. 5. Sorting Fig. 4.

"low" section for the first stage, and a "high" section for successive stages). If any
segment on the path is on the diagonal one below the main diagonal, then the
corresponding element must be involved in exactly one exchange (on the last stage).
By following the "fording" process backwards in this way, we can assign a weight to
each segment in the lattice which counts the number of exchanges the corresponding
element will be involved in, if the path includes that segment. This process is illus-
trated, for N 4, in Fig. 6.

Now, for any path through the lattice, if we sum the weights of its segments and
divide by two (since each exchange involves two elements), we get the total number of
exchanges used to sort the corresponding 2-ordered permutation. In fact, the sum of
the weights of a path’s vertical segments must equal the sum of the weights of its
horizontal segments, and both sums count the number of exchanges. From Fig. 7,
which has only vertical weights, we see that the example in Fig. 4 takes 12 exchanges,
which agrees with our count in Fig. 1. From now on, we shall consider only vertical
weights.
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FIG. 6. Assigning weights to the lattice.

Continuing as in Fig. 6, the pattern of weights for general N is clear. First, we
notice that all of the weights can-be determined from the weights down the left edge.
Since the folding is done along parallel diagonals, weights along diagonals are
constant: if we denote the weight of the vertical segment from (i, ) to (i + 1, j) by
f(i, j), then we have

f(i-j, 0) if _-> j,
() f(i,

f(O,j-i) if i<-j.

But from the first stage (the last "unfold")we know that

(3) f(O, ] + 1)= f(], 0)+ 1

and from the other stages we can write down an algorithmic definition of f(i, 0):

(4)

f(O, 0):= O; i:= I;
loop"

loop for j’= i- 1 step -i until O: f(i, 0): f(j, 0)+ i; i’=i + 1 repeat;
repeat;

In other words, in order to write down the values of f(i, 0) for all i, first write down
"0"; then repeatedly apply the following procedure: append to the string of numbers
already written down the same string, but in reverse order, with each number incre-
mented by 1. The value of f(i, 0) is the ith number written.

This function, which is central to the study of data movement in Batcher’s
method, has a number of interesting properties. Since we shall be using it extensively,
it will be convenient to drop the second argument and work with a more mathematical
recursive definition"

f(o)=o,
(5)

f(2" +/)=f(2"- 1-/)+ 1, n >-0, O<=j <2".

FIG. 7. Vertical weights for N 8.
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From this definition, we can explicitly evaluate the function for some arguments. For
example, taking/" 2n- 1, we find that f(2n- 1)= 1 for n -> 1; then taking/" 0 gives
f(2)=2 for n->0 and taking /’=2"-1 gives [(3.2"-1)=2 for n>-2. For other
arguments, things are more complicated. However, there is a simple interpretation
based on the binary representation of the argument. The binary representation of
2"- 1-/" (0-<_/’< 2n) is the "ones’ complement" of the binary representation of 2" +
(change O’s to l’s and l’s to O’s; then ignore leading zeros). Therefore, for example,
f(999)=f(lllllOOll12)=f(llO00)+ 1 f(111)+ 2 f(0)+ 3 3. The value off(k)
for all k is exactly the number of times the binary representation of k changes parity.
Figure 8 gives the value of f(k) for 0 =< k < 32 along with a graph of the function and
values for F(k)=Yo<_i<kf(j) (the area under the curve) and Vf(k)=-f(k)-f(k 1)
(the slope), which we shall have use for later.

2. The worst case. To find the maximum number of exchanges that Batcher’s
algorithm will require, we can use the lattice diagram directly. The maximum number
of exchanges is just the maximum possible weight of a path in the lattice diagram.
Figure 9 shows the paths of highest weight for N 2, 4, 8, 16.

A cursory inspection of Fig. 9 could lead to the conjecture that, at least for
N 2", the worst case might be the unique path through the lattice which contains the
highest weights. Unfortunately, the situation is more complicated than this, as illus-
trated in Fig. 10 for N 32. However, it does turn out that we need to examine only a
few paths. Consider the paths through the lattice defined, for each integer k, as
follows: proceed right along the top until encountering the first line with weight k.
Then proceed down and to the right (along the diagonal of lines with weight k). After
reaching the right edge of the lattice, proceed down to the corner. Figure 11 illustrates
these paths, which we shall refer to as major diagonals, for N 32. (Note that the last
major diagonal is the unique path containing the highest weights.)

LEMMA. The path of highest weight through the lattice must be one of the major
diagonals.

Proof. Clearly, for any path with segments below the main diagonal (the first
major diagonal), there is a path of higher weight whose segments are all on or above
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FIG. 9. Worst-case lattice paths.
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Fit3.10. Worst-case path not containing highest weights.

the main diagonal. Now, for any such path, consider the rightmost major diagonal
which it crosses (has a segment in common with). The path must contain, sometime
after the crossing, all of the weights which the major diagonal has on its vertical
segment. None of the remaining weights can be higher than those on the major
diagonal, because a higher weight would imply that the path crosses a major diagonal
farther to the right. Therefore, for every path through the lattice, we can find a major
diagonal whose weight is at least as high.

Our problem is now reduced to finding the weights of all the major diagonal
paths, and the maximum of these. To do so, we need to define

f-(k) {smallest j for which/(])= k}

and

F(k)= E f(j).
Oj<k
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FIG. 11. Major diagonals.

The (k + 1)st major diagonal path has N-f-l(k) segments along the diagonal, with
weights (k+l), and f-l(k) segments along the right edge, with total weight
F(f-(k))+f-(k). Therefore, if we let w(k) denote the total weight of the (k + 1)st
major diagonal path, then

w(k)= F(f-(k))+f-(k)+ (k + 1)(N-f-(k))
=(k + 1)N+F(f-(k))+kf-(k),

and we need to derive explicit expressions for f-(k) and F(f-(k)).
A recurrence for f-l(k) follows immediately from the way that the function f(k)

"reflects" between powers of two. From (5) it is easy to prove by induction the
difference between f-t(k- 1) and 2k-l- 1 must be the same as the difference between
2k- and f-(k). (Also see Fig. 8.) In other words,

2u.- l_f-(k 1) f-(k)- 2’-.
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Multiplying by (-1)k and telescoping, we find that

E (-2) E
O]--k O--jk

which leads, after the two geometric sums are evaluated, to the result

1 )(6) f-(k)=7(2+2 (-1 -3).
O

As expected, these are all the numbers (0, 1, 2, 5, 10, 21, .) whose binary represen-
tations alternate between 0 and 1. These numbers change parity most often, and so
have the highest values of f(k).

The calculation of F(f-l(k)) is more complicated. First, we can set up a recur-
rence similar to the one which defines f(k). Suppose that 2"-1< k <= 2". We separate
off the first 2"-1 terms of the sum and then apply the recurrence for f(k) to the
remaining terms:

2 f(J)+ Y’. f(k)
O--<j<2 2.-<__]<k

F(2"-1)+ Y f(2"-l+j)
O<__j<k-2

F(2"-1) + E (f(2"-1-1-i)+ 1)
0_</’<k_2

F(k)=

F(2"-1)+ f(j)+k-2"-1

2n-k</<2

=2F(2"-l)-F(2"-k)+k-2"-1 for 2"-1<k=<2".

In particular, if we take k 2", then the formula becomes F(2")= 2F(2"-1)+ 2"-1,
which telescopes immediately to the solution

F(2")= n2"-1"

Substituting this value, we find that

(7) F(k)=-F(2"-k)+(n-2)2"-l+k for 2"-1<k=<2".

As before, the form of this recurrence clearly suggests that the value of F(k) depends
on the binary representation of k (and the dependence is much more complicated than
for f(k)). Fortunately, the points f-l(k) at which we need to evaluate the function
have a simple binary representation. We can get an explicit formula for F(f-l(k)) by
noticing from the ones’ complement of the binary representation that 2k -f-l(k)- 1
f-l(k- 1), so F(2k-f-l(k))=F(2k-f-l(k)- 1)+f(2k--f-l(k) 1)=F(f-l(k 1))+
f(f-(k 1))= F(f-a(k 1))+ k- 1, and, since 2k-1 <f-(k)<- 2, the recurrence (7)
becomes

F(f-l(k)) -F(f-l(k- 1))- (k 1)+(k-2)2k-1 +f-l(k).
This recurrence, after both sides are multiplied by (-1)k, telescopes into a summation
(note that F(f-(0)) F(0)= 0):

(-1)kF(f-l(k)) Y, (y-i)(-1)-1"- Y, (j-2)(-2)i-1+ Y f-l(j)(-1).
lNj<=k l<=j<--k lNjNk

After substituting for f(]), we are left with a number of elementary sums: they can all
be evaluated using the well-known identities for Y’,oik X" and Y’,o_i=k Jx (see, for
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example, Knuth [12, exercise 1.2.3-16])with the result

(8) F(f-(k)) 8((3k 1)2+- 9k -(3k

Comparing this with the formula F(2") n2"-, we find that both are of the form
F(N)= 1/2N lg N O(N). In fact, it is possible to prove by induction that this does
hold for all N, but the linear term is a complicated function of the binary represen-
tation of N.

Substituting these values for f-(k) and F(f-(k)) into the formula given above
for the total weight of the (k + 1)st major diagonal path, we get the expression

1 (2t+2w(k)=(k+l)N+ ((3k-1)Z’+l-9k-(3k-Z)(-1)’)---dk -(-1)k-3)
(9)

1
(k + 1)N-((3k + 1)2’ (-1)k).

This function is clearly increasing for small k and decreasing for large k. The maxi-
mum number of exchanges required by Batcher’s algorithm is the maximum value of
the function. Note that the total weight of the last major diagonal is N lg N + O(N).
The following theorem shows that the proper choice of k leads to a path of much
higher weight.

lTHEOREM 1 Let denote the maximum number of exchanges required when
Batcher’s odd-even merge is applied to a 2-ordered file of 2N elements. Then

1
k’=(k’+l)N-((3 +1)2 -(-1)’)

where k’ is the largest integer satisfying ((3k’ + 4)2’-1-(-1)")-< N. Asymptotically,

B N lg N-N lg lg N + O(N).

Proof. Following the discussion above, the lemma says that we need only consider
the major diagonals. We have"

Bax= max (w(k)),
O<=k<_k

where k" is the index of the last major diagonal (the largest integer satisfying f(k")<=
N). To calculate this maximum, consider the difference

1
w(k)- w(k- 1)= N-((3k + 4)2k-- 2(-1)).

The function w(k) increases as long as this difference is positive, then decreases when
the difference is negative. Clearly the maximum is w(k’), where k’ is the largest
integer for which the difference is positive. To complete the proof, it is
necessary to show that this maximum is realizable, i.e. that f-X(k’)<=N. This is
easily verified: we have N >_--((3k’+4)Z’-1-Z(--1)’)=-(-}(3k’+4)Z’-1--}(-1)k’)->
(2’’+2 (- 1)’- 3) f-(k’).

To find an asymptotic estimate of how the maximum grows with N, we start with
the inequalities which define k’:

1(3k,+4)2’- 2 1
k’

,, 2 ),,.-(-1)k’--<N<(3 +7)2 +(-1
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After ignoring the (-1)k’ factors (the inequalities still hold without them), if we
multiply by 3, take logs (base 2) and solve for k’, we get an inverted form of this
formula:

(3N-2) (k’ +7) (3N+2)(4)g -lg <k’<lg -lg k’+ 5 +1.

These inequalities can now be iterated to give

lg(3N-)-lg(lg(3N+)-lg(k’+)+ 1+37-)

Now both sides reduce to the same asymptotic expression; we must have

k’ lg 3N lg lg 3N + O(1)

lg N- lg lg N + O(1)
maxand substituting this into the formula for leads to the stated asymptotic esti-

mate.
The easiest way to actually compute B for any practical value of N is to use a

table, since k’ takes on relatively few values for realistic N. Table 1 gives the values of
B for the inflection points N" numbers of the form (( k+4)2 -2(-1)).
Between the kth and (k + 1)st inflection points the function is linear in N with slope
(k + 1). Therefore, to compute Ba for arbitrary N, find the largest k for which
N < N, call it k, and set
such a computation for N 2, 0 N n N 20.

TABLE
Inflection points for the worst case.

rmax/,,
k N =((3k +4)2k-1-2(-1)k) B; CNu ON /t-,N

1 1 1 1.0000
2 2 3 3 1.0000
3 6 15 17 .8823
4 14 47 55 .8545
5 34 147 175 .8400
6 78 411 497 .8270
7 178 1,111 1,347 .8248
8 398 2,871 3,469 .8276
9 882 7,227 8,679 .8327
10 1,934 17,747 21,161 .8387
11 4,210 42,783 50,749 .8430
12 9,102 101,487 120,147 .8447
13 19,570 237,571 280,353 .8474
14 41,870 549,771 646,255 .8507
15 89,202 1,259,751 1,474.565 .8543
16 189,326 2,861,735 3,335,241 .8580
17 400,498 6,451,659 7,485,673 .8619
18 844,686 14,447,043 16,689,831 .8656
19 1,776,754 32,156,335 36,991,437 .8692
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TABLE 2
The worst case at inflection points ]:or the number of comparators.

k’ Bv CN BVax/cN

2
4
8

16
32
64
128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536
131,072
262,144
524,288

1,048,576

1
2 3 3
2 9 9
3 23 25
4 57 65
4 137 161
5 327 385
6 761 897
7 1,735 2,049
8 3,897 4,609
9 8,647 10,241

10 19,001 22,529
10 41,529 49,153
114 90,567 106,497
12 196,153 229,377
13 422,343 491,521
14 904,761 1,049,477
15 1,929,671 2,228,225
16 4,099,641 4,71,593
17 8,679,879 9,961,473
18 18,320,953 20,971,521

.0000

.0000

.0000

.92O0

.8769

.8509

.8493

.8484

.8468

.8455

.8444

.8434

.8449

.8504

.8552

.8593

.8621

.8660

.8668

.8713

.8736

147
B

65

2 6 8 14 16

FIG. 12. Number o]’ comparators and maximum number o] exchanges.
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Also given in Tables 1 and 2 is another quantity of interest: the percentage of
comparators that perform exchanges in the worst case (the ratio BaX/fN). The
graphs of CN and Bv are both piecewise linear, with slope incrementing by 1 at each
inflection point. This is illustrated in Fig. 12, for small N, where the effect is most
pronounced. Both curves are therefore concave upwards, so they are closest together
at the inflection points for Cu (numbers of the form 2n) and farthest apart at the

1inflection points for ON Tables 1 and 2 therefore show that the ratio is between
82% and 87% for all but very small and very large values of N. As N the ratio
(slowly) approaches 1, which follows from a simple asymptotic calculation:

BaX/CN
N lg N-N lg lg N + O(N)

N lg N + O(N)

(lb) (1 lglgN 1 1

=1
lglgN (1)gulgN i

The value of N must be truly astronomical for the ratio to be close to 1.

3. The average case. The lattice diagram correspondence of 1 leads to an
expression for BN, the average number of comparisons taken by Batcher’s method to
sort a random 2-ordered file of 2N elements. The derivation is long, and conveniently
divides into two parts. First, we shall perform some manipulations which are some-
what independent of our particular weight function f(j). and so lead to results
applicable to the analysis of other properties of 2-ordered permutations (or other
merging algorithms). The second part of the derivation uses complex analysis and
some particular properties of f(f), and leads to a method for computing Bn to any
desired asymptotic accuracy.

One way to determine Bu, using the lattice diagram correspondence, would be to

2N) paths through the lattice sum them, and divide byfind the weight of each of the
N

2N) An alternate way is to find the number of paths which pass through each
N

vertical line in the lattice, multiply by the weight, sum over all vertical lines, and then

""(2/v) In 1, we defined the weight of the vertical segment from (i, j)todivide by
N

(i + 1, j) to be f(i, f) and derived some simple properties of this function. Now, the

number of paths from (0 0)to (i,/’) is clearly (i +/’) and the number of paths from

(i + 1 )to (N, N)is (2N-i-f- 1)N-f
so the total number of paths which pass through

the vertical segment from (i,/’) to (i + 1,/’) is the product of these two binomial
coefficients. Therefore,

2N) Bu E E(11)
N O<=i<N OjN

f(i,f)(i+if)(2N-i-f-1).N-i

This can be transformed into an expression involving the single argument weight
function defined in (5) because of the symmetries which are available. The first step is
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to split the sum on : ., Y’. f(i,f)(i+])(2N-i-’-1)
o<-i<r o-<_ii N-/"

+ Y’. f(i,j)(i+J)(2N-i-j-l)
o_i<v i<_lV N-j

If we change/" to i-j in the first term and change/" to +j + 1 and then to N- 1 in
the second term, the terms can be recombined:

(2N) ](N )N B2v= ., Y f(i,i-j)(2i-j 2 2i+j-1
o_<i<2vo<-i<=i \ / -i + j

o=<i<2v o-<i_-<i N-i- 1 i-j /

o-<r2 o-Y" (f(i, -/’) +f(N 1 i, g +/’))
\ ] / g 1

Now, equations (2) and (3) in 1 tell us that f(i, -])= f(j, 0) and f(N- 1 i, N- +
]) f(0, ] + 1)= (], 0)+ 1. Adopting the shorthand f(j, 0)- f(j), we have

(2N)Br= (2f(])+l)(2i-](2N 2i+]-1)N o_i<r oii \ i-/" -i- 1

Interchanging the order of summation and changing to +] gives

(2N)B= (2f(])+l)(2i+])(2N-2i-]-l).N o---i<N N-i 1 1

The inner sum remaining in this expression was studied as far back as 1902 by Jensen
[9], who gave an identity which implies that

2i+] 2N-2i-]-1 .,
\N-i-i-l]N-i-i- 1

(see also Gould and Kauck) [8] or Knuth [12, exercise 1.2.6-28] for more general
versions of this identity). This particular sum can be simplified even further, by
applying the addition formula for binomial coefficients to set up a recurrence relation
describing, an alternate form of the sum. Denoting the sum by $, we have

(
o \N- -/" 1]

(=o\\N-i-]-i +\N-i-]-2]] 2

2N-I-i’ ( 2N-l-i 2i_

1 1 1(2N)
which telescopes to give the. alternate

2N
This implies that $r So+ +

N-j-1
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form

(12) /(2i+j)2N-2i-j-1)=/( N-i-j-X 0k<N_,(2)
When substituted into our formula for Br, this leads to the following result:

THEOREM 2. For any assignment of weights to an N N lattice satisfying f(i, j)=
f(i-],O) for i>-j, f(i,j)=f(O,j-i) ]’or f<-i and f(0, j+l)=f(f, 0)+l, the average
weight of a path through the lattice is

2N

B= Y.
k (2)

------(2F(k)+k)

where F(k)= Yoi<k f(J) with f(j)=-f(], 0).
Proof. From the discussion above, we have

N 0_</<N O<=k<N-i

which can be transformed into the stated result by changing k to N-k and inter-
changing the order of summation.

To proceed further, we need to examine the functions f(k) and F(k) in much
more detail.

Digressing slightly, we can now easily compute the average number of inversions
in a 2-ordered permutation as an example of the use of Theorem 2. (An inversion is an
index pair (i,/’) satisfying <f and A[i] > A[j].) The lattice diagram correspondence
and the initial expression (11) for Br above are taken from Knuth’s treatment of this
problem [13, pp. 86-88 and exercises 5.2.1-12, 14, 15]. Knuth shows that the number
of inversions in a 2-ordered permutation is equal to the area between its path in the
lattice and the main diagonal. (Proof: changing t__ to --q below the diagonal or
-1 to k__ above the diagonal reduces the number of inversions by one and reduces the
area by one unit.) The permutation in Fig. 4 has 12 inversions. The appropriate
assignment of weights to the lattice is to take f(i, j)= li--]1. This function satisfies (2)

and (3), and we have f(k)= k and F(k) (). Then from the theorem we find that the

average number of inversions must be

2N

Ek.
k_->l (2N)N

This sum can be easily evaluated by writing
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and applying the identity Y’k____>l
\/W--k. +\22N- These calculations lead to

the result

N22N-2

for the average number of inversions in a 2-ordered permutation of’2N elements.
(This checks with Knuth’s result, but his derivation depends on particular properties
of f(k)= k.) Knuth suggests that such a simple answer deserves a simple derivation;
perhaps a direct combinatorial derivation of Theorem 2 could be devised. In any case,
the weight function f(k) for Batcher’s method is much more complicated than f(k)= k
(we don’t even have a closed formula for it), and our problem will involve much more
analysis.

Theorem 2 does lead to an easy way to compute BN for all practical values of N.
Expanding the binomial coefficients in their factorial representations, we find that

BN= E (2F(k)+k) 1-I
N-j

1-<_k-<_N 0<=i<k N +j + 1"

From this representation, we can see that the exact value of BN can be computed in
O(N) steps, as follows:

(13)

product := 1; sum := 0;
loop for 1 =< k =< N:

product := product,(N k + 1)/(N + k);
sum := sum + (2*F(k)+ k)*product;

repeat;

This program assumes that F(k) has been precomputed and stored in an array
F(1 :N), say by using (4) to compute f(k) and then passing through the array once
more to compute F(k). This requirement for N memory cells can be removed by
computing F(k) incrementally within the loop. [We have F(k)=F(k-1)+f(k-1),
and f(k) can be computed from f(k- 1) by looking at the binary representations of
(k- 1) and k. The binary representation of k is obtained from the binary represen-
tation of k- 1 by changing the rightmost 0 to 1 and all the l’s to its right to O’s. (All
numbers are assumed to have 0 as the leftmost digit.) This will increment by 1 the
number of times the binary representation changes parity (the value of f) if the bit to
the left of the rightmost 0 in (k-1)2 is 0; otherwise it will decrement f by 1.
Therefore, we need only test this one bit: this can be done by performing an
"exclusive or" of (k 1)2 with (k)2, adding 1, then "and"ing the result with (k 1)2 (or
(k)2). If the result is 0, then f(k) f(k 1) + 1, otherwise f(k) f(k 1)- 1. The
program can be further improved because the terms become very, very small as k gets
large. If we put in a test to leave the loop when the terms to be added become smaller
than the smallest representable number in our computer, then it turns out that the
loop is iterated only about O(//) times for large N (we shall see why later). Thus
exact values of Br can be computed very quickly.
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TABLE 3
Average number of exchanges (exact).

N BN
BN-(1/4)NlgN

.500 .50000000
2 1.333 .41666667
4 3.600 .40000000
8 9.131 .39141414

16 22.221 .38881721
32 52.370 .38657069
64 120.735 .38647725
128 273.339 .38546127
256 610.795 .38591836
512 1,349.217 .38519013

1,024 2,955.039 .38578023
2,048 6,420.731 .38512273
4,096 13,868.014 .38574580
8,192 29,778.788 .38510590

16,384 63,663.918 .38573720
32,768 135,499.012 .38510170
65,536 287,423.532 .38573505
131,072 607,531.912 .38510065
262,144 1,280,765.989 .38573451
524,288 2,692,271.510 .38510038

1,048,576 5,647,351.813 .38573438

Table 3 shows exact values of BN for N 2n, computed in this way. By taking
differences in this table, it is quickly discovered that these numbers grow with N lg N,
and the coefficient is apparently 1/4. Subtracting 1/4N lg N from Brv and dividing by N
gives the third column, which leads to the immediate conjecture that

1
BN-N lg N +.385N

at least for N 2n. In fact, a quick calculation with (13) proves that this formula is
accurate to within 0.1% for 27-<N<-22 (and to within 1% for 2<N<27). From a
practical standpoint, we are done, since we can accurately calculate BN for any
realistic value of N. From a theoretical standpoint, this answer is somewhat unsatis-
factory, and the rest of the paper will be devoted to an analytic verification of this
result. It turns out that precise formulas for BN can be derived to any desired
asymptotic accuracy; in particular, the coefficient of the linear term can be expressed
in terms of classical mathematical functions. The derivation is an interesting example
of a difficult type of asymptotic analysis, and it uncovers some interesting aspects of
the. structure of Batcher’s method.

It will be convenient to begin by using the addition formula for binomial
coefficients to transform the equation in Theorem 2 for BN into a sum involving Vf(k),
which is simpler to work with than F(k). First, just as in the derivation for the number

(2N) 1 (2NN)of inversions, we can perform the summation "k>l N-k
k =-N which
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leaves

When both sides are divided by 4u, this recurrence telescopes to a sum, and leads to
the formulation

1 4N 1
2 --7- 2 .i Vf(k)+(14) Bv

2 2N li<r 4 k_l N.

We shall now concentrate on evaluating the inner sum

(15) bi 2 Vf(k).

After we have derived an asymptotic expression for bj, we shall easily be able to deal
with Br.

Formulas of this type (involving a sum over the lower index of a binomial
coefficient) appear relatively frequently in combinatorial analysis and the analysis of
algorithms. We have already seen one example, counting inversions in a 2-ordered
permutation. Knuth [13] gives several other specific examples which arise in the
analysis of algorithms" bubble sort, digital searching, and radix exchange sort. Paths in
a lattice may also be used to model other combinatorial problems, such as tree
enumeration and the classical ballot problem, and formulas similar to Theorem 2 arise
in the analysis. The method that we shall use is called, the "gamma-function" method
and is attributed by Knuth to N. G. de Bruijn. A derivation using the method is
outlined in a paper on tree enumeration by de Bruijn, Knuth and S. O. Rice [5], and a
similar description may be found in Knuth [13, pp. 132-134]. However, it will be
useful to present the method in some detail here because our function Tf(k) is more
complicated than the corresponding functions for the prior derivations.

One goal in an asymptotic derivation is to use methods which could, at least in
principle, yield an answer good to any given asymptotic accuracy. We shall be content
to get a formula for Br good to within O(/logN); we are most interested in
the coefficients of the N log N and linear terms. It turns out that it is sufficient to get b.
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with O(j-1/2) to achieve this accuracy. In both cases, the methods can yield better
asymptotic accuracy, if desired.

The first step in evaluating bi is to use Stirling’s approximation to replace the
binomial coefficients with an exponential. Stirling’s approximation says that

lnn!= n+ In n n + ln x/-+ O()
Applying this to the binomial coefficients in b., we have

(] 2_/’k)/(2/)= exp {2 lnj!-ln (j+k)!-ln (j- k)!}

1 (] + (In (/" + k)+ In (/" k))=exp 2(]+ In/’-

() 1 1, )}-k(ln(j+k)-ln(j-k))+O +O(f;k)+O(] k

Now, the O(1/(]+k)) and O(1/(]-k)) terms render this approximation useless
unless the value of k is restricted in some way. In this case, the appropriate restriction
is to take Ikl <_]1/2+ for some small positive constant e >0 (the reason for this will
become apparent below). With this restriction, we can replace O(1/(]+k)) and
O(1/(]-k)) by 0(1/]). Also, we get the asymptotic expansions

t k2 k 3

In (j + k)= In j + +-O(j4-2)
1 2/.2 3/.3

and

k k2 k 3

ln(j-k)=lnj
j 2j2 3ka+O(j4-2) forlkl<-j1//.

Substituting these and simplifying, we find that several terms cancel, leaving

(
(16) e + 0(/4e )) for Ikl--<

This estimate can be used in our expression for bi because the terms for [k[ _-> fl/2+e are
negligibly small. We have

(.[2___Jk)<(.[_{/2+e) forlkl>]"l/:+e,

so (16) implies that

(
(17)

-j k _:.e (1 + 0(/4e-1)) for Ikl >fl/2+e

and this is O(j-m) for all m > 0. Now, we can split the sum for bi into two parts and
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apply (16) and (17) to replace the binomial coefficients with an exponential (recall that
IVf(k)[-- 1):

(18) Y e-ka/S(1 q- O(/4e-1)) Vf(k) + O(je -s’’)
lk]I/2+e

Z e-k2/s Vf(k)(1 + O(/4e-1)).

The terms for which the estimate (16) is not valid are exponentially small, as is e-’/;
therefore it doesn’t matter which we use in the "tail" of the sum.

If we had a simple expression for Vf(k) we could proceed to get an asymptotic
expression for b by applying the Euler-MacLaurin summation formula to approxi-
mate the sum with an integral, then do the integration. For example, we could apply
the methods of the previous paragraph to the formula for BN in Theorem 2 to get the
asymptotic formula

BN E e-kalN(2F(k)+k)(l +O(N4e-)),
kl

and from equation (7) it is easy to prove that F(k)= 1/2k lg k +O(k) so that the
Euler-MacLaurin summation gives the approximation

BN I1 e-X2/N(x lg X + (O(x))(1 + 0(N4-1)) dx

which, after the substitution x2/n, leads to the well-known "exponential integral"
function (see [1]), with the result

1
BN -N lg N + O(N).

This method cannot be extended to find the coefficient of N, since the precise equation
for F(k) is quite complicated and depends on the binary value of k. Similarly, a simple
equation for Vf(k) is not available, and we need to resort to more advanced tech-
niques to get an accurate estimate for bs (and, eventually, BN).

The "gamma-function" method that we shall use to evaluate bs makes use of the
residue theorem from the theory of functions of a complex variable. Knopp [10], [11]
is the classical text on the theory of functions, and is an excellent introduction to the
subject of complex analysis. Other aspects of complex analysis and properties of the
two special functions that we use, the gamma (F) function and Riemann’s zeta (sr)
function, may be found in Whittaker and Watson [15]. And we shall make use of a
number of identities from Abramowitz and Stegun [1] and some other references
noted below. The idea is to express e-k/s as an integral in the complex plane involving
the F-function, then interchange the order of integration and summation. Although
we don’t have a simple closed formula for Tf(k), we will be able to express the
resulting complex series involving Vf(k) in terms of classical analytic functions. This is
the key to the analysis, for then the integral can be evaluated by finding residues
within an appropriate contour of integration.
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-X +iY

-X -iY

+ iY

-1-iY

FIG. 13. Contour of integration ]:or F-function identity.

We begin with the identity

1 fl
l+ic

r(z)r dz.(19) e
2rri -io

This is the so-called Mellin transform of e-’ [7], a special case of Fourier inversion.
We may prove this also directly from the residue theorem using the contour of
integration Rxy shown in Fig. 13, and letting X and Y c. The function F(z)r has
simple poles at z =-k, k 0, 1, 2,... with residue rk(--1)k/k!, SO the value of the
integral along Rxy is o<__k<x(--r)k/k! which becomes e as X- oo. The integral in
(19) is the integral along the right boundary of Rxy’, the integrals along the other
boundaries vanish as X, Y oo because the F-function becomes exponentially small
on them. (We shall skip the precise bounds here because they may b.e found in Knuth
[13, p. 132] and we shall be doing similar calculations later.) Applying this identity to
our formula (18)for bj, we have

1 fl+ioo (_)-zF(z) dz(l+O(j4-l))bi klE Vf(k)i.,a_ioo
1 f

1+ioo Vf(k
r(z)j ’. "k2z dz(l+O(j4e- )).

2i 1- kl

(The reader may wish to check that the interchange of summation and integration is
justified here because of absolute convergence.)

In order to proceed further we need to know the properties of the function
Ek>__I Vf(k)/k z. Remarkably, this function can be expressed in terms of the general-
ized Riemann (Hurwitz) (-function. Figure 14 shows the values of Vf(k) broken up in
a way that displays the pattern: the values for odd k go in the sequence 1, -1, 1,
-1,. .; if those are removed, the odd values in the remaining sequence are 1, -1, 1,
-1,. .; if those are removed, the odd values in the remaining sequence are 1, -1, 1,
-1, ..; etc. (Proof: For m > 0, the numbers m 2n+2 + 2 and m 2"+2 + 2" 1 differ
only in their last (n + 1) bits, so from the interpretation that f(k) is the number of
parity changes in the binary representation of k, we .must have Vf(m. 2"+2+ 2")=
V/(2") 1 for all m, n ->_ 0. (See discussion following (5).) A similar argument shows
that Vf(m’2n+2+3"2)=Vf(3"2n)=-i for all m,n>-_O.) In terms of complex
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functions this means that

1 1 )(11_ 1 1 1 )
Both of these series can be expressed in terms of classical functions of complex
variables. The second is a simple geometric series"

1 1
(2k) =k =11/2--------’-7 2---’kO _0

The first factor involves the generalized Riemann ’-function, which is defined, for
Re (z)> 1, by the equation

1
((z, ,Zg>=0 (n + a)"

Of course, we shall need to deal with the analytic continuation of this function, which
is defined for all z except z 1, where there is a simple pole with residue 1. (The
classical reference for properties of the r-function is Titchmarsh [14], though Whit-
taker and Watson [15] also have a full treatment, and Edwards [6] gives a nice
historical perspective.) In terms of this function, we have

1(-1) 1 E -+ E (2k)(2k+1)=2 (4k+1) k_>-a k_->ak_O kO

2 1 2-14-7’(z, )- .-2z r(z, 1).

(It is customary to drop the second argument in r(z, 1) and refer to it simply as r(z);
this is the function originally studied by Riemann.) Therefore, we have found that

Vf(k) 2r(z, 1/4)
((z).(20) Y’.

>=1 k 2(2 1)

It is the existence of this simple formula which makes the gamma-function method
applicable to this problem. (Functions of this form are well-known in analytic number
theory as Dirichlet series, and many techniques have been developed for dealing with
them. See, for example, [2].)

Substituting, we have

1 [
l+ieo /2’(2z, 1/4)

b]--i al_io
r(z)iZ\ --- 1) -’(2z)) dz(1 +O(/4 1)).

To evaluate this integral, we first approximate it by integrating around the contour R
shown in Fig. 15 and letting Y-+oo. As before, as Y-->oo the integral along the
right-hand side of Rr approaches the given integral, and the integrals along the top,
bottom and left can be bounded by using well-known bounds on the F and " functions.
We have

(21)

which follows from Stirling’s approximation (see, for example, [1, eq. 6.1.45]), and

(22) Isr(x + iy, a)l O([yl-) for x ->_-1

(see, for example, Whittaker and Watson [15, p. 276]). Therefore, the integrals along
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-1/2-iY

+iY

-iY

FIG. 15. Contour of integral for final integral.

the top and bottom lines of Ry are

O(e-=’vl/2I_ f’ly]3/Z-Xdx)
1/2

which is exponentially small and vanishes very quickly as Y- c. The integral along
the left line of Rv is

so that we now have

(23)
1 IR (2((2z, 1/4)

b/. / F(z)/’z\ 4z(4z- 1) ((2z)) dz(1 +0(j4-1))+0(]-1/2).

The value of the integral is the sum of the residues within Ry.

The only singularities within Ry are contributed by F(z) and 1/(4z 1): the
function F(z) has a simple pole at z 0 with residue 1, and 1/(4 1) has simple poles
at z 2k.a’i/ln 4 for k 0, + 1, +2,. with residue l/In 4. (Both sr(2z, 1/4) and ((2z)
have simple poles with residue 1 at z 1/2, but they cancel out.) There is therefore a
double pole at z 0 and we need to use Laurent series expansions to find the residue
there. We have

r(z)
r(z+l) lexp{_yz+O(z2)} 1

v+O(z),
Z Z Z

In/"
I =e =l+zln]+O(z2),
1 In (1/4)

4z-e -1 zln4+O(z2),

1 1 1 1 1
4z--i=ezln4----=Z ln4+(z ln4)2/2+O(z3)-z ln4 2

-O(z),

1) 1 ())r(2z, +z(2 In F -In (2or) + O(z2),

and

1
((2z)= -+ O(z).
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The expansion for F(z) is well known (see Abramowitz and Stegun [1, eq. 6.1.33]),
and the next three expansions are elementary. The expansions for the st-functions,
which are crucial to the derivation, follow directly from Whittaker and Watson [15, p.
271] where it is shown that ((0, a)= -a and (’(0, a)= In F(a)- 1/2 In (27r). Multiply-
ing these series together, we find that

(4z(4-1) ) (1,. )(14z2((2z, 1/4)
’(2z) In j 3’r(z)j ;+ +O(z)

ln2
(24)

1 1/1 ,/ 1
4z 2 ln--- +- , lg j

z 41n2 4

1 r(1/4) )-lg+O(z)
4 2zr

r(1/4)2]+lg
27r ]

+O(1)"

This gives the residue at z 0 (the coefficient of 1/z).
To this we must add the residue at the other poles of 1/(4z- 1). The effect of

these other terms is small (but not insignificant), and we shall encapsulate them in a
single term,

e (j)=1-0 F
\ In 4 ]

kTri/ln4
_
4krd )

( ( (2krri ))krci] ik.i/ln2(1
Y 2Re F 1--] ln2In 2 k_>l

Y, (:k COS (kTr lg j)-r/k sin (kTr lg j)),
k_>_l

where

In 2
(kTri (2kTri 1

F
\i-/

(\-i- -) =- + 1.

To finish the evaluation of our b. and Bu we need to estimate the F and ( functions at
these points along the imaginary axis. The F-function is easy to bound from Stirling’s
approximation (see Edwards [5, 6.3]), and the (-function can be estimated by writing

1 1
r(z,a)= 2 ,k+a,Z

+
O-<k< e (k +a )z,

and then applying Euler-MacLaurin summation to the second sum, for appropriate K.
(These manipulations are valid for Re z > 1 only, but the resulting formulas are valid
for all z, by analytic continuation--see Edwards [6, 6.4] for details.) Table 4 shows
the values of sCk and r/k for k 1, 2, 3 computed in this way. The values get exceed-
ingly small for larger k, as can be verified from the bounds (21) and (22).

Adding all the residues, we have, from (23):
1 r(1/4)2 1 Y t-e(j)+o(j-’/2).(25) b=lgj+lg 2 4 41n2

This leads to our final result.
THEORZM 3. The average number ofexchanges used by Batcher’s odd-even merge

for a random 2-ordered file of 2N elements is

1 y+21 r(1/4)
BN=-NlgN+ lg

2rr 4 41n2
t- 6 (N)) N + 0(v/- log N),

where 6(N) is a periodic function of log N, with 6(4N)= 6(N), ]6(N)[ < .000490, and
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8(2").000317(-1)". (The constant

F(1/4)a 1 3, + 2
lg4

27r 4 41n2

has the approximate value .385417224.)
Proof. From the discussion above, we need only substitute our result (25) for b.

into our equation (14) for BN and perform the summation. We have

1 4N (2/)1
2 4j, ( lg j +lg-Br 2 2N l=’<s

1r(a/4)a 1 Y J- :(f)q- O(f-1/2) q--N.2r 4 41n2

The terms not involving j are easily taken care of, since it is trivial to prove by
induction that

(Direct proof:

1 4u

f_., 1(2/) o<_-<(-1)(-1/2’j/ =(_1)_ (-3/2’=N_1] (NN--1/2)I =4-’N \(2N-N-11’]
O<=i<N

for supporting identities, see Knuth [12].)
For the other terms, we can remove the binomial coefficients with Stirling’s

approximation, as in the derivation of (16). We have

(2/) 1 4N
t- o(y-3/2) and x[r,-N+ O(N-/2).

4 x/-l1" (2NN)
TABLE 4

Values of constants in the asymptotic expansion for the
average number of exchanges.

2 (k’n’i] /2k’tril
k -t-iqk l-n-F \ln 2/Srl )

.003704670+ .002500177+
2 .000001560+ -.000000832-
3 .000000001- .000000002+

F(41-) 3.6256099082+

1.4426950408+
In 2

=0.5772156649+

"rr 3.1415926535+



268 ROBERT SEDGEWlCK

Therefore the O(j-1/2) term sums to 0(/ log N), and

2 ,-- h y dy + 0

1N lgN_
1

2 in :2N + O

Here the second step follows from Euler-MacLaurin summation (see, for example,
Knuth [13, p. 110]) and the third step from the substitution x y2.

We have proved that

1 (r(1/4)
2 1 /+ 2

B =-N lg N + lg-
2- 4 41n2 6(N)) N + 0(/- log N);

it remains to evaluate the oscillatory term

1 4N (ili’)E (i).N6(N)
2 2N

After substituting for e (j), we proceed in the same way as we did for the lg/" term. The
result of using Stirling’s approximation on the binomial coefficients and Euler-
MacLaurin summation on the resulting sums is

These integrals are elementary; the substitutions x y2, then 27rk lg y, transform
them into standard integrals (for example, Abramowitz and Stegun [1, eqs. 4.3.136,
4.3.137]) with the eventual result

6(N)= Y. O’k

k>=X + 1
(k(O’k COS (rrk lg N)+sin (rrk lg N))

r/k (Ok sin (rrk lg N)- cos (rrk lg N)))

where erk is (ln 2)/(2rrk). From this formula, we see that 8(N) has the stated
properties. With the aid of Table 4, we can easily compute the values

(26)
o"k6(22")= Y (O’k(k + ).000317000...
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and

(27) 6(22.+)= (_1) o-
k>____l o’+1 (O’kk + rig) --.000317082" .

Finally, since the function a sin x + b cos x has the extreme values + n/a 2 + b2, we have
the extreme values

[a(N)l < E cr 4(sCok + ,k): + (sc rtkO’k) .000490177
k_-> O’ + 1

From Theorem 3 we see that, asymptotically, only 1/4 of the comparators in
Batcher’s merge are involved in exchanges, on the average. The analytic result for the
coefficient of the linear term given in Theorem 3 matches the exact computed value
(Table 3) to six decimal places.

In principle we could extend the methods used to get any desired accuracy
whatsoever. This would mainly involve carrying the asymptotic series expansions
further, which gets very complicated in the applications of Euler-MacLaurin sum-
mation. Also, the left boundary has to be moved left for sharper asymptotic accuracy
in (23). Each negative integer enclosed contributes another simple pole from the F
function.

Figure 16 shows a graph of the coefficient of the linear term from Theorem 3,

F(1/4)a 1 3’+2lg I- 8(N),
2rr 4 41n2

together with the true values of (BN-1/4N lgN)/N, computed with (13). The upper
curve is the actual values, and the lower curve is the asymptotic estimate. The
difference between the curves is reflected in the O(/log N) term in Theorem 3. The
curves get very close for large N.

4. Sorting. Any merging method may be extended into a sorting method with the
following recursive procedure: To sort a file of N elements, use the method to
independently sort the odd elements and the even elements of the file, thus producing
a 2-ordered file of N elements. Then apply the merging method. Figure 17 shows the
sorting network resulting from applying this procedure to Batcher’s odd-even merge.
If merge stages are overlapped, the sort can be accomplished in 1/2[lg N] ([lg N] + 1)
independent stages. Knuth gives a formula describing the number of comparators
required [13, exercise 5.2.2-15]; it depends heavily on the binary representation of N.
For simplicity, we shall assume throughout this section that N 2". The number of
comparators required is then described by the relation (see (1))

C=- 2C--, + (n 1)2"-1+ 1

which telescopes, after division by 2", to the solution

1 1
(28) C*N N(lg N)Z-N lg N +N- 1, N 2".

Again, this method cannot compete with known O(N log N) sorting methods on
serial computers, but it might do well if parallelism is available.
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The average number of exchanges required can be calculated from a similar
recurrence, using Theorem 3, since the odd and even elements are sorted indepen-
dently. If

F(1/4)2 1 y +2
=lg

2rr 4 41n2

we have the following expression for the average number of exchanges:

(1 )B.=2B*.-I+ (n-1)+a+8(2"-1) 2"-l+O(x/logN).

Iterating this recurrence (applying the same recurrence to B*u/2), we get

(1 3 -2) -1)) + O(V log N).B> 4B2"-- + n + 26 -+ 6(2" + 6(2" 2"-1

If we define 6"(2")-= 6(2"-2)+ 8(2"-1), then we know that 8*(2")= 8*(2"-2) as in
Theorem 3. Our recurrence then telescopes when divided by 2" to the solution

B-2"= (1 316, )o_<_i-<_,/2Y (n-2])+a-+ (2") +O(1)

-na 1( 18, )-1-+ a-g+ (2") n+O(1)

or, in terms of N:

(29) B} N(lg N)2+ a -+ (N) N lg N + O(N), N 2".

The value of 1/2(a--) is about .130208... which is the value of the coefficient of the
N lg N term to six places, since we know from (26) and (27) that 18*(N)I < 10-6.

In the same way, we could find from Theorem 1 that, asymptotically, all of the
comparators could be involved in exchanges in the worst case. However, this asymp-
totic maximum is approached even more slowly than for the merging method, since
the recursive nature of the sorting method guarantees that many small files will be
merged.

x merges 2 x 2 merges 4 x 4 merges

FIG. 17. Odd-even sorting network.

8 x 8 merge



272 ROBERT SEDGEWICK

5. Conclusion. In this paper, we have derived formulas which accurately describe
the number of exchanges involved in Batcher’s odd-even merge, both on the average
and in the worst case. This completes our understanding of Batcher’s method, which is
of some theoretical importance as a near-optimal nonadaptive method, and of some
practical importance when parallelism is available.

The main results are the exact formulas for the worst case and the average given
in Theorems 1 and 3. These lead to asymptotic statements that, as N o, about of
the comparators do exchanges on the average and nearly all of them do exchanges in
the worst case.

We have emphasized the methods of analysis, as well as the results, because they
may have more general applicability. In particular, Theorem 2 could be of use in the
analysis of other merging problems and other combinatorial problems which can be
modeled with paths in a lattice. Also, the problem of determining the average number
of exchanges has provided an excellent example of the application of de Bruijn’s
"gamma-function" method of asymptotic analysis.

Acknowledgments. I had thought this problem hopelessly difficult until Dave
Notkin brought its details to my attention in a classroom project.

Note. The kind of asymptotic analysis that we used in determining the average
number of exchanges has recently been used to solve yet another problem: determin-
ing the average number of registers needed to evaluate arithmetic expressions. See the
recent reports by P. Flajolet, J. C. Raoult and J. Vuillemin, On the average number of
registers required for evaluating arithmetic expressions, Proc. 18th Symp. on Foun-
dations of Computer Science, Providence, RI; and by R. Kemp, The average number
of registers needed to evaluate a binary tree optimally, Saarbriicken University Report
A 77104, Saarbriicken, Germany.

REFERENCES

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, Dover, New York,
1970.

[2] T. M. APOSTOL, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[3] K. E. BATCHER, A new internal sorting method, Rep. GER 11759, Goodyear Aerospace Corp.,

Akron, OH, 1964.
[4] , Sorting networks and their applications, Proc. 1968 Spring Joint Comp. Conf., AFIPS Press,

Montvale, NJ, 1968, pp. 307-314.
[5] N. G. DE BRUIJN, D. E. KNUTH AND S. O. RICE, The average height of planted plane trees, Graph

Theory and Combinatorics, R. C. Read, ed., Academic Press, New York, 1972, pp. 15-22.
[6] H. M. EDWARDS, Riemann’s Zeta Function, Academic Press, New York, 1974.
[7] A. ERDLYI, ed., Tables of Integral Transforms, McGraw-Hill, New York, 1954.
[8] H. W. GOULD AND J. KAUCKq, Evaluation of a class of binomial coefficient summations, J.

Combinatorial Theory, (1966), pp. 233-247.
[9] J. L. w. V. JENSEN, Sur une identit d’Abel et sur d’autres formules analogues, Acta Math., 26 (1902),

pp. 307-318.
[10] K. KNOPP, Theory of Functions Part I, Dover, New York, 1945.
[11] ., Theory of Functions Part II, Dover, New York, 1945.
[12] D. E. KNUTH, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1968.
[13] , The Art of Computer Programming, VoI. 3: Sorting and Searching, Addison-Wesley, Reading,

MA, 1972.
[14] E. C. TITCHMARSH, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951.
[15] E. T. WHITTAKER AND G. N. WATSON, A Course ofModern Analysis, Cambridge University Press,

London, 1973.



SIAM J. COMPUT.
Vol. 7, No. 3, August 1978

1978 Society for Industrial and Applied Mathematics

0097-5397/78/0703-0002 $01.00/0

ISOMORPHISM TESTING FOR GRAPHS, SEMIGROUPS, AND FINITE
AUTOMATA ARE POLYNOMIALLY EQUIVALENT PROBLEMS*

KELLOGG S. BOOTHf

Abstract. Two problems are polynomially equivalent if each is polynomially reducible to the other.
The problems of testing either two graphs, two semigroups, or two finite automata for isomorphism are

shown to be polynomially equivalent. For graphs the isomorphism problem may be restricted to regular
graphs since we show that this is equivalent to the general case. Using the techniques of Hartmanis and
Berman we then show that this equivalence is actually a polynomial isomorphism. It is conjectured that the
isomorphism problem for groups is not in this equivalence class, but that it is an easier problem. If the
conjecture is true then P NP; if it is false then there exists a "subexponential" O(n cl og,,+c2) algorithm for
graph isomorphism.

Key words, graph, regular graph, group, semigroup, finite automaton, isomorphism, polynodaial
reduction, NP-complete

1. Introduction. Determining the exact computational complexity of graph
isomorphism is currently an open problem [11]. No algorithm has been proven to run
in less than exponential time. yet no nontrivial lower bound has been proven. Many
problems of this type have been shown NP-complete but at present graph
isomorphism is not among them [1], [6]. We investigate the class of problems which
are "complete" over a graph isomorphism in the sense that any such problem will
be polynomially equivalent to the problem of graph isomorphism. The notion
of equivalence we use is mutual reducibility in the sense of either Karp or Cook
[1], although we also show that the equivalence holds under the stronger notion
of polynomial isomorphism discussed by Hartmanis and Berman [4].

After defining these basic concepts we introduce three isomorphism problems:
isomorphism of graphs, isomorphism of semigroups, and isomorphism of finite
automata. We show that testing graph isomorphism is no harder than testing regular
graph isomorphism. We then extend the techniques to prove that the three iso-
morphism problems are in fact equivalent.

We conclude the discussion with a conjecture relating the problem of group
isomorphism to the previous problems and to recent results of Tarjan [12] and Miller
[10]. The implications of this conjecture to the P NP question are examined.

2. Basic terminology. The concept of polynomial reducibility has become famil-
iar within the literature [1 ], [6]. A problem (language) L1 is polynomially reducible to a
problem (language) L2 if there exists an encoding , computable in polynomial time,
from strings over the alphabet of L1 to strings over the alphabet of L2 such that w L1
iff (w)L2. This is written as L c,L2. If L pL2 and L2 pL1 we say that the
problems are polynornially equivalent and write L =oLd; if the mapping is a
bijection and - is a polynomial reduction of L2 to L we say that the problems are
polynomially isomorphic and write L ,L2 [4].

A graph G (V, E) is a set of vertices V and edges E such that each edge is a pair
of vertices. A graph is regular of degree r if every vertex belongs to exactly r edges. K,,
is the complete graph on n vertices, in which every vertex belongs to an edge with
every other vertex. Kn,n is the complete bipartite graph on 2n vertices. Two graphs

* Received by the editors March 14, 1977, and in revised form October 25, 1977.

" Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
This research was supported by the National Research Council of Canada under Grant A4307.
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G1 (71, El) and G2--(72, E2) are isomorphic if there exists a bijection f: V1- V2
such that (u, v)E1 iff (f(u),f(v))eE2. This is written GIG2..The graph iso-
morphism problem is to decide, given two graphs G1 and G2, if such a bijection exists.
Although many algorithms have been proposed [11] there is no known polynomial or
even subexponential algorithm for deciding this question.

A semigroup S =(X,o) is a set X having a single binary operation such
that xo(yoz)=(xoy)oz for all x,y,zX (o is an associative operation). The
semigroup is commutative if x y y x for all x, y X. Two semigroups $1 (X1, o1)
and $2 (X2, 2) are isomorphic if there exists a bijection f: X1 --> X2 such that x o1 y
z iff f(x)o2 f(y)= f(z): This is written $1 $2. The semigroup isomorphism problem is
to determine if such a bijection exists. More information on semigroups is given in [3].

A finite automawn A =(Q,E, 8, s,F) is a set of states Q, an alphabet Y_., a
transition function 8: Q x E --> Q, initial state s Q, and a set of final states F c_ Q. Two
finite automata A (Q1, -’-1, 1, Sx, FI) and A2 (Q2, E2, 62, s2, F2) are isomorphic if
there exist bijections f: QI -> Q2 and g" EI -> Y-,2 such that

1) f(81(q, a))=82(f(q), g(a)) for all q QI and a eY_.,
2) f(Sx) s2,

and
3) q F1 iff f(q) F2 fo,r all q 6 O1.

The finite automaton isomorphism problem is to determine if two such bijections exist
[8]. More information on finite automata is given in [3].

3. Graphs. Although some classes of graphs such as trees [1] and planar graphs
[5] are easy to test for isomorphism there are many well-known classes of graphs for
which the isomorphism problem is no easier than for the most general case [2]. One
such class having this property is the class of regular graphs.

THEOREM 1. Regular graph isomorphism =-p graph isomorphism.
Proof. Any isomorphism test for arbitrary graphs will also work for regular

graphs. We need only show that graph isomorphism ocp regular graph isomorphism.
Let G=(V,E) be any graph having V= {vll <-i <-_n} and E={e[l<-j<-m}

where every vertex belongs to at least one edge and m-n > 2. Define the following
sets.

Vx={f.]lj<=m},

and

V2 {gk[l <--_ k <-- m 2},

V3 {htll <- <= m n + 2}

E1 {{Vi, ei}lvi ei, 1 <= <--_ n and 1 -< ] <= m},
E2={{vi, fi}lviei, l<-i<-n and l<-j<-m},

E3 {{ei, gk}[ 1 <-- j _--< m and 1 <_- k <_- m 2},

E4 {{J, h}l I _-< ] <_- m and 1 _-< <_- rn n + 2}.

Let REGULAR(G) be the graph (V tA E I..J V1 U V2 U V3, E1 U E2 Il E3 U E4). We can
establish two facts about REGULAR(G)" it is a regular graph of degree rn and given
REGULAR(G) we can recover G uniquely.

The first fact is easily verified. Each vie V has degree rn in REGULAR(G)
because it is adjacent to either ei or f/ for all 1 <-j =< m; each ei E has degree m
because it is adjacent to exactly 2 of the vg V and to all m- 2 of the gk V2; each

f. V1 is adjacent to exactly n 2 of the v V and also to all m n + 2 of the hl V3;
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each gk E V2 is adjacent to all m of the ej E E; finally each hi V3 is adjacent to all rn
of the/ V1.

The second fact follows from the observation that in REGULAR(G) every
gk V: has exactly the same set of neighbors and every hl V3 has exactly the same
set of neighbors. We can tell these two sets apart because IV2] >IV31 since n > 4 if
m-n > 2 in a graph. Having thus located V:, we know that

E {vertices at distance 1 from V:},

V {vertices at distance 2 from V2}

and also that {u, v}E E iff there is an edge in REGULAR(G) from both u and v to
some ei e E. The encoding (G1, G2)(REGULAR(G1), REGULAR(G2)) thus has
the property that GI-G2 iff REGULAR(G1)REGULAR(G2). Moreover, it is
clearly computable in polynomial time and hence is a polynomial reduction of graph
isomorphism to regular graph isomorphism if we realize that isolated vertices can be
handled with a simple pre-test and that adding an equal number of copies of K4 to
both G1 and G2 will not affect their isomorphism but will ensure that m-n >2,
without increasing the size of the input by more than a polynomial. Q.E.D.

Similar constructions exist which show that graph isomorphism and directed
graph isomorphism are polynomially equivalent [2],[10]. We will thus make no
distinction between the two problems (indeed, our definition of graph conveniently
glossed over any distinction).

Having seen that for at least one subclass of graphs the isomorphism problem is
still equivalent to the general case, we should not be surprised to find many others. A
survey of classes having this property is contained within [2]. What is of more interest
is to find substantially "different" problems which are still equivalent. The next two
sections provide examples of such problems, although both are admittedly still iso-
morphism problems and thus maybe not too "different."

4. Semigroups. Miller and Monk [9] have shown that the isomorphism problem
for any algebraic structure is polynomially reducible to graph isomorphism because
the operation tables can be encoded as directed graphs. Conversely, if we have an
algorithm for handling isomorphism of arbitrary algebraic structures it will also work
for graphs if we consider the adjacency relation to be a binary operation [2]. Thus the
general algebraic structure isomorphism problem is polynomially equivalent to the
graph isomorphism problem. When axioms are added to the algebras, it is no longer
obvious that an arbitrary graph can be encoded as an algebra. We can ask for which
axioms the algebraic isomorphism problem is polynomially equivalent to the graph
isomorphism problem.

Tarjan has given an O(nqg’+c) algorithm for testing isomorphism of groups
[12]. Miller then extended the algorithm to work for quasigroups and Latin squares
while only affecting the constants ca and c: [10]. Algorithms of this time complexity
are "subexponential" in the sense that c" is not O(nc11’/2) for any constants cl and
c: when c > 1. Thus a bound of this type would be an improvement over any known
bound for existing graph isomorphism algorithms.

Although we believe that graph isomorphism is not an NP-complete problem, we
also believe that it is not as easy as group isomorphism. As a motivation for this
remark we prove the following.

THEOREM 2. Semigroup isomorphism =p graph isomorphism.
Proof. In light of Miller and Monk’s result it is sufficient to show that graph

isomorphism oc, to semigroup isomorphism.
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Let G= (V, E) be any graph. Define SEMIGROUP(G) to be (V(.JEU{0},
where is the binary operation defined by

x

Y
xoy=yox=

{x, y}

0

ifx =y,

ifxeyeE,

if{x, y}eE,

otherwise.

We can observe the following two facts about SEMIGROUP(G): it is a semigroup
and given SEMIGROUP(G) we can recover G uniquely.

Associativity is easily verified. The second fact follows from the observation that
0 is the unique element with the property that x 0 0 x 0 for all x, and that

E {x Ix y x for exactly two y x}.

All other elements must be in V. The rest of the proof is similar to that of Theorem 1.
We conclude that tha encoding (G1, G2) (SEMIGROUP(G1), SEMIGROUP(G2))
is a polynomial reduction of graph isomorphism to semigroup isomorphism. Q.E.D.

The construction used in Theorem 2 actually proves a stronger result. The binary
operation defined there is obviously commutative.

THEOREM 3. Commutative semigroup isomorphism =-p graph isomorphism.
The primary difference between semigroups and either groups or quasigroups is

the ability to solve equations. This property plays a central role in the algorithms of
both Tarjan and Miller. The construction in Theorem 2 relies heavily upon the fact
that we could allow x y 0 for any values of x and y. The constraint of associativity
(or commutativity) was not critical, but the ability to solve equations seems to be a
luxury we can’t have if we want to encode arbitrary graphs. The conjecture that group
isomorphism is intrinsically easier than semigroup isomorphism (and thus, by
Theorem 2, graph isomorphism) is based upon the belief that the axioms for groups
(or even quasigroups) drastically reduce the number of possible isomorphisms and
thus the inherent complexity of the isomorphism problem.

5. Finite automata. The relationship between semigroups and automata is well
known [3], so a polynomial reduction appears trivial, but the familiar construction
from a semigroup yields a semiautomaton not an automaton, because no start or final
states are defined [3]. If we are interested in automata with start states we must do a
little more work to prove equivalence.

THEOREM 4. Finite automaton isomorphism =- graph isomorphism.
Proof. The Miller-Monk result extends also to finite automata so we need only

show that finite automaton isomorphism eco graph isomorphism.
Let G=(V,E) be any graph. Define AUTOMATON(G) to be (VLI

{"start", "stop"}, V, 6, "start", V)where "start" and "stop" are pecial states. The
transition function is given by

3 ("start", v ) v,

6 ("stop", v) ="stop",

u ifu =v,
8(u, v)= v if{u, v}eE,

"stop" otherwise.

(Strictly speaking the alphabet should be a copy of V, but we ignore this technicality.)
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Again we notice two things about the construction: AUTOMATON(G) is a finite
automaton and given AUTOMATON(G) we can recover G uniquely. Thus the
encoding (G1, Gz)-(AUTOMATON(G1), AUTOMATON(G2)) is a polynomial
reduction of graph isomorphism to finite automaton isomorphism. Q.E.D.

The construction encodes the graph structure using the state set and the alphabet.
We might ask if this is necessary. Leiss has pointed out that if we fix the size of the
alphabet, automaton isomorphism becomes polynomial if we assume all states are
reachable, as they are here [7]. A similar result holds if we fix the size of the state set.
We can say more, however, in the case of semiautomata.

Ignoring the initial and final state designations of an automaton we have a
semiautomaton. The usual construction of a semiautomaton from a semigroup uses
the semigroup for both the state set and the alphabet. This is not necessary for our
purposes, and we can restrict ourselves to a binary alphabet.

THEOREM 5. Semiautomaton isomorphism =p graph isomorphism, even if we
restrict the alphabet to be of size two.

Proof. As before we prove only that graph isomorphism semiautomaton
isomorphism. This time, however, we choose the directed version of graph iso-
morphism.

Given a graph G=(V,E) define SEMIAUTOMATON(G) to be (VUEU
{"dead"}, {"in", "out"}, 6), where "dead", "in ’’, and "out" are new objects and the
transition function is given by

(q, "in") =fqu"dead"
6(q, "out")=

"dead"

ifqeV,
if q E and q (u, v),
otherwise,

if q e E and q (u, v),

otherwise.

The usual arguments show that the mapping (G1, G2) (SEMIAUTOMATON(G1),
SEMIAUTOMATON(G2)) is a polynomial reduction of graph isomorphism to semi-
automaton isomorphism. Q.E.D.

6. Polynomial isomorphism. Hartmanis and Berman have examined the
equivalence relation defined by polynomial isomorphism [4]. It is a refinement of the
polynomial equivalence we have been discussing. They have observed that all known
NP-complete problems are actually polynomially isomorphic [4]. We prove a similar
result here by showing that all of the problems discussed above are polynomially
isomorphic. We Use a technical result from [4] to establish our claim.

LEMMA 6. If La and L2 are languages over the alphabets E1 and ’2, respectively,
and there exist polynomial time computable functions gl" El* x ZI*- *, @1" El*- ZI*,
2" .’ X ’2 9, -, and 2" -’2 -’> ’2 such that for 1, 2

1) Vx, y Y_./*, ’(x, y)L iffx 6L,
2) Vx, y ,Z*, @(g(x, y))= y,
3) Vx, y Y_,*, ]q(x, y)] > ]x] + [y],

then L1 -e L2 iffL1 =p L2.
The function is used to encode the language L into itself by "padding" the

strings to an appropriate length. @ is a decoding function which retrieves the second
argument of from the padded string. In practice, as observed in [4], it is easy to find
the appropriate encoding and decoding functions.
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THEOREM 7. All of the following problems are polynomially isomorphic: graph
isomorphism, regular graph isomorphism, semigroup isomorphism, commutative semi-
group isomorphism, finite automaton isomorphism, and semiautomaton isomorphism.

Proof. By use of Lemma 6 it is sufficient to prove the existence of the encoding
and decoding functions; the previous theorems have already shown that all of the
problems are polynomially equivalent. For simplicity we assume, without loss of
generality, that all problems are represented over a {0, 1} alphabet.

Graph isomorphism. The encoding function g’ for graph isomorphism is
computed in polynomial time as follows. Given strings x and y determine if x is the
description of two graphs, (G1, G2). If not, let n 0. If yes, then let n be the maximum
number of a vertex in either graph. Construct a description of two graphs (G, G)
where

G G tA HotA H..
i=l

The graph H0 is K3 with its vertices numbered n + 1, n + 2, n + 3, and each/-/, is either
K1 (if yj 0) or K2 (if yj 1) with distinct, successively higher numbered vertices.

The decoding function is easily computed by finding some copy of K3 having the
highest numbered vertices and then "reading off" y in its binary representation. The
three properties of Lemma 6 are easily verified.

Regular graph isomorphism. The same functions work except that we first find r,
the degree of regularity (r _-> 2 can be assumed without loss of generality) and then let
H0 be the complement of an (r + 3)-cycle and let/-/, be K+ (if Yi 0) or K, (if Yi 1).

Semigroup isomorphism. The encoding function g’s is computed by finding n,
the highest numbered element in the pair of semigroups ($1, $2). Elements a,/l,

a,+2, ", a+lyt+ are then added to both semigroups such that

ai an+l an+l ai an+l for l <-i<--n +]yl+ l,

ai an+i+1 an+i+1 ai
(
I
an+j

an+j+1

if yi 0

if y. 1

for 1 <_-i_-<n +]+ 1 and n + 1.

The decoding function locates an+l (the unique annihilator or reset element) and then
"reads off" the binary representation of y.

Commutative semigroup isomorphism. The semigroup encoding and decoding
functions work here also since s(G1, G2) is a pair of commutative semigroups iff G1
and G2 are commutative.

Finite automaton isomorphism. Assume the initial state is q l. The encoding
function computes the number of states, m, and the number of letters, n, and then
adds one new letter an+l and ]y] + 1 new states. The transition function is augmented
by the extra transitions for 1 _-< _-< n, 1 -< ] -<_ [y [, 2 _-< k _-< m

6(ql, an+l)=qm+l,

6(qm+i, ai)=q+i+l,

(qm+j, an+I)= qm+j+yi,

6(qm+lyl+l, ai)= qm+lyl+l,

6(qk, a,+l)=qk,

Again the decoding is easily polynomial and the conditions of the lemma are satisfied.
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Semiautomaton isomorphism. This is similar to the previous construction for
automata, although the alphabet size will be three instead of two as was the case in
Theorem 5. Q.E.D.

7. Concluding remarks. We have shown that three isomorphism problems are of
the same complexity: graph isomorphism, semigroup isomorphism, and finite
automaton isomorphism. We have conjectured that group isomorphism is not of the
same complexity but that it is easier. If the conjecture is true P NP. If it is false there
is an O(n og,,+) algorithm for graph isomorphism. A proof of either result would be
most interesting.

An area for further research is to find a problem which is not obviously an
isomorphism problem but which is polynomially equivalent to those examined here.
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FINDING ALL SPANNING TREES OF
DIRECTED AND UNDIRECTED GRAPHS*

HAROLD N. GABOW]. AND EUGENE W. MYERS]"

Abstract. An algorithm for finding all spanning trees (arborescences) of a directed graph is presented. It
uses backtracking and a method for detecting bridges based on depth-first search. The time required is
O( V+E+EN) and the space is O( V+ E), where V, E, and N represent the number of vertices, edges, and
spanning trees, respectively. If the graph is undirected, the time decreases to O(V+E + VN), which is
optimal to within a constant factor. The previously best-known algorithm for undirected graphs requires
time O(V+E +EN).

Key words, spanning tree, arborescence, bridge, depth-first search

1. Introduction. The problem of finding all spanning trees of directed and
undirected graphs arises in the solution of electrical networks [7, pp. 252-364].
Algorithms of varying efficiency have been proposed [4], [5], [6], [8], [9], [10],
[11], [13]. For undirected graphs, the best algorithm seems to be that of Minty, Read
and Tarjan. It uses O(V +E +EN) time and O(V+E) space, where the graph has V
vertices, E edges, and N spanning trees. We refine their approach and present an
algorithm that uses O(V +E + VN) time and O(V + t7,) space. In terms of worst-case
asymptotic bounds, this algorithm is optimal. The algorithm also applies to directed
graphs. Here it uses O(V +E +EN) time and O(V +E) space. A previous algorithm
[11] uses exponential time per tree (in the worst case).

We first review some terms for undirected graphs, and generalize them to direc-
ted graphs. In a connected undirected graph G, a spanning tree is a subgraph having a
unique simple path between any two vertices of G. A bridge is an edge e where G-e
is not connected. Equivalently, e is in every spanning tree of G.

In a directed graph G, a spanning tree (rooted at r) is a subgraph having a unique
(directed) path from r to any vertex of G. If such a tree exists, G is rooted at r. A bridge
(for r) is an edge e where G-e is not rooted at r. Equivalently, e is in every
spanning tree rooted at r. ("Spanning arborescence" is often used for "spanning tree"
of a directed graph. There appears to be no standard term for what we call a "bridge"
of a directed graph.)

The problem we consider is to find all spanning trees of a graph. This means that
for a given graph, a list is to be printed that contains each spanning tree exactly once.
Section 2 presents our results. Section 3 discusses some open problems.

2. Algorithm for all spanning trees. This section begins with an algorithm for all
spanning trees rooted at a given vertex r in a directed graph. This algorithm is used to
find all spanning trees, first in a directed graph and then in an undirected graph.

For all spanning trees rooted at r, the approach is to find all spanning trees
ccntaining a given subtree T rooted at r. To do this, first choose an edge el directed
from T to a vertex not in T; find all spanning trees containing T el; then delete el
from the graph. Next choose an edge e2 from T to a vertex not in T; find all spanning
trees (in the modified graph) containing TUe2; then delete e2. To continue,
repeatedly choose an edge ei from T to a vertex not in T; find all spanning trees (in
the modified graph) containing T t_J ei; then delete ei. Stop when the edge ek that has
just been processed is a bridge of the modified graph. At this point each spanning tree

* Received by the editors January 21, 1977. This work was partially supported by the National Science
Foundation under Grant GJ36461.

]" Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309.
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containing T has been found (exactly once). For if a spanning tree does not contain
any e/, < k, it must contain the bridge ek.

This basic approach needs an efficient method for discovering when an edge e is a
bridge. This can be done in a variety of ways; set merging techniques and edge
exchanges are two possibilities [3 ]. Below we describe a method based on depth-first
search.

We choose edges e so the tree T grows depth-first. More precisely, we always add
the edge e to T that originates at the greatest depth possible. Now suppose all
spanning trees containing T k.J e have been found, and we want to check if e is a
bridge. Let L be the last spanning tree found that contains Tt_J e, and let e (u, v).
Intuitively, in L, vertex v has the fewest descendents possible (among all spanning
trees containing TLI e). Equivalently, no edge goes from a nondescendent of v to a
proper descendent of v. (This is proved below in Lemma 3.) So e is a bridge when no
edge (besides e) goes from a nondescendent of v to v. This observation gives an
efficient bridge test.

To grow T depth-first requires some care. The algorithm below uses F, a list of all
edges directed from vertices in T to vertices not in T. F uses stack operations: to

enlarge T, an edge e is popped from the front of F and added to T; new edges for
T t_J e are pushed onto the front of F. In addition when e is added to T, some edges are

removed from F; when e is removed from T, these edges are restored in F. It is crucial
that the remove and restore operations leave the order of edges unchanged in F.
Otherwise, T will not grow depth-first.

Besides F, the algorithm uses lists FF. Each recursive invocation has a local FF
list. It is used to reconstruct the original F list. It is managed as a stack.

The algorithm also uses data structures for T, the current tree, and L, the last
spanning tree output thus far. The algorithm is given below in ALGOL-like notation.

2.
3.
4. new tree edge:

6. update F:
7.
8. recurse
9. restore F:

10.
11. delete e:
12. bridge test:

13.
14. reconstruct G:

procedure S; comment $ finds all spanning trees rooted
at r in a directed graph G rooted at r; begin
procedure GROW; comment GROW finds all spanning

trees rooted at r containing T; begin
if T has V vertices then begin L <- T; output (L) end
else begin make FF an empty list, local to GROW;

repeat
pop an edge e from F; let e go from T to vertex v,
re!T;

add e to T;
push each edge (v, w), w T, onto F;
remove each edge (w, v), w T, from F;
GROW;
pop each edge (v, w), w T, from F;
restore each edge (w, v), w T, in F;
remove e from T and from G; add e to FF;
if there is an edge (w, v), where w is not a

descendent of v in L then b - false else b - true;

until b;
pop each edge e from FF, push e onto F, and add e to G;

end end GROW;
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FIG. 1. Example graph.

15. start:

16.

initialize T to contain the vertex r; initialize F to contain
all edges (r, v) from r;

GROW;
end S;

Figure 1 shows a graph with four spanning trees rooted at r. Figure 2 shows a
computation tree indicating how S finds these trees T, 1 _-< i-< 4. In the computation
tree, a node represents a call to GROW; the arcs directed down from the node
correspond to the edges e added to T in line 5. For example, the root node first adds
edge 1, then deletes 1 and adds 2. Since 2 is a bridge in the modified graph, no other
edges are added.

Note the importance of restoring edges in correct order in line 10. When edge 4 is
added to get T1, edges 5 and 2 are removed from F. If they are restored in opposite
order (i.e., 2, 5), T3 is found, and then T2; then edge 1 is mistakenly declared a bridge,
and T4 is not found.

Now we prove procedure S is correct. Note the original graph G is modified by
GROW, by deleting and replacing edges (lines 11,14). In the discussion below the
current graph refers to the edges in the graph at a specified point in the computation.

We first show the tree T grows depth-first. This amounts to showing F simulates
the stack of active vertices in a normal depth-first search.

LEMMA 1. Let GROW be called with F containing the sequence of edges
(v,, w,), 1, 2,..., IFI. Then
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2

TI T2 T5 T4
FIG. 2. Computation tree.

(i) F contains all edges joining T to the rest o] the graph, i.e., {(v, w)lv T,
w T, (v, w) is in the current graph}= {(vi, w)ll _-< -<

(ii) F contains edges in a "depth-first order", i.e., if ]>=i then vj is a
descendent of vi in T.

Pro@ First note that on exit from GROW, F is identical to what it was on entry.
This follows by observing that the changes to F in lines 4, 6 and 7 are undone by lines
14, 9 and 10, respectively.

Clauses (i)-(ii) of the Lemma hold for the first call to GROW (line 16), by the
initialization step (line 15). In general, if clauses (i)-(ii) hold when GROW is called,
they hold for the calls made in line 8, by inspection of lines 3-13 and by the
preliminary remark. So by induction, clauses (i)-(ii) hold for all calls to GROW.

COROLLARY 1. Let ei, 1 <--_ j <-I TI, be the edges in T, indexed in the order they are
added to T. Let ei be directed to vertex v. Then the descendents of any vi in Tare vertices
v, ] <-_ k <-_ , for some J.

Proof. It suffices to show the descendents of a given vertex v are added to T
consecutively. We do this as follows. Imagine modifying G, by adding an edge (v, 0)
leading to a dummy vertex 0; in GROW, when v is added to T and edges (v, w) are
pushed onto F (line 6), push (v, 0) first. Now Lemma l(ii) shows as long as (v, 0) is in
F, the edges added to T (in line 4) join descendents of v. When (v, 0) is removed from
F, Lemma l(i) shows there are no edges from descendents of v to vertices not in T.
Thus no other vertices become descendents of v. The corollary follows.

Now we show the bridge test of line 12 is correct.

vertex is considered a descendent, but not a proper descendent, of itself.
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LEMMA 2. The bridge test sets b to Irue exactly when edge e is a bridge of the current
graph.

Proofi Let e (u, v), and let D denote the descendents of vertex v in the latest
spanning tree L. Below we show that when e’s bridge test is executed, the current
graph has no edge (w, x), where wD, x D-v. This suffices to prove the lemma.
For e is not a bridge if and only if some path P not containing e goes from r to v. When
there are no edges (w, x) as above. P must end in an edge (w, v), w D; further, P
exists if and only if such an edge (w, v) exists. The bridge test checks if (w, v) exists.
Hence it is correct.

So we must show the current graph has no edge (w, x), w D, x D- v. Let the
edges in L be ei, ] 1, , V- 1, indexed in the order they are added; let e e. The
bridge test is executed on edges e, V- 1, , + 1, and then on e e. For j > i, b
is set true. (Otherwise, another spanning tree would be output after L.)

Now consider any vertex x D- v. By Corollary 1, the edge in L directed to x is
some eh, h i. So b is true for eh. Thus no edge (w, x), w D, exists when eh’S bridge
test is executed.

So if (w, x) is in the current graph, it is added in an execution of line 14 following
some ek’S bridge test, where i< k _<-h. Corollary 1 shows ek joins desceqdents of v.
The edges added following ek’S bridge test precede ek in list F. Lemma 1 (ii) shows
these edges originate from D. Thus no edge (w, x), w D, is added. We conclude no
edge (w, x) is in the current graph, ffl

Now we can show S is correct.
LEMMA 3. Procedure S finds all spanning trees rooted at r of a directed graph G

rooted at r.

Proof. Suppose GROW is called, with T a tree rooted at r. Let C be the current
graph (when GROW is called). It suffices to show GROW finds all spanning trees
(rooted at r) of C containing T. For in the initial call (line 16), T contains only the
vertex r, and C G.

The proof is by induction, with the calls to GROW ordered so the size of T is
nonincreasing. For the base case, T contains V vertices; this is handled correctly by
line 1. For the inductive step, suppose when GROW is called T contains less than V
vertices. Let F contain edges ei, 1,..., IFI. Define,. {RIR is a spanning tree rooted at r and

T ei R
_
C-{eill _-<] < i}}.

By induction, it is easy to see GROW finds the trees U k=1, where ek is the first edge
for which b (in line 12) is true. Sets are disjoint, by definition. Lemma 2 shows ek is
a bridge in the graph C-{ejll -< j < k}. Thus any spanning tree R of C that contains T
contains some ej, 1 _-< _-< k, i.e., R . So GROW finds the desired spanning trees.

To estimate the efficiency of S, we must give some implementation details. First
we discuss how F is managed, and in particular, how it is restored to its original state
in line 10. F is a doubly linked list of edges. Line 7 traverses the list of edges directed
to v, from beginning to end. Each edge directed from T is removed from F; however,
the values of its links are not destroyed. Line 10 traverses the list of edges directed to v
in the reverse direction, from end to beginning. Each edge directed from T is inserted
in F, at the position given by its link values. This way, each edge is restored in its
original position.

Next we discuss the implementation of the bridge test. To detect descendents
efficiently, the vertices of L are numbered in preorder [1, pp. 54-55]: For a vertex v,
P(v) is v’s preorder number, and H(v) is the highest preorder number of a descendent
of v. So w is a descendent of v if and only if P(v)<-_ P(w)<-H(v). This test is used in
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line 12. In line 1, when L is formed, the values P(v) and H(v) are computed and
stored in the data structure for L.

Now we derive the resource bounds for S.
LEMMA 4. Procedure S uses O(EN) time and O(E) space on a directed graph

rooted at r.

Proof. First consider time. One execution of the body of the repeat loop (lines
4-12), excluding the recursive call (line 8), takes time proportional to the number of
edges directed to and from vertex v. Here v is the vertex added to T. In the process of
generating a spanning tree, v ranges over all vertices (except r). So the total time in
the loop body for one tree is O(E). This dominates the run time of S, which thus is
O(EN).

Next consider the space. The graph ( is stored as a collection of doubly linked
lists of edges directed to and from each vertex. This uses O(E) space. At any point in
the computation, an edge e may be on the F list, or on at most one FF list. So F and
FF use O(E) space. In addition, O(V) space is needed for T, P, and H. Thus the space
is O(E).

Now consider the problem of finding all spanning trees of a directed graph.
The possible root vertices r form a strongly connected component that precedes all
others. A strong connectivity algorithm can be used to find these roots in time
O(V+E)[12]. Then procedure S can be applied to each root. So we have the
following result.

THEOREM 1. All spanning trees of a directed graph can be found in time O(V+
E +EN) and space O(V+ E).

Next consider the problem of finding all spanning trees of an undirected graph. If
the graph is made directed (by giving each edge both directions), and root r is chosen
arbitrarily, then procedure S finds all spanning trees of the undirected graph. The time
can be estimated more precisely, as follows:

THEOREM 2. All spanning trees of an undirected graph can be found in time
O(V+E + VN) and space O(V+ E).

Proof. We need only show the time bound. Line 1 does a preorder traversal and
outputs each spanning tree; the time is clearly O(V) per tree, or O(VN) total. Now
we analyze the time spent in lines 4-12, when edge e is added. Ignoring the recursive
call (line 8), the time is proportional to the number of edges incident to v. Now we
consider two cases, and show in each case the total time in lines 4-12 is O(VN).

First suppose e is a bridge. Each edge f incident to v is in some spanning tree R
containing T U e. Charge the time spent on f, O(1), to R. Then each spanning tree gets
charged O(V). So a total time O(VN) is spent on bridges in lines 4-12.

Now suppose e is a nonbridge. The time spent on e in lines 4-12 is O(V). Now
we show there are exactly N- 1 nonbridges, so the total time spent on nonbridges is
O(VN): Let the nonbridge e correspond to the tree L used in e’s bridge test. Since e
fails the test, it gets deleted, and another tree is grown before the next bridge test. So a
given tree L corresponds to at most one nonbridge. If L is any spanning tree but the
last one found, it is used in the bridge test for some nonbridge. So it corresponds to
precisely one nonbridge. Thus there are exactly N-l nonbridges, l-]

Procedure S can be sped up in a number of ways. The preorder labeling of trees
can be done as trees are grown. Several trees can be grown at once (e.g., each edge
(w, v) in line 7 gives a spanning tree. Algorithms using this "factoring" approach are
[2, pp. 20-25], [8]). However, if each tree is output as a list of edges, O(VN) time is
required for the output step. So on undirected graphs, the algorithm is optimal, to
within a constant factor.

We have programmed S and other spanning tree algorithms in FORTRAN on
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TABLE 1.
Time for graphs with V 10.

N 50 105 310 680 839 1415

(msec) 100 180 456 831 1048 1634

the CDC6400. Compared to the Minty, Read and Tarjan algorithm, $ is over 3 times
faster for 6 _-< V -< 10, 8 _-< E _-< 14; the difference increases with denser graphs. Table 1
shows that the time for S, with V fixed at 10, is approximately proportional to N, as
predicted by the O(VN) time bound.

3. Open problems. This section briefly discusses two problems related to this
work. The first is to improve the O(V+E +EN) time bound for spanning trees of a
directed graph. To illustrate the difficulty here, consider the family of graphs illus-
trated in Fig. 3. The top part consists of N paths of length 2 from r to s; the bottom
part is a directed path of length N from s to t, plus all possible back edges. The

FIG. 3. Difficult graph.:

algorithm of Theorem 1 uses O(EN) time on these graphs. The time spent repeatedly
scanning back edges is "wasted." (As a point of interest, note the algorithm of [11] can
use exponential time per tree on these graphs.)

The second problem is, can the computation tree of S (Fig. 2) be represented in
less than O(VN) space? Note some computation trees have O(VN) nodes. For
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instance, the tree for an undirected cycle has V(V- 1)/2 O(VN) nodes. There are
two reasons why a more compact form is desirable.

First, the claim S is optimal for undirected graphs is based on a lower bound for
outputting the spanning trees. If a computation tree is acceptable output, it may be
possible to lower this bound and speed up the algorithm.

Second, consider the problem of listing all spanning trees in order of increasing
weight in a weighted undirected graph. (In a weighted graph, each edge has a
numerical weight; a tree’s weight is the sum of all its edge weights.) One approach is to
find all spanning trees, and then sort them. The sort takes time O(N log N), which is
O(min (V log V, E)N), since N =<min (2E, vV-2). This dominates the run time of the
algorithm. The space is O(VN), since the spanning trees must be saved until the sort
is done. A previous algorithm [3] uses O(EN) time and O(E+N) space. So our
approach is no slower, sometimes faster, but uses more space. Thus a "reduced"
computation tree is desirable.
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EFFICIENT CALCULATION OF EXPECTED MISS RATIOS
IN THE INDEPENDENT REFERENCE MODEL*

RONALD FAGINt AND THOMAS G. PRICEr

Abstract. In the independent reference model of program behavior, King’s formulas for the expected
FIFO ("first-in-first-out") and expected LRU ("least-recently-used") miss ratios each contain an exponen-
tial number of terms (very roughly nc’’, where n is the number of pages and CAP is the capacity of main
memory). Hence, under the straightforward algorithms, these formulas are computationally intractable. We
present an algorithm which is both efficient (there are O(n CAP) additions, multiplications, and divisions)
and provably numerically stable, for calculating the expected FIFO miss ratio. In the case of LRU, we
present an efficient method, based on an urn model, for obtaining an unbiased estimate of the expected
LRU miss ratio (the method requires O(n CAP) additions and comparisons, and O(CAP) divisions and
random number generations).

Key words, independent reference model, miss ratio, FIFO, first-in-first-out, LRU, least-recently-
used, storage management, page replacement, numerically stable

1. Introduction. The independent reference model (IRM) is a simple, widely
studied model of page reference behavior in a paged computer system (Aho, Denning
and Ullman [1]; Aven, Boguslavskii and Kogan [2]; Fagin [7], [8]; Fagin and Easton
[9]; Franaszek and Wagner [10]; Gelenbe [11]; King [13]; Yue and Wong [24]). In
this model, at each point in discrete time, exactly one page is referenced, where page
is referenced with probability pi, independent of past history. We present an efficient,
numerically stable algorithm for obtaining the expected FIFO ("first-in-first-out")
miss ratio, and an efficient algorithm, based on an urn model, for obtaining an
unbiased estimate of the expected LRU ("least-recently-used") miss ratio.

It is known that actual program page reference and data base segment or page
reference patterns in a paging environment are quite intricate (Lewis and Shedler
[15]; Lewis and Yue [16]; Madison and Batson [17]; Spirn and Denning [23];
Rodriguez-Rosell [21]). In particular, sequences of page references may be non-
stationary. The assumption of independent references is not only intuitively suspect,
but inconsistent with observed reference patterns. Why, therefore, should the IRM be
investigated?

In the study of computer system performance, it is sometimes helpful to experi-
ment with overly simple models, in order to gain insight into system behavior. In
particular, since paging is a complex phenomenon, it is useful to study the effects of
paging in conjunction with simple models of page reference patterns. From a mathe-
matical point of view, the IRM is the simplest model in which pages retain their
identity (as opposed, for example, to the independent LRU stack model of Oden and
Shedler [19], and related models, in which all pages are treated identically). We
remark that the formulation of other simple models that capture salient aspects of the
referencing behavior of programs remains an important problem. The IRM is simple
enough so as to be tractable, yet complex enough in the context of paging that there
are nontrivial, surprising results. Sometimes these results generalize to realistic situa-
tions. Thus, in Fagin and Easton [9], it is shown that from the approximate indepen-
dence of miss ratio on page size in the IRM, it follows that the miss ratio is approxi-
mately independent of page size in certain more realistic models, in which there is a

* Received by the editors November 1, 1976, and in final revised form October 25, 1977.

" IBM Research Laboratory, San Jose, California 95193.
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"random" component and a "sequential" component. In fact, this independence of
miss ratio on page size has been observed in an actual database system (see [9] for
details).

Beyond easing the task of experimenting with the IRM, there is a further
justification for obtaining algorithms that efficiently calculate miss ratios for the IRM.
The IRM has been used as a component of more complex models that have accurately
predicted miss ratio behavior. Thus, the miss ratios for Easton’s model of data base
references [6] and for Baskett and Rafii’s model of program references [3] can be
obtained directly from miss ratios in an IRM. The Easton and the Baskett-Rafii
miss ratios, in turn, are supposedly fairly accurate predictors of genuine systems miss
ratios.

Throughout, we assume that there are n pages, and that the probability that page
is referenced at time is pi (i 1,..., n), independent of past history. Of course,
pi 1. Denote the capacity, or size of first-level memory, by CAP (1 <-CAP-< n).
We deal with two page replacement algorithms, both of which are demand

policies (Aho et al. [1]); that is, a page is brought into main (first-level) memory if and
only if it is referenced but not present in main memory. The choice of which page is
removed from main memory to make room for the newly-referenced but nonpresent
page is determined by the page replacement algorithm. The first page replacement
algorithm which we study in this paper is FIFO (Belady [4]), which replaces the page
that has spent the longest time in memory. The second page replacement algorithm
which we study is LRU (Mattson, Gecsei, Slutz, and Traiger [18]), which replaces the

page that has been least recently referenced.
Define the expected miss ratio (in the independent reference model) to be the

limit (as + oo) of the probability that the page referenced at time was not present in
main memory at time t. King [13] showed that the expected FIFO and expected LRU
miss ratios exist and are independent of the initial configuration of main memory. He
showed that the expected FIFO miss ratio is

(1.1) Pil Pi2" PieAp(1 Pil PiCAp)

Pil P/CAP

where the sums are each taken over all CAP-tuples (il, ",/CAP) such that ii ik if
j : k. Further, he showed that the expected LRU miss ratio is

(1.2) Pil Pi2 P/CAp(1 Pix P/CAP)
(1--Pil)(1--pi--Pi2)" (1--Pil--Pi2 PicAP- 1)’

where again, the sum is taken over all CAP-tuples (il,""", /CAP) such that it ik if
j k. We note that Gelenbe [11] showed that under the RAND ("random") page
replacement algorithm (Belady [4]), in which the page to be removed from main
memory in the event of a page fault is selected randomly, the expected miss ratio is the
same as that of FIFO, that is, formula (1.1).

Each of the sums appearing in (1.1) and (1.2) contain very roughly r/CAP terms
(actually n(n 1). (n CAP + 1) terms). Hence, for moderate values of n and
CAP, formulas (1.1) and (1.2) cannot be evaluated numerically under the straight-
forward algorithm. For example, if n 100 and CAP 30, then each of the sums
contain over 1057 terms. The purpose of this paper is to provide fast, stable methods
for evaluating the expected FIFO miss ratio (1.1) and for approximating the expected
LRU miss ratio (1.2).
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2. An etticient algorithm or the expected FIFO miss ratio. In this section we
present an efficient, provably stable algorithm for evaluating King’s formula

Pil Pi2" Pic,,p(1 Pil PiCAP)
Pfi Pi2 Pi,,,

for the expected FIFO miss ratio in the independent reference model. (The sums are
taken over all CAP-tuples (ix," ",/cAP) such that ii ik if j k.)

Let px,"" ", pn be a fixed but arbitrary ordering of the n page probabilities. For
each positive integer m <-n and each positive integer r, define

E(r, m)= Pix Pit,

where the sum is taken over all r-element subsets {ix," , it} of {1,..., m}.
In other words, for each r-element subset of the first m probabilities px," , p,,,

there is a term of E(r, m) which is the product of these r probabilities. We make the
usual convention that an empty sum is 0; hence E(r, m) 0 if r > m.

We now express the expected FIFO miss ratio (2.1) as a function of the terms
E(r, m). Note that the numerator of formula (2.1) can be rewritten as

Pq Pi2" PicAs, Pi,
il,’",/CAP

which equals

(2.2) ZP6 Piz PicgP+,

where the sum in (2.2) is taken over all (CAP+ 1)-tuples (i1,""", /CAP+l) such that

i. ik if/" k. But (2.2) is simply (CAP + 1)!E(CAP + 1, n), since E(CAP + 1, n) is a
sum over sets while (2.2) is the corresponding sum over tuples. Likewise, the
denominator of (2.1) equals CAP!E(CAP, n). Since we just showed that the numera-
tor of (2.1)equals (CAP + 1)!E(CAP+ 1, n)and the denominator is CAP!E(CAP, n),
it follows that the expected FIFO miss ratio (2.1) equals

(2.3)
(CAP + 1)E(CAP + 1, n )

E(CAP, n)

We now show how to obtain an efficient, numerically stable algorithm for
computing (2.3). Along the way, we also derive an efficient but unstable algorithm for
computing (2.3).

We first verify the following recurrence equation for E(r, m) when r > 1 and
m>l:

(2.4) E(r, m)= E(r, m 1)+p,,E(r- 1, m 1).

The first term E(r, m- 1) of (2.4) is the sum of those terms in E(r, m) which do not
have p,, as a factor, and the second term pinE(r-1, m- 1) is the sum of the terms
which do have p,,, as a factor.

Recurrence equation (2.4)can be used recursively to compute the matrix of
values E(r, m) with 1 -<_ r <- CAP + 1 and 1 <-_ m <- n. Using this approach, we can
calculate (2.3), the expected FIFO miss ratio, with approximately 2n CAP additions
and multiplications. Unfortunately, this method suffers from numerical instability,
because for interesting values of n and CAP, the entries of the E matrix vary by
enough orders of magnitude that they exceed the range of typical floating-point
hardware (and so underflow occurs). For example, assume that all page reference
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probabilities are equal. Then E(r, m)=(m)(1/n). So if n= 1000,then E(1,1000)-I

and E(1000, 1000)= 10-3. The reason why underfiow causes large errors for us is
that if we add two terms x and y which are nearly equal (such as x E(r, rn 1) and
y=p,,E(r-l,m-1) on the right-hand side of (2.4)), and if the y term has
underflowed to zero but the x term has not, then a large relative error is introduced
and then propagated. In the example given, the actual value of x / y would be almost
twice the calculated value.

We now show how to calculate (2.3) both efficiently and stably. In order to
calculate (2.3), we need only calculate the ratio E(CAP+ 1, n)/E(CAP, n) (but not
E(CAP + 1, n) and E(CAP, n) separately). Let

F(r, m) E(r, m)/E(r 1, m)

for 1 <- r -<_ CAP + 1 and 1 <_- m _-< n. Under the usual convention that empty products
are 1, we define E(O,m)to be 1 for each m; then F(1, m)=E(1, m)=pl+...+p,,.
Formula (2.3), and hence the expected FIFO miss ratio, equals (CAP+ 1)F(CAP+
1, n). We can derive a lecurrence equation for F directly and avoid our earlier
numerical difficulties. We first note that if r > 1 and m > 1, then

(2.5)
F(r,m)=

E(r,m)
E(r-l,m)

E(r, m)/E(r 1, m 1)
E(r-l,m)/E(r-2, m-1)

E(r-l,m-1)/E(r-2, m-1).

If we divide both sides of (2.4) by E(r- 1, m- 1), then we obtain

E(r, m)/E(r- 1, m 1)= (E(r, m 1)/E(r- 1, m 1))+p,,
(2.6)

F(r, rn 1) +p,,.

If we use (2.6) to replace E(r, m)/E(r-1, m-1) in (2.5) by F(r, m-1)+p,,,, and if
similarly, we replace E(r- 1, m)/E(r-2, m 1) in (2.5) by F(r- 1, m 1)+p,,,, then
we obtain the recurrence equation

F(r,m-1)+pm
(2.7) F(r, m)-- F(r- 1, m- 1),

F(r-l,m-1)+p,,

which holds for 1 _-< r _-< CAP+ 1 and 1 _-< m _-< n. This recurrence equation can be used
recursively to compute the matrix of values F(r, m) starting from the boundary
conditions

=pl, r 1,
(2.8) F(r, 1)

[0, 2 _< r _< CAP + I,

F(1, rn) pl +’ + P,,, 1 <_- rn <_- n.

One way to calculate F is to initialize the first column and row using the equations for
F(r, 1) and F(1, m) in (2.8) and then to calculate the entries for 2=<r=<CAP+ 1 and
2-< m <_-n, column by column, by using equation (2.7). Then the expected FIFO miss
ratio with capacity CAP is (CAP + 1)F(CAP + 1, n).
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This algorithm requires approximately 4n. CAP additions, multiplications, and
divisions. We note that this algorithm has the interesting property that in calculating
the expected FIFO miss ratio with capacity CAP, we automatically calculate the
expected FIFO miss ratios with capacities 1,. , CAP- 1.

We sketch a proof of the numerical stability of this FIFO algorithm in the
Appendix.

3. An unbiased estimate of the expected LRU miss ratio. In this section we
present an efficient method for obtaining an unbiased estimate of the expected LRU
miss ratio, which, we recall, is given by

(3.1)
(1-pil)(1-pi-P2) (1-ph-Pa Pic,,,_l)’

in the independent reference model.
Consider the following experiment, which involves drawing balls from an urn

without replacement. Assume that an urn contains n balls numbered 1,. , n (which
correspond to our n pages). We say that ball has weight pi (i 1,..., n), where
{pl,""", pn} is the page probability distribution. Select one ball from the urn, in such
a way that a given ball is selected with probability equal to its weight. Thus, ball is
selected with probability pi (i 1,..., n). Assume that ball il was selected. Now
renormalize the weights of the remai.ning (n- 1) balls so that the sum of their weights
is 1. Thus, the weight of ball j is now pff(1-p), for j il. Select a second ball from
the urn, where once again a given ball is selected with probability equal to its new
weight. Assume that ball i2 was selected. Now renormalize the weights of the remain-
ing (n- 2) balls so that the sum of their weights is 1: thus, the weight of ball j is now
pff(1-PI-P), for j l, i2. Continue the process until CAP balls have been selected.
Let A (an estimate of (3.1)) be the value 1 -Ph pi,,e. Note that with probability

PiE Pi3 PiCAP(3.2) Pi 1-pil 1-Pi-Pi 1-Pi Pi,,_’

ball ix WaS selected first, ball i was selected second,..., and ball /CAP WaS selected
last; in this case A took on the value 1 -Ph p,. Therefore, the expected value
of the random variable A is given by (3.1); that is, A is an unbiased estimate of (3.1).

The experiment we just described is faithfully mimicked by the algorithm in
Figure 1 for obtaining a value for A (in the first line, P is our probability vector of
page probabilities).

LET P1 P;
LET A 1;
DO I=1 TO CAP;

SELECT A RANDOM NUMBER R BETWEEN 0 AND 1;
FIND THE FIRST J BETWEEN AND N SUCH THAT
PI(1)+... +PI(J)_->R;

LET A A- P(J);
LET S= 1-PI(J);
DO K= TO N;
LET PI(K)= PI(K)/S;
END;
LET PI(J)= O;

END;

FIG.
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If there are, say, 100 independent replications of the experiment (that is, if the
program is run 100 times, with different seeds to the pseudo-random number genera-
tor), then the average of the 100 values of A which are obtained also, of course, give
an unbiased estimate of (3.1), and we can use the central limit theorem to obtain
approximate confidence intervals for our estimate.

We now give a numerical example, using "Zipf’s Law" (Zipf [25]; Knuth [14,
vol. 3, p. 397]), in which the probability pi of referencing the ith most frequently
referenced page is

k
pi , 1 _-< _-< n,

where 0 is a positive constant (the "skewness"), and k is a normalizing constant
chosen so that p 1.

In our example, the skewness 0 is 0.5, the number n of pages is 100, and the
capacity CAP is 30. When we ran a version of the program in Fig. 1 100 times, we
obtained 100 results A,..., A 10o. The average value

A (A +. +A100)/100

turned out to be 0.6119 (rounded to 4 decimal places). This value is our unbiased
estimate of the expected LRU miss ratio (3.1). How much confidence should be
placed in this estimate? To answer this question, we calculated several other statistical
quantities of interest. Let

D ((1 (A-)2)/99) /2.
i=1

In general, instead of 99, we would use (L- 1), where L is the number of independent
runs of the program. Then D is an unbiased estimate of the standard deviation, and
X D/x/- of the standard deviation of the mean. In this case, D turned out to be
0.0301, and so X was 0.0030. Under the normal approximation, which is valid in
large samples by the central limit theorem (here the sample size is 100), we know that
an approximate 95% confidence interval for the sample mean is given by A +/-2X.

(The normal approximation was justified in this case by the Kolmogorov-Smirnov test
[14, vol. 2, p. 41]). So with approximately 95% confidence, we can say that the
expected LRU miss ratio for this probability distribution (Zipf’s Law, skewness 0.5,
number of pages 100) with capacity CAP 30 is 0.6119 +/- 0.0060.

4. Examples. As a demonstration of the power of current techniques (including
those developed in this paper) for obtaining expected miss ratios in the independent
reference model, we present a family of examples (Table 1). In each case, we consider
a Zipf’s law probability distribution with skewness 0 0.5. We vary the number n of
pages, and we also vary the capacity CAP in such a way that the "normalized
capacity" CAP/n is 0.3. All values are rounded to four decimal places. We include
not only the expected FIFO and LRU miss ratios, but also the expected WS, or
working-set miss ratios (Denning and Schwartz [5]), the expected A0 miss ratios
(Aho et al. [1]), and the expected VMIN miss ratios (Prieve and Fabry [20]; Slutz
[22]). Here Ao is the optimal page replacement algorithm with no knowledge of the
future in the independent reference model, and VMIN is the optimal variable-space
page replacement algorithm under demand paging (with lookahead).

In the case of WS and VMIN, which are variable-space page-replacement
algorithms, the quantity CAP is the expected number of pages in main memory. For
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example, in the WS case, the window size T is chosen in such a way that CAP is the
expected working-set size.

The fact that the expected LRU, WS, Ao, and VMIN miss ratios have limiting
values (as in Table 1) is proven in Fagin [8], where closed-form formulas are exhibited
for these limits. Further, it is shown there that the limits in the LRU and WS cases are
the same. (In the case of Table 1, the common limit is 0.5701.) It is an open problem
as to whether there is a limiting value for the expected FIFO miss ratio, and how to
find the limit.

We close this section with a minor technical comment on the LRU calculations in
Table 1. Except for the n 10 case, for which we used King’s LRU formula, the given
interval in the LRU column is approximately a 95% confidence interval. For the
n 100 and n 1000 cases, the experiment described in 3 was performed 100 times
(that is, the L of 3 is 100). For the n 10000 case, the experiment was performed
only 30 times, because of the great amount of paging which takes place when dealing
with very large vectors.

TABLE
Expected miss ratios. (Zipf’s Law, skewness 0 0.5, normalized capacity 0.3)

FIFO LRU WS A0 VMIN

n 10, CAP= 3 0.6660 0.6607 0.6599 0.5741 0.3601
n 100, CAP= 30 0.6304 0.6119+0.0060 0.6096 0.4870 0.2858
n 1,000, CAP 300 0.6091 0.5827 +/-0.0017 0.5831 0.4629 0.2706
n 10,000, CAP= 3,000 0.6007 0.5748+/-0.0010 0.5742 0.4556 0.2663

Limiting value 9 0.5701 0.5701 0.4523 0.2643

Appendix. The numerical stability of the FIFO algorithm. We sketch a proof that
the FIFO algorithm described at the end of 2 is numerically stable. We first show
that there is not a large range in the matrix of values F(r, m); where 1 _<-r-< CAP + 1
and 1 <_- m -< n that is, we show that there are not many orders of magnitude between
the smallest positive entry and the largest positive entry (note that there are no
negative entries, although there are zero entries). In fact, we show that the largest
entry is 1, and the smallest positive entry is at least (min pi)/(CAP+ 1). Therefore,
there is no underflow in cases of interest. We then sketch a relative error analysis
which shows that the maximum relative error in the entries F(m, r) grows linearly with
n (the number of pages).

Pick ro and mo so that 1 <= r0 <- CAP + 1 and 1 <_- mo <- n. If ro > mo then F(ro, mo)
0. So assume that ro-< mo. We now show that

(A.1) (min {pi: 1,. , n})/(CAP + 1)<- F(ro, mo)_-< 1.

Let S pl +"" +P-,o, and define q p/S for 1 _-< _-< mo; that is, we take the first mo
probabilities pl,""", P,,,o, we normalize them so that their sum is 1, and we call the
normalized probabilities ql,. , q-,o. Define El(ro, mo) and El(ro- 1, too) in the same
way as we defined E(ro, mo) and E(ro-1, mo) in 2, except that we use the pro-
babilities q,..., q-,o instead of the probabilities pl,""", Pn. Hence, by analogy with
(2.3) we know that the expected FIFO miss ratio, using the probability distribution
q l, qmo, and with capacity ro- 1 is

(A.2) roEa(ro, mo)
E(ro- 1, too)"
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We now obtain upper and lower bounds for (A.2). Since (A.2) is the expected value of
a miss ratio, it is bounded above by 1. Furthermore, (A.2) is at least as big as the
expected value of the Ao miss ratio (Aho et al. [1]) with the same capacity, where Ao is
the optimal page replacement algorithm with no knowledge of the future in the
independent reference model. This expected Ao miss ratio (with capacity ro-1) is in
turn at least as big as the expected Ao miss ratio with capacity mo- 1 (since (r0- 1)<-
(too- 1) by assumption). And, it is easy to check that the expected Ao miss ratio with
capacity mo-1 is at least as big as min {qi" 1,..., too}. (Recall that these miss
ratios are over the probability distribution {ql,""", q,-o}.) To summarize the bounds
we have obtained for (A.2), we have shown that

(A.3) min {qi" 1 too} <
roEl(ro, too) <_ 1.

It is easy to see that E(ro, too) SrEx(ro, mo), since E(ro, too) is a sum of products
of to-element subsets of {p,..., P-o}, while Ll(ro, mo) is the corresponding sum of
products of to-element subsets of {ql,’" ",qmo}={Pl/S, ",Pmo/S}. Similarly,
E(ro- 1, too) sr-lEx(ro 1, too). Hence

E(ro, too)
F(ro, too)= E(to- 1, too)

SrE(ro, too)
(A.4) S-El(ro 1, mo)

SEl (ro, too)
El(ro- 1, mo)"

If, using (A.4), we substitute F(ro, mo)/S for El(ro, mo)/El(ro- 1, too) in (A.3), then
after multiplying all parts of the resulting inequality by S/ro, we obtain

(A.5) (S/ro)min{q" i= 1,... ,mo}<=F(ro, mo)<=S/ro.

Now (S/ro)<= 1 since S-< 1 and ro>= 1, and so it follows from (A.5) that F(ro, too)<= 1,
which establishes our upper bound on F. (In fact, this upper bound is attained, since
F(1, n)=l.) As for the lower bound" we know that min{q" i=l,...,mo}
min{p" i= 1,..., mo}/S>-min{p" i= 1,..., n}/S. Furthermore, ro=<CAP+I, and
so from (A.5)we obtain

(A.6) min {pi" 1,. , n}/(CAP + 1)<= F(ro, too),

which gives our lower bound on F. (This lower bound is actually attained when
pi 1/n for each i, when ro CAP + 1, and when mo n.)

Having shown that there is no underflow (in cases of interest), we can now
analyze the propagation of relative error. (If A is a quantity and A’ is the calculated
value of A, then the relative error is (A’-A)/A; note that the relative error can be
positive, negative, or zero.) The key to stability for our algorithm is the fact that if the
relative error in F(r, rn 1) is el, and if the relative error in F(r- 1, m 1) is e2, then
the relative error in

F(r,m-1)+p
F(r,m)= F(r-l,m-1)

F(r-l,m-1)+p,

is smaller in magnitude than the maximum of the magnitudes of e and e.. Why is
this? For notational convenience, write A for F(r, m- 1), B for F(r- 1, m- 1), and C
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for p,,. We assume for now that C has no relative error. It is an important combina-
torial fact that F(r- 1, m- 1)=>F(r, rn 1); this is Theorem 53 in Hardy, Littlewood
and Polya [12, p. 52]. Therefore, B >=A. Let A’ and B’ be the calculated values of A
and B respectively; thus, A’= A(1 + el), and B’= B(1 + e2). Then the relative error in
F(r, m), that is, the relative error in (A + C)B/(B + C), is given by

(A.7)
(A’ + C)B’/(A + C)B)-1.

Since (A.7) is the relative error in F(r, m), our goal is to show that the absolute value
of (A.7) is bounded above by max (le 11,

If we replace A’ by A(1 + el) and B’ by B(1 -t- e2) in (A.7), it is easily verified that
the resulting expression equals

(A.8) e1(1 + e2)(B +C)A
(A +C)

+ e2C)/((1 + e2)B + C).

The absolute vaIue of (A.8) is bounded above by

(A.9) 1 1(1 + ez)(B + C)A
(A +C)

+ Ie2IC)/((I + e2)B + C),

where we have assumed that ]e2[ < 1 (SO that 1 + e2 is positive). It follows immediately
from B =>A that (B +C)A/(A +C)<=B. Therefore, (A.9) is bounded above by the
expression obtained by replacing (B + C)A/(A + C) in (A.9) by B. That is, (A.9) is
bounded above by

(A.10) (clell+C2]e21)/(Cl +C2),

where Cl (1 + ez)B and C2-- C, But (A.10) is a weighted average of levi and le2], and
so is bounded above by their maximum. This is what we wanted to show.

If we now take into consideration the effect of roundott and the fact that the
constants p,, may also be in error due to the fact that they may not be represented
exactly, then we find that the maximum relative error in the entries F(r, m) is a small
constant times the number n of columns of F, times e, where e is the inherent roundoff
error in a floating-point number. (Thus, e is 2-t, where is the number of bits in the
representation of the mantissa of a floating-point number.)
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IMPLEMENTATION AND ANALYSIS OF BINOMIAL QUEUE
ALGORITHMS*

MARK R. BROWN’[

Abstract. The binomial queue, a new data structure for implementing priority queues that can be
efficiently merged, was recently discovered by Jean Vuillemin; we explore the properties of this structure in
detail. New methods of representing binomial queues are given which reduce the storage overhead of the
structure and increase the efficiency of operations on it. One of these representations allows any element of
an unknown priority queue to be deleted in log time, using only two pointers per element of the queue. A
complete analysis of the average time for insertion into and deletion from a binomial queue is performed.
This analysis is based on the result that the distribution of keys in a random binomial queue is also the
stationary distribution obtained after repeated insertions and deletions.

Key words, analysis of algorithms, binomial queue, priority queue, heap

Introduction. A priority queue is a structure for maintaining a collection of items,
each having an associated key, such that the item with the smallest key is easily
accessible. More precisely, if O is a priority queue and x is an item containing a key
from a linearly-ordered set, then the following operations are defined:

Insert (x, O) Add item x to the collection of items in O.
DeleteSmallest (O) Remove the item containing the smallest key among all

items in O from Q; return the removed item.

These actions are referred to informally as insertion and deletion.
A rnergeable priority queue is a priority queue with the additional property that

two disjoint queues can be combined quickly into a single queue. That is, the
operation

Union (T, O) Remove all items from T and add these items to O.
is defined when T and O are mergeable priority queues; this operation is informally
referred to as merging T into O. Any pair of priority queues can be merged by using
repeated applications of Insert and DeleteSmallest, but the qualification "mergeable"
is generally reserved for those priority queues which can be merged quickly: merging
should not require examining a positive fraction of the items in the queues.

The priority queue is recognized as a useful abstraction due to the large number
of applications in which it arises [1], [2], [13]. Priority queues are also interesting
simply because a number of subtle data structures have been devised for representing
them, including heaps [13], leftist trees [13], and 2-3 trees with heap ordering [1]; the
last two of these structures are mergeable. Recently the binomial queue, a new data
structure for implementing mergeable priority queues, was described by Vuillemin
[21]. This structure does not improve upon the asymptotic time bounds already known
for the operations it performs, but is interesting because of its intrinsic beauty and
simplicity, and because it uses less storage than other methods.

One goal of this paper is to show that the binomial queue is not just another
pretty data structure, but is the most practical structure for priority queues in many
situations. Section 1 defines binomial queues, and 2 gives algorithms for operating
on them. Section 3 discusses the underlying structures which seem most suitable for

* Received by the editors October 29, 1976, and in revised form May 27, 1977.
t Department of Computer Science, Yale University, New Haven, Connecticut 06520. This research

was supported by a National Science Foundation graduate fellowship at Stanford University.

298



BINOMIAL QUEUE ALGORITHMS 299

implementing binomial queues under various assumptions. One of the structures
allows an arbitrary element of an unknown priority queue containing rn elements to
be deleted in O(log m) time, using only two pointers per element of the queue.
(Implementation of the priority queue primitives, using two of the structures intro-
duced in 3, are given in [2].)

A second goal of the paper is to give a complete average-case analysis of the time
required for insertion and deletion using binomial queues. In 4 we show that our
intuitive sense of the binomial queue’s simplicity is reflected by the fact that binomial
queues do not degenerate from their "random" state (the state brought about by
consecutive random insertions)when deletions occur. This leads to the analysis of
binomial queue algorithms given in 5. The results of this analysis also help to
establish the practicality of binomial queues by aiding in a comparison between
binomial queues and other structures; the conclusion is that binomial queues are the
fastest known mergeable priority queue organization, and may have some advantages
even when fast merging is not required.

1. Binomial trees, forests and queues. For each k _>-0 we define a class B of
ordered trees as follows:

(1.1) Any tree consisting of a single node is a B0 tree.

(1.2) Suppose that Y and Z are disjoint B_ trees for k >-1. Then the tree
obtained by adding an edge to make the root of Y become the leftmost
offspring of the root of Z is a B tree.

A binomial tree is a tree which is in class B for some k; the integer k is called the
index of such a binomial tree. Binomial trees have appeared several times in the
computer literature" they arise implicitly in backtrack algorithms for generating
combinations [15]; B0 through B4 trees are shown explicitly in an algorithm for prime
implicant determination [17]; a B5 tree is given as the frontispiece for [11]; and
oriented binomial trees, called S, trees, were used by Fischer in an analysis of set
union algorithms [6].

It should be clear from the definition above that all binomial trees having a given
index are isomorphic in the sense that they have the same shape. Figure 1 illustrates
rule (1.2) for building binomial trees, and Figure 2 displays the first few cases.

F. 1. Construction o[ a binomial tree.

An alternative construction rule, equivalent to (1.2), is often useful:

(1.3) Suppose that Z_,..., Zo are disjoint trees such that Z is a B tree for
0_-< _-< k 1. Let R be a node which is disjoint from each Z. Then the tree
obtained by taking R as the root and making the roots of Z_, , Zo the
offspring of R, left to right in this order, is a B tree.

Figure 3 illustrates rule (1.3)for building binomial trees. The equivalence of (1.2)
and (1.3) follows by induction on k.

For future reference we record some properties of binomial trees, including the
property which originally motivated their name"

LEMMA 1. Let Z be a Bk tree. Then
(i) Z has 2 nodes;
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B2 B3

B,

FIG. 2. Small binomial trees.

FIG. 3. Alternative construction of a binomial tree.

/k\
(ii) Z has i) nodes on level l.

Proof. The proof is trivial by induction on k.
For each rn _-> 0 we define a binomial forest of size m to be an ordered forest of

binomial trees with the properties"

(1.4) The forest contains rn nodes.

(1.5) If a Bk tree Y is to the left of a Bt tree Z in the forest, then k > l. (That is,
the indices of trees in the forest are strictly decreasing from left to right.)

Since by (1.5) the indices of all trees in the forest are distinct, the structure of a
binomial forest of size rn can be encoded in a bit string blbt-1 bo such that bj is the
number (zero or one)of Bj trees in the forest. By Lemma 1, the number of nodes in
the forest is i0 bi 2; hence bb_ bo is just the binary representation of m. This
shows that a binomial forest of size rn exists for each rn->0, and that all binomial
forests of a given size are isomorphic. Figure 4 shows some small binomial forests.

size size 2 size 3 size 4 size 5

FIG. 4. Small binomial forests.
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LEMMA 2. Let F be a binomial forest of size m > O. Then
(i) the largest tree in F is a B [lg m] tree;
(ii) there are ,(m)= ( of l’s in binary representation of m) trees in 1:; this is at

most [lg (m + 1)] trees;
(iii) There are m u(m edges in F.
Proof. The proof is obvious.
Consider a binomial forest of size m such that each node has an associated key,

where a linear order -< is defined on the set of possible key values. This forest is a
binomial queue of size m if each binomial tree of the forest is heap-ordered: no
offspring has a smaller key than its parent. This implies that no node in a tree has a
smaller key than the root. Figure 5 gives an example of a binomial queue.

FIG. 5. A binomial queue of size 5 (with integer keys).

To avoid dwelling on details at this point, we shall defer discussion of represen-
tations for binomial queues until later sections. The timing bounds we give here and in
the next section can only be fully justified by reference to a specific representation, but
the bounds should be plausible as they stand.

The following propositions relating to binomial queues are essential:
LEMMA 3. Two heap-ordered Bk trees can be merged into a single heap-ordered

Bk+ tree in constant time.

Proof. We use construction rule (1.2). The merge is accomplished by first
comparing the keys of the two roots, then adding an edge to make the larger root
become the leftmost son of the smaller. (Ties can be broken in an arbitrary way.) This
process requires making a single comparison and adding a single edge to a tree; for an
appropriate tree representation this requires constant time. [3

LZMMA 4. Let T be a heap-ordered Bk tree. Then the forest consisting of subtrees of
T whose roots are the offspring of the root of T is a binomial queue of size 2 1.

Proof. This follows immediately from construction rule (1.3) and the fact that
subtrees of a heap-ordered tree are heap-ordered. 71

2. Binomial queue algorithms. In order to implement a mergeable priority
queue using binomial queues, we must give binomial queue algorithms for the opera-
tions Insert, DeleteSmallest and Union which were defined in the Introduction. In
the following informal description of the algorithms we let IlOll denote the number of
elements in a queue O.

Consider first the operation Union (T, O), which merges the elements of T into
O, If IITII- and IIoii- q, then the process of merging the binomial queues for T and
O is analogous to the process of adding and q in binary. We successively "add" pairs
of heap-ordered B trees, as described in Lemma 3, for increasing values of k. In the
initial step there are at most two B0 trees present, one from each queue. If two are
present, merge (add) them to produce a single B1 tree, the carry. In the general step,
there are at most three B trees present: one from each queue and a carry. If two or
more are present we add two cf them and carry the result,, a B+I tree. Each step
of this procedure requires constant time, and by Lemma 2 there are at most
max([lg(t+l)J, [lg(q+l)]) steps. Hence the entire operation requires
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O(max (log IITII, log [fOil)) time. Figure 6 gives an example of Union with binomial
queues.

Given the ability to perform Union, the operation Insert (x, Q), which adds item
x to queue Q, is trivial to specify: just let X be the binomial queue containing only the
item x, and perform Union (X, Q). By this method, the time required for an insertion
into Q is O(log IIOII).

T 12 011 size 3 (I I)2

13

24 22 021 size7 (lll}:z

26 25 23

27

(a) Binomial queues of size 3 and 7 to be merged for Union operation.

11

21
.--carry

12

13

24 22 llJ

26 25 23

27 0

(b) After merge of Bo’s" result is carry.

i1222 13

23

24

26 25

27

Q:

(c) After merge of Bl’s.

4
12

26 25 O 23

27

1010

(d) Merge completed.

FIG. 6. Binomial queue Union operation.
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The operation DeleteSmallest (O) is a bit more complicated. The first step is to
locate the node x containing the smallest key. Since x is the root of one of the queue’s
Bk trees, it can be found by examining each of these roots once. By Lemma 2 this
requires O(log IIoll) time.

The second step of a deletion begins by removing the heap-ordered Bk tree T
containing x from the binomial queue representing O. Then T is partially dismantled
by deleting all edges leaving the root x; this results in a binomial queue T’ of size
2k- 1, as suggested by Lemma 4, plus the node x which will be returned as the value
of DeleteSmallest.

The final step consists of merging the two queues formed in the second step: the
queue T’ formed from T, and the queue O’ formed by removing T from O. Since each
queue is smaller than IIoll, the operation Union (T’, O’) requires O(log IIOII) time;
therefore the entire deletion requires O(log IIOII) time. Figure 7 gives an example of
DeleteSmallest with binomial queues.

(a) Binomial queue of size 6. Node is to be deleted.

remainder of original queue

2 0 6 offspring of deleted node

4

(b) Two queues which result ’rom removing node 1.

06

(c) Resulting queue of size 5 after merging.

FIG. 7. DeleteSmallest on a binomial queue.

In some situations it is useful to be able to delete an arbitrary element of a
priority queue, not just the smallest. It is possible to accomplish this with binomial
queues by generalizing the tree-dismantling step of DeleteSmallest. Suppose x is the
node to be deleted, where x is contained in the Bk tree T. Referring back to Fig. 1, we
can decompose T into two Bk-1 trees Y and Z. Now x lies in either Y or Z, and it lies
in Y if and only if the root of Y is on the path from x to the root of T. So we remove
the edge joining Y and Z, save the tree which does not contain x, and repeat the
process on the tree containing x until x stands alone as a B0 tree. When the process
terminates, k subtrees have been saved, and they consistitue a binomial queue of size
2k- 1. (Note that when x is the root of T, this procedure just deletes all edges leaving
x.) The deletion is completed with a final Union, as before; the same time estimates
also apply as long as we can delete each edge in constant time during the tree-
dismantling step.

It should be mentioned that there is an alternative deletion algorithm for
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binomial queues which is analogous to deletion from a heap [13]. The first step of this
DeleteSmallest procedure is to locate the node x containing the smallest key in the
queue O. Then x is removed from the tree T containing it, and if T was the smallest
binomial tree in O then the procedure terminates. Otherwise we remove the root
node y from the smallest tree in O and make y the root of T. At this point T is a
binomial tree, but may no longer be heap-ordered; thus we "sift down" the node y by
repeatedly exchanging y with the smallest of its offspring until y is smaller than all of
its offspring. This establishes heap-order in T and completes the deletion process.
Unfortunately, the siftdown step is relatively expensive: in a B tree, it requires k- 1
comparisons to find the smallest offspring of the root, and may require k-2
comparisons to find the smallest offspring of this node, etc. Hence a worst-case
siftdown may use O(log2 IlOll) steps. (It should be clear how to generalize this
DeleteSmallest procedure to handle arbitrary deletions in O(log2 Iio11) steps.)

It is interesting to note that the time bound given for the Insert operation can be
substantially improved if we study the effect of several consecutive insertions.
Consider the sequence of instructions

Insert (Xa, O); Insert (x2, O);" Insert (x, O).
The time for each insertion is just O(1)+ O(number of edges created by the insertion).
If Iio11-m initially, the number of edges created by this sequence of instructions is

(m + k u(m + k))-(m ,(m))= k + ,(m)- ,(m + k) by Lemma 2. Hence the time
for k insertions into a queue is O(k)+ O(k + u(m)- u(m + k))= O(k + log m) if the
queue has size rn initially.

As mentioned in the Introduction, leftist trees and 2-3 trees can be used to
implement mergeable priority queues. The time bounds for Insert, DeleteSmallest
and Union using these structures have the same order of magnitude as those given
above for binomial queues. But for both of these structures, insertions must be
handled in a special way in order to achieve the O(k +log m) time bound for a
sequence of Insert instructions. The naive approach, that of inserting elements
individually into the leftist or 2-3 tree, can cost about log (k + m) per insertion for a
total cost of O(k log (k +m)). The faster approach is to buffer the insertions by
maintaining the newly inserted elements as a forest of trees with graduated sizes, such
as powers of two. Then insertions can be handled by balanced merges, just as with
binomial queues. Individual merges require more than constant time, but the time for
k insertions comes to O(k + log m).

3. Structures for binomial queues. In implementing binomial queues our objec-
tives are to make the operations described in the previous section as efficient as
possible while requiring a minimum of storage for each node. As usual, the most
appropriate structure may depend on which operations are to be performed most
frequently.

Since a binomial queue is a forest, it is natural to represent it as a binary tree [11].
But not all orientations of the binary tree links allow binomial queue operations to be
performed efficiently. Evidently the individual trees of the binomial forest must be
linked together from smaller to larger, in order to allow "carries" to propagate during
the Union operation. But in order to allow two heap-ordered binomial trees to be
merged in constant time, it seems necessary that the root of a binomial tree contain a
pointer to its leftmost child; hence the subtrees must be linked from larger to smaller.
This structure for binomial queues was suggested by Vuillemin [21]; we shall call it
structure V. An example of a binomial queue and its representation using structure V
is given in Fig. 8(a).
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The time bounds given in the preceding section for Insert, DeleteSmallest, and
Union can be met using structure V, provided that the queue size is available during
these operations. The queue size is necessary in order to determine efficiently the sizes
of the trees in the queue as they are being processed. (The alternative is to store in
each node the size of the tree of which it is the root; this will generally be less useful
than keeping the queue size available, and it will use more storage.) In what follows
we shall assume that the queue size is available as part of the queue header; the other
component of the queue header will be a pointer to the structure representing the
queue.

One drawback of structure V for binomial queues is that the direction of the
top-level links is special. This means that in this representation, the subforest consis-
ting of trees whose roots are offspring of the root of a binomial tree is not represented
as a binomial queue (as would be suggested by Lemma 4); the top level links are
backwards. Structure R, the ring structure shown in Fig. 8(b), eliminates this problem.
In this structure the horizontal links point to the left, except that the leftmost tree
among a group of siblings points to the rightmost. Downward links point to the

(a) A binomial queue and its representation using structure V.

(b) A representation for the same queue using structure R.

FIG. 8. Structures for binomial queues.
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leftmost (largest) subtrees, as in structure V. It appears that structure R is slightly
inferior to structure V for insertions, but is enough better for deletions to make it
preferable for most priority queue applications. Structure V has some advantages for
implementing the fast minimum spanning tree algorithm [3], since the ordering of
subtrees helps to limit stack growth in that algorithm. (The stack can be stored in a
linked fashion using the deleted nodes, thereby removing this objection to structure
R.)

Neither of the structures described so far allows an arbitrary node to be deleted
from a binomial queue, given only a pointer to the node. It is evident that in order for
this to be possible, the structure must contain upward pointers of some sort which
allow the path from any node to the root of the tree containing it to be found quickly.
It must also be possible to find the queue header, since it will change during a deletion.

Simply adding a pointer from each node to its parent node (to the queue header
in case of a root) in structure V results in a structure which allows arbitrary deletions
to be performed. An example is given in Fig. 9(a). Starting from any node in this
structure, it is possible to follow the upward links and trace the path to the root of the
binomial tree containing the node. The upward link from the root leads to the queue
header, which we assume is distinguishable in some way from a queue node. Once the
path to the root is known, the top-down deletion procedure described in the preceding
section can be applied.

root of a B tree

ofa B
tree

\

Bo

FIG. 10. One step o[ the bottom-up deletion process.
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While the top-down deletion process is easy to describe, a more efficient bottom-
up procedure would be used in practice. It is also essential to understand the bottom-
up procedure in order to comprehend how alternative structures can be used. In the
initial step of the bottom-up procedure we save all of the trees whose roots are
offspring of the node to be deleted, and call this node the path node. (See Fig. 10.) In
the general step the path node was originally the root of a B tree within the binomial
tree being dismantled; its parent was the root of a Bt tree, and we have saved
B_, ., B0 trees so far. We first save the B tree formed by the right siblings of the
path node, taking the path node’s parent as a root. Then we save the B+a,..., Bl-1
trees which are left siblings of the path node, and make the parent of the path node the
new path node. When the path node becomes the root, the process terminates. The
forest of trees saved by this process is the same as that created by the top-down
process, and the remaining steps of the two algorithms are identical.

Figure 9(b)shows a modification of structure R which allows arbitrary deletions
to be performed. This structure keeps an upward pointer only in the leftmost node
among a group of siblings, and this pointer indicates the right sibling of the parent of
nodes on this level. Note that the rightmost sibling in any family has no offspring, so
the parent’s right sibling always exists when needed. It is not too hard to convince
oneself that the bottom-up deletion procedure just described can be performed on this
structure. During the deletion process, nodes are visited in a zig-zag path moving
upward to the queue header. We first move left among a group of siblings until the
leftmost is reached, and then move up to the next level using the upward pointer.
These steps are repeated until the queue header is reached.

Figure 9(c) shows a method of encoding the previous structure which uses only
two pointers per node. The regularity of the binomial tree structure allows us to
recover the information about which "child" pointers actually point upward, as
follows: the rightmost node in any of the horizontal rings has no offspring (except
perhaps on the top level of the forest), so its "child" pointer goes upward. If a node is
an only child, or is the right sibling of a node having an only child, then it is one of
these rightmost nodes. A node is an only child if and only if it is its own left sibling, so
it is possible to test efficiently whether or not a "child" pointer goes upward. The
upward pointer convention in Fig. 9(c) is slightly irregular at the top levels; here the
decoding depends on our ability to distinguish the queue header from other nodes.

Structure K, another structure which allows arbitrary deletions using only two
pointers per node, is shown in Fig. 9(d). This structure contains some null links, and
seems to require less pointer updating per operation than the structure in Fig. 9(c).
Note that a path from an arbitrary node to the queue header can be found by always
following "left" links, some of which go upwards. To move to the right on a given level
we just follow the child pointer and then the "left" pointer.

4. Random binomial queues. We define a random binomial queue of size m to
be the queue formed by choosing a random permutation of {1, 2,. , m} and insert-
ing the permutation’s elements successively into an initially empty binomial queue.
(By a random permutation we mean a permutation drawn from the space in which all
m! permutations are equally likely.) Equivalently, a random binomial queue of size rn
is formed from a random binomial queue of size rn- 1 by choosing a random element
x from {1- 1/2, 2-1/2,..., rn -1/2}, inserting x into the queue, and renumbering the queue
such that the keys come from {1,2,..., m} and the ordering among nodes is
preserved.
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This definition of a random queue is simple, yet is not artificial. The second
statement of the definition, which says that the ruth random insertion falls with equal
probability into each of the m intervals defined by keys in the queue, is equivalent to
another definition of random insertion which arises from event list applications. In
these situations, a random insertion is obtained as follows: generate an independent
random number X from the negative exponential distribution, in which the prob-
ability that X_-<x is 1- e -x. Then insert the number X + t, where is the key most
recently removed from the queue (0 if no deletions have taken place). Here is
interpreted as the current instant of simulated time, and X is a random "waiting time"
to the occurrence of some event. The fact that this definition of a r.andom insertion is
equivalent to the one we have adopted was proved by Jonassen and Dahl [8]; it
follows without difficulty from the well-known "memoryless" property of the
exponential distribution.

Our goal in this section is to study the structure of random binomial queues. The
gross structure of such a queue is already evident; we observed earlier that all
binomial forests of a given size are isomorphic. But more information about the
distribution of keys in the forest is necessary to fully analyze the performance of
binomial queue algorithms. For example, in order to analyze the behavior of
DeleteSmallest it is necessary to determine the probability of finding the smallest
element in the various trees of the binomial queue. It is also important to determine
whether or not a random queue stays random after a DeleteSmallest has been
performed, since if this is true then the analysis of random queues may apply even in
situations where both insertions and deletions are used to build the queue.

Our first observation is that the insertion algorithm shows a certain indifference
to the sizes of the elements inserted.

LEMMA 5. Let p =pp...p,, be a permutation of {1, 2,..., m}. Then in the
binomial queue obtained by inserting pl, p2, , p, successively into an initially empty
queue, the tree containing pi is determined by j for 1, 2, , m.

Proof. We proceed by induction on m. The result is obvious for m 1. For rn > 1,
let 2 tlg’ be the largest power of two less than or equal to m. After the first
elements of p have been inserted, the queue consists of a single B tg-, tree. Later
insertions have no effect on this tree, since it can only be merged with another tree of
equal size. Hence the first elements of p must fall into the leftmost tree of the queue.
Furthermore, since the leftmost tree is not touched, the remaining rn- insertions
distribute the last elements of p into smaller trees as if the insertions were into an
empty queue. This proves the result by induction. I-I

A quicker but less suggestive proof of Lemma 5 simply notes that comparisons
between keys in the insertion algorithm only affect the relative placement of subtrees
in the tree being constructed. Such comparisons never determine which tree is to
receive a given node.

What the given proof of Lemma 5 says is that the input permutation p can be
partitioned into blocks whose sizes are distinct powers of two, such that the 2k

elements of block bk form a Bk tree when all rn insertions are complete. The sizes of
these blocks decrease from left to right, just as the sizes of trees in the forest decrease.
(Another priority queue structure with this sort of indifferent behavior is an unsorted
linear list; with the linear list, the blocks are all of size one.)

The deletion algorithm exhibits a similar dependence on when the deleted item
was inserted, and a similar indifference to key sizes. What the following lemma states
is that if we delete an element from a binomial queue, then the resulting queue is the
same as we obtain by never inserting the element at all, but permuting the elements
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that we do insert in a manner which depends only on when the deleted element was
inserted.

LEMMA 6. Let p PlP2 P,,, be a permutation of {1, 2, , m}. Then them is a
mapping r ri,,, from {1, 2,. , m 1} onto {1, 2,. , j- 1, j + 1,. , m} such that
the result of inserting plpz’"p,, into an initially empty binomial queue and then
deleting pj is identical to the result of inserting Pr(1)Pr(2) Pr(m-) into an initially empty
binomial queue.

Proof. We basically mimic the procedure for deleting p. and then read the
mapping from the result. The exact mapping depends on arbitrary choices made
during the merging process and would be tedious to exhibit for general j and m, so we
will give an example of the construction for m 10, j 3. First the input is divided
into blocks as described above.

[0 0 0 0 0 0 01[ l[0 01[ 1.
Then the block containing j, which holds all elements of the binomial tree T contain-
ing j in the queue, is further divided to exhibit the subtrees produced when T is
dismantled.

[(0 0) (0)(0 0 0 0)1[ 1[0 01[ 1.
This division clearly depends only on m and j.

Following the dismantling step is a merging step. Since the results of the deletion
depend on details of the merging strategy, we must choose one; a possible strategy for
this merge is as follows. If the dismantled binomial tree T was the smallest tree in the
original queue, then no merging is required. Otherwise combine the smallest tree in
the original queue with the forest just obtained by dismantling T. This produces a new
tree which has the same size as T had, plus a forest of small trees; the merge is then
complete. The same effect would be created (in the case we are considering) by
reinserting all nodes in the order

(0 0 0 0)(0 0)[0 0](0).

To see this, just simulate the insertion process on this input. The intermediate trees
created during this process correspond to trees involved in the merge. (Note that the r
map is far from being uniquely determined.) 71

Here again we can draw an analogy with the unsorted linear list, which obviously
has the behavior stated in the lemma.

Armed with this result, we can determine the effects of various types of deletions
on random binomial queues.

THEOREM 1. Let Q be a random binomial queue of size m. Suppose that pk, the
k-th element inserted in the process of building Q, is deleted from O and O is renum-
bered. Then the resulting Q is a random binomial queue of size m- 1.

Proof. Consider the m! equally-likely permutations used to build O. When the
kth element of each permutation is discarded and the permutation renumbered, each
of the (m- 1)! possible permutations occurs m times. The same is true if some fixed
rearrangement of the permutation is made just before the renumbering. Hence by
Lemma 6 the m! queues obtained by inserting all possible permutations of length m
and then deleting the kth element (and renumbering) are just m copies of the (m 1)!
queues obtained by inserting all permutations of length m- 1. [3

THEOREM 2. Let O be a random binomial queue ofsize m. Suppose that k, the k-th
smallest element inserted in the process of building Q, is deleted from Q and Q is
renumbered. Then the resulting O is a random binomial queue of size m- 1.
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Proof. Consider the m! equally-likely permutations used to build O. For fixed L
there are (m 1)! of these permutations with pj k; if we ignore pj and renumber, we
get all (m- 1)! possible permutations of {1, 2,..., m- 1}. The same is true if some
fixed rearrangement of the permutation is made before renumbering. Hence by
Lemma 6 the (m- 1)! queues obtained by inserting all permutations of length rn with
p. k and then deleting k (and renumbering) are just the (m 1)! queues obtained by
inserting all permutations of length rn-1. This is true for each , so the result
follows. VI

COROLLARY 1. If a random element (or randomly placed element) of the input is
deleted from a random binomial queue of size m, the result is a random binomial queue
of size m 1.

Proof. The two statements are obviously equivalent; they follow immediately
from Theorem 1 or Theorem 2.

These results are sufficient to show that binomial queues stay random in many
situations. The most important of these is when a queue is formed by a sequence of n
random Insert operations intermixed with m_<-n occurrences of DeleteSmallest,
arranged so that a deletion is never attempted when the queue is empty. Theorem 2
shows that a DeleteSmallest applied to a random queue leaves a random queue; a
random Insert also preserves randomness. So under the most reasonable assumptions
for priority queues, binomial queues can be treated as random. This is our rationale
for assuming random binomial queues in the analysis of the next section.

A similar argument shows that random binomial queues result when intermixed
random deletions are performed; a simple argument appealing to Lemma 6 shows that
intermixed deletions by age (how long an element has been in the queue) also lead to
random queues. These types of deletions, especially deletions by age, are somewhat
artificial for priority queues.

It is natural to ask whether randomness is preserved by the merging of binomial
queues. Suppose that a random permutation of length m is given; its first k elements
are inserted into one initially empty binomial queue, and the remaining m- k ele-
ments are inserted into another. Then each of these queues is a random binomial
queue, and the argument used to prove Lemma 6 shows that the result of merging
these queues is also random as long as some fixed choice is made about which two
trees to "add" when three are present during the merge. So in this sense merging does
preserve randomness.

Sensitivity to deletions has been studied in the context of binary search trees by
Knott [10] and Jonassen and Knuth [9]. The model used there considers a random
insertion to be the insertion of a random real number drawn independently from some
continuous distribution (for example, uniform on the interval [0, 1]). This definition is
not equivalent to ours; Theorem 1 and Corollary 1 hold for deletions from binary
search trees, but this does not imply that a tree built using intermixed random
deletions is random. In fact, as Knott first noted, binary search trees are sensitive to
deletions in this model.

Binomial queues, however, are not sensitive to deletions in the search tree model.
In a general study of deletion insensitivity, Knuth showed that Theorem 2 implies
insensitivity to random deletions, and Lemma 6 implies insensitivity to deletions by
age in this model [14]. Binomial queues are sensitive to deletions by order (e.g.,
DeleteSmallest) in this model, but unsorted linear lists, as well as practically all other
algorithms, are also sensitive to these deletions. So even with this alternative
definition of a random insertion, random binomial queues tend to remain random
when deletions are present.
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At this point it might seem that nothing can destroy a random binomial queue!
This .is not true; a deletion based on knowledge of the structure of the queue (or
equivalently, knowledge of the entire input) can easily introduce bias. For example,
random queues of size 4 are distributed as shown:

Pr 1/3 Pr 1/3 Pr 1/3

If we now delete the rightmost child of the root and renumber, we get:

Pr=

This isn’t random; random binomial queues of size 3 have the distribution

Pr= 1/3 Pr= 1/3 Pr= 1/3

Since the analysis of binomial queue algorithms performed in the next section is
based on random binomial queues, we are interested in the distribution of keys in
these queues. By Lemma 5, the probability that a given element (e.g. the smallest) of a
random permutation lies in a given binomial tree is simply the probability that the
element lies in a certain block of positions within the permutation. Thus the pro-
bability that the fth largest element in a binomial queue of size rn lies in a Bk tree is
just 2k/m, assuming that a Bk tree is present in a queue of size m. This decompositon
of the input into blocks reduces the study of random binomial queues to the study of
random heap-ordered binomial trees (i.e., random binomial queues of size 2k).

As we observed earlier, the smallest key in a heap-ordered binomial tree must be
in the root. The distribution of larger keys is not so highly constrained. The following
result characterizes the distribution of keys without explicit reference to the n!
possible input permutations.

THEOREM 3. Let a configuration of a heap-ordered Bk tree be any assignment of
the integers 1, 2, , 2k to the nodes of a Bk tree such that the tree is heap-ordered. Then
in a random heap-ordered Bk tree all (2k)!/2(2)-1 configurations are equally likely.
(That is, there are 2(2)-a distinct input permutations which generate each possible
configuration.)

Pro@ We proceed by induction on k. The result is obvious for k 0. Assume
)- ethat for k =/" there are 2(2, p rmutations of {1, 2,..., 2i} which give rise to each

possible configuration.
Now consider any fixed configuration X of a Bj/I tree. This tree can be decom-

posed into the two Bj trees Y and Z, as shown in Fig. 1. By the argument of Lemma 5,
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any permutation giving rise to configuration X must consist of two blocks, one
producing Y and the other Z; these blocks may appear in either order, since the
relative position of Y and Z is determined by which tree contains the smallest key. By
the induction hypothesis there are 2(;}-1 arrangements of the keys in tree Y which
give rise to Y, and similarly for Z. So there are 2.2(20-1 2(2- 2(2i+’- permu-
tations which produce X. Since this holds for any X, the result follows. [3

In the inductive step above, we can note that the element 1 is equally likely to be
contained in the first or the second block of a permutation producing X. This leads to
an easy inductive proof of the proposition that the ith inserted element is equally
likely to fall into each of the 2k nodes of a random heap-ordered Bk tree.

Unfortunately, Theorem 3 does not help much in determining the exact dis-
tribution of keys in a random binomial tree. There are fewer configurations than
permutations, but the number of configurations still increases rapidly with k.

5. Analysis of binomial queue algorithms. We are now prepared to analyze the
performance of Insert and DeleteSmallest, when implemented using binomial queues;
this will allow a comparison with other priority queue organizations. The binomial
queue implementation to be analyzed is based on structure R, discussed in 3 and
pictured in Fig. 8(b). The priority queue structures to be used for comparison are the
heap, leftist tree, sorted linear list, and unsorted linear list. (We do not perform a
detailed comparison with 2-3 trees because they seem to be inferior to leftist trees
when merging is needed, and to heaps when it is not.)

For each of the five structures, the operations Insert and DeleteSmallest have
been carefully coded in the assembly language of a typical computer (the binomial
queue and leftist tree implementations appear in [2]). By inspecting these programs,
we can write expressions for their running time as a function of how often certain
statements are executed. It then remains to determine the average values of these
factors.

The running times (in memory references for instructions and data) of the
binomial queue operations are

where
M
E

A
B
T
N

L
S
U

Insert
DeleteSmallest

16+ 19M + 2E +6A
38+11B+6T+4N-2L+4S+14U+2X

is the number of merges required for the insertion;
is the number of exchanges performed during these merges in order to
preserve the heap-order property;
is 1 if M 0, and 0 otherwise;
is 1 if the queue contains no B0 tree, and 0 otherwise;
is the number of binomial trees in the queue;
is the number of times that the value of the smallest key seen so far is changed
during the search for the root containing the smallest key;
is 1 if the smallest key is contained in the leftmost root, and 0 otherwise;
is the number of offspring of the root containing the smallest key;
is the number of merges required for the deletion; and

X is the number of exchanges performed during these merges.
(To keep the expression for DeleteSmallest simple, certain unlikely paths through the
program have been ignored. The expression above always overestimates the time
required for these cases.)

As a first step in the analysis we note that several of the factors above depend
only on the structure of the binomial queue 0 and not on the distribution of keys in O.
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Since the structure of Q is determined solely by its size, these factors are easy to
determine. For example, if Q has size m then evidently M is the number of low-order
1 bits in the binary representation of m, and A 1 if and only if m is even. Clearly
B A, and by Lemma 2 we can see that T ,(m).

These factors are a bit unusual in that they do not vary smoothly with m. For
example, when m 2 1 we have M T n, while for m 2 this changes to M 0
and T 1. Since in practice we are generally concerned not with a specific queue size
m but rather with a range of queue sizes in the neighborhood of m, it makes sense to
average the performance of our algorithms over such a neighborhood.

Factors A and M can be successfully smoothed by this approach: averaging over
the interval [m/2,2m] gives an expected value of 1/2+O(1/m) for A and 1+
O((log m)/m) for M. This agrees well with our intuition, since it says that about half
of the integers in the interval are even, and that one carry is produced, on the average,
by incrementing a number in the interval.

Properties of the factor T u(m) have been studied extensively. From [16] we
find that

mlg m <= Y’, v(k) <- m lgm
l<=k<--_m

where each bound is tight for infinitely many m; it follows that our neighborhood
averaging process will not completely smooth the sequence u(m). But we have bounds
on an "integrated" version of ,(m), so differentiating the bounds puts limits on the
average growth rate of u(m). Carrying out the differentiation gives

m +i--lg --< Tavg. <-- lg m +

which is about what we expect: half of the bits are 1, on the average. The remaining
uncertainty in the constant term is about .21.

While this averaging technique fails to smooth the sequence u(m)completely,
there are other methods which succeed. There is no single "correct" method for
handling problems of this type: different techniques may give different answers, and
the usefulness of a result depends on how "natural" the smoothing method is in a
given context. The more powerful averaging techniques which succeed in smoothing
u(m) seem artificial in connection with our analysis, but the results are quite interes-
ting mathematically. Lyle Ramshaw [20] has shown that

u(m)-----+ - ---+0.57575
using logarithmic averaging [5]; his result is based on the detailed analysis of
l_-<k_-<,, u(k) performed by Hubert Delange [4]. The naturalness of logarithmic
averaging is indicated by the fact that it also leads to the logarithmic distribution of
leading digits which has been observed empirically [19], [12, 4.2.4], and the fact that
it is consistent with several other averaging methods (such as repeated Cesaro sum-
ming) when those methods define an average.

This analysis of factor T completes the purely "structural" analysis; the remain-
ing factors depend on the distribution of keys in the queue. For the average-case
analysis we shall assume that Q is a random binomial queue of size m and that the
insertion is random. These assumptions are well justified by the discussion of 4.
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The factors E and X are easy to dispose of. Since we only merge trees of equal
size, our randomness assumptioin says that an exchange is required on half of the
merges (on the average). More precisely, if there are n merges then the number of
exchanges is binomially distributed with mean n/2 and variance n/4. The number of
merges is just M in the case of E, and U in the case of X.

The factors L and $ are also easy to analyze. We noted in 4 that the probability
of having the queue’s smallest key in a given tree is just proportional to the size of the
tree. Therefore if there is a binomial tree of size 2k in a queue of size m, this tree
contains the queue’s smallest key with probability 2k/m. The root of such a binomial
tree has k offspring by Lemma 1, so the expected value of S is (1/m)F(m) where

F(m)= bk" k 2k.
k_-->0

=(btbt-l""bo)2

While it seems hard to find a simpler closed form for F(m), it is possible to derive
good upper and lower bounds.

LEPTA 7. The [unction F(m) defined above satisfies [m lg m 2m _-< F(m) <-

Ira lg m J, m => 1, and the upper bound is tight ]:or infinitely many values ol m.

Proof. (This argument is similar to the one used to prove Theorem 1 in [16].)
From the definition of F(m), if m 2k then

F(m)=F(2k) k. 2k m lg m.

It is also clear from the definition that

F(2’ + i)= F(2’) + F(i), 0<=i<2k.
The upper bound on F(m) is evidently attained whenever m is a power of two. It

therefore holds when m 1, and assuming that it holds up to m 2, we have

F(m + i)= F(2’)+ F(i) (0_<_i<2’)
<=m lg m + lg

=< (m + i)lg (m + i).

So the upper bound holds for all m by induction.
The lower bound on F(m) holds when m 1, and whenever m is a power of two.

Suppose that a bound of the form

F(m)>-m lg m-cm

is true for some c > 0 and all m -< 2 k. Then
F(m + i) F(2’) + F(i) (0 =< < 2’)

>- m lg m + lg ci.

It follows that if the inequality

m lg m + lg ci >- (m + i) lg (m + i)- c(m + i) (0__<i<2’)
holds, the lower bound will hold for all m by induction. Replacing by xm and
simplyfying gives another inequality which implies the result"

x lgx>-(l+x)lg(l+x)-c (0_<-x < 1).

But it is easy to verify that x lgx-(1 +x)lg (1 +x) is decreasing on [0, 1], so we can
take x 1 to determine c 2. (A tight lower bound can be found by using the value
F(2’ 1) (k 2)2’ + 2.) [3
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According to these bounds, the average value of S lies between Ig m -2 and lg m.
Lyle Ramshaw [20] has shown that the logarithmically averaged value of S is

F(m)
=lg m-C

m

where

1 (-1)/.+1) 1
C= 1- 1 y + 1 10995.

/’>2" ]

The expected value of L is 2 rig "j/m, which is between 1/2 and 1.
Factor U is closely related to S. The number of merges required is equal to the

number of trees (i.e., S) created by removing the node containing the smallest key,
minus the number of these trees which are not merged. Since the first merge must take
place with the smallest tree remaining in the original forest, we see that the number of
trees excluded from merging is equal to the number of low-order 0 bits in m. Since the
least significant bits of m are distributed almost uniformly, the average value of this
quantity S- U is the same as the average value of M.

Factor N is more interesting. One way to search for the smallest root in the forest
is to use the key contained in the rightmost root as an initial estimate for the smallest
key, and then scan the forest from right to left, updating the estimate as smaller keys
are seen. Since the trees increase in size from right to left, trees in the left of the forest
are more likely to contain the smallest key; thus the estimate of smallest key will be
changed often during the scan. To be more precise, the expected number of changes
while searching a forest of size m (b,b,-l’" b)2 is

y.
O<=k<_n

bk

Pr (estimate changes when the Bk tree is examined)

(number of nodes in the Bk tree)
ONk<=nZ (total number of nodes in all B trees examined, 0 < < k)
bk=l

2
O<=k<=n EO<_l<=k, b= 2l"

b:=l

When m 2"- 1 this has the simple from

2 4 8 2-1

+ff+-i-+ +2,,_1
1 1 1 1 1 1 1 1

1+++’"+ + ++g+’"+2"-
n 1

=+(a-1)+O(2-)
where

1
a --g---= 1.60669

k=12 --1

(The constant a also arises in connection with Heapsort; see [13, 5.2.3(19)].)
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A search strategy which intuitively seems superior to the one just described is to
search the forest from left to right; for the above example the expected number of
changes is reduced to

1 1 1 1
++-27+""" + ce 1 + 0(2-").

2" 13113

But this strategy is not practical; the links point in the wrong direction. With structure
R we can improve the search by using the key contained in the leftmost root as our
initial estimate in a right to left search. This makes the expected number of changes in
a queue of size 2"*- 1 equal to

1 2 4 2"*-2 2"*-1

2.-1+------- + 2.- . 2 + 1
+ 2.- +4 + 2 + 1

+" + 2. Z i + 2--a-_1

By writing this sum in reverse order we can derive its asymptotic value"

2n-a 2n-2 2n-3 2"*-2 1
2"*- 1 - 2 1

+
2"- 2"*-2 1

+
2"*- 2n-2 2n-3 1

+"
2n-1 + 1

1/2 1/4 1/8 1/16 1/2"
1-2-’------+i 2-’* +1-1/4-2 +1-1/4-1/8-2-" +" "+1/2+2

(1 1 1(1 1 1 ))++ ++’’’ +2t’.22/+"1 (1 + 0(2-"/2))+ 0(2-"/2)

=-+ o’-- + 0(2-n/2)
4

where

1
a’= Y. 2-- 1.26449

t:__>0 + 1

(The constant ce’ arises in connection with merge sorting; see [13, exercise 5.2.4-13].)
So the expected value of this factor is about 1.13 for large n; by modifying the search
in this way we have effectively removed part of the inner loop.

This completes the analysis of Insert and DeleteSmallest for binomial queues. By
plugging our average values into the running time expressions given above and
simplifying, we get the results for binomial queues shown in Fig. 11. A much simpler
analysis [11, pp. 94-99] gives the corresponding results for sorted and unsorted linear
lists (also shown in Fig. 11).

Priority queue algorithms based on heaps and leftist trees have not been
completely analyzed; partial results are known for heaps [13], [18] but not for leftist
trees. Therefore experiments were performed to estimate the average values of factors
controlling the running time of these algorithms. (Note that the experiments did not
consist of simply running the programs and timing them, but rather of running suitably
instrumented programs which kept track of the number of times certain statements
were executed. The averages computed in this way were then used in the expression
for the program’s running time, just as the mathematically derived averages were used
in the case of binomial queues and linear lists.) Leftist trees and heaps are deletion
sensitive, so the averages were taken from stationary structures (obtained after
repeated insertions and deletions) rather than from random structures. Figure 11 gives
the experimentally determined running times for leftist trees and heaps.
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Average case running times when loll-- m.

Queue Insert (x, Q) DeleteSmallest (Q) Insert (x, Q); DeleteSmallest (Q)

binomial queue 39 22 lg m + 19
leftist tree 17 lg m + 35 35 lg m-27
linear list 19 6m + 2 lg m + 20
heap 32 18 lg m +
sorted list 3m + 17 15

22 lg m + 58
521gm+8
6m+2 lg m+39
181gm+33
3m+32

Worst case running times when IQll m.

Queue Insert (x, Q) DeleteSmallest (Q) Insert (x, Q); DeleteSmallet (Q)

binomial queue 21 lg m + 16 30 lg m + 46
leftist tree 32 lg m + 23 64 lg m 7
linear list 19 9m + 15
heap 12 lg m + 14 18 lg m + 16
sorted list 6m +20 15

511gm+62
96 lg m + 16
9m+34
30 lg m + 30
6m+35

FIG. 11. Comparison of methods.

These results indicate that binomial queues completely dominate leftist trees. Not
only do binomial queues require one fewer field per node, they also run faster, on the
average, for m >-4 when the measure of performance is the cost of an Insert followed
by a DeleteSmallest. Linear lists are of course preferable to both of these algorithms
for small m, but binomial queues are faster than unsorted linear lists, on the average,
for rn => 18 at a cost of one more pointer per node. So the binomial queue is a very
practical structure for mergeable priority queues.

In some applications the queue size may constantly be in a range which causes the
insertion and deletion operations on binomial queues to run more slowly than our
averages indicate, due to the smoothed average we computed. If the queue size can be
anticipated then dummy elements added to the queue might actually speed up the
algorithms. Using a redundant binary numbering scheme [7] it is possible to maintain
the queue as a small number of binomial forests in such a way that each insertion is
guaranteed to take only constant time. But the binomial queue algorithms as they
stand still dominate algorithms using leftist trees, even if the leftist tree operations
have average-case running times and the binomial queue operations always take the
worst-case time. The only advantages which can apparently be claimed for leftist trees
is that they are easier to implement and can take advantage of any tendency of
insertions to follow a stack discipline.

The comparison of binomial queues with heaps and sorted linear lists is also
interesting. The heap implementation stores pointers in the heap, instead of the items
themselves; this is the usual approach when the items are large and should not be
moved. In this situation heaps are slightly faster than binomial queues on the average,
and considerably faster in the worst case. Heaps also save one pointer per node, so it
seems that heaps are preferable to binomial queues when fast merging is not required.
Binomial queues have an advantage when sequential allocation is a problem, or
perhaps when arbitrary deletions must be performed. Sorted linear lists are better
than both methods when rn is small, but heaps are faster, on the average, when
m_->30.
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DEADLOCK PREDICTION: EASY AND DIFFICULT CASES*

E. MARK GOLD

Abstract. The subject of this paper is the computational complexity of the deadlock prediction problem
for resource allocation. This problem is the question "Is deadlock avoidable?" i.e. "Is there a feasible
sequence in which to allocate all the resource requests?" given the current status of a resource allocation
system. This status is defined by (1) the resource vector held by the banker, i.e. the quantity of resources
presently available for allocation, and (2) the resource requests of the processes: Each process is required to
make a termination request of the form "Give me resource vector y and will eventually terminate and
return resource vector z." Also, each process can make any number of partial requests of the form "If you
can’t give me y, then give me a smaller resource vector y’ and will be able to reach a point at which can
halt and temporarily return to z’, although will still need need y- y’+ z’ to terminate."

If (1) the resources are reusable and (2) partial requests are not allowed, then Habermann’s well known
"banker’s algorithm" solves the deadlock prediction problem in polynomial time. The results of this paper
are as follows: If either constraint (1)or constraint (2)is removed, then the deadlock prediction problem is
NP-complete. A generalization of the banker’s algorithm solves this problem with the following constraint:
For each process, the 0 vector and the profitability vectors (z y) of its partial and termination requests are
linearly ordered with respect to size. This case includes systems with one type of resource or with Hansen’s
(1973) hierarchically partitioned reusable resources.

Key words, deadlock, resource allocation, operating systems, complexity, NP-complete, banker’s
algorithm

1. Introduction.
Deadlock avoidance reduces to deadlock prediction. The problem of deadlock

avoidance for the resource allocation strategy (the banker) of an operation system,
which was originally formulated by Habermann (1969), is familiar by now (e.g.
Hansen (1973)): Initially, each process states the maximum quantity of resources
which it will need to complete its job and terminate, and the quantity of resources
which it will return by the time it terminates. From time to time a process (1) makes an
immediate request for resources which it needs in order to continue, or (2) returns
resources which it doesn’t need presently. Each time a process makes an immediate
request the banker must decide if he can safely allocate the resources now or he must
delay the allocation until other processes have returned resources. The deadlock
avoidance problem is to find a strategy for making these decisions which will grant
immediate requests as soon as possible, while guaranteeing that the banker can
eventually allocate the necessary resources to every process.

It is not necessary for the banker to remember the past. The correctness of the
banker’s decision at any time is determined by the current system resource status So,
namely the resources presently in the banker’s stockpile, the remaining resource
requirements of the processes, and the resources they will return. Given So, the
question "Can the banker safely allocate immediate request R now?" can be decided
as follows: Let $1 be the new system resource status which will result if R is allocated.
Then R can be safely allocated now iff $1 is "safe," i.e. iff for $1 there is a feasible
sequence in which to allocate the remaining resource requirements of the processes.
Formal definitions are given in the following section.

* Received by the editors March 18, 1976, and in final revised form October 11, 1977.
? D6partement d’Informatique, Universit6 de Montr6al, Montr6al, Qu6bec, Canada. The author’s

present address is BM Box 5444, London WC1V 6XX, England. This work was performed with the aid of a
grant from the National Research Council of Canada.
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Thus, the deadlock avoidance problem reduces to the "deadlock prediction"
problem Q-DP(S), namely the question "Is $ safe?" The subject of this paper is the
computational complexity of Q-DP(S).

In summary, this paper is not concerned with the immediate (resource) requests
of the processes, but rather, for each process, its "termination request" and "partial
requests": The termination request of each process specifies the resources required to
complete its work and the resources it will return to the banker by. the time it
terminates. A partial request specifies the resources which a process needs to perform
part of its work and reach a point where it can halt and temporarily return some
resources to the banker. Since the banker is allowed to delay the allocation of
immediate requests in the deadlock avoidance problem, in the deadlock prediction
problem he is allowed to choose any sequence in which to allocate the partial and
termination requests.

Easy vs. difficult cases. The basic result of this paper is that if S is allowed to range
over all possible system resource statuses, as defined here, then Q-DP(S) is difficult,
namely NP-complete. Various possible constraints on S are considered in order to
investigate the question "How much can the range of S be constrained and still leave
Q-DP(S) NP-complete, and for how general a range of S is Q-DP(S) easy, namely
computable in polynomial time?"

Habermann’s (1969) well known banker’s algorithm shows that Q-DP(S) is
computable in polynomial time if $ is constrained by the requirements (1) partial
requests are not allowed, and (2) resources are reusable (defined in 3). This paper
presents a generalization of the banker’s algorithm which allows both of these
requirements to be relaxed. Holt (1972) has given polynomial time algorithms which
relax the second constraint. The generalization of the banker’s algorithm proposed
here was motivated by, and is a generalization of, Hansen’s (1973) adaptation of the
banker’s algorithm to hierarchically partitioned resources.

Significance of NP-complete. NP-complete problems have the following pro-
perties (e.g. Karp (1975) and Aho, Hopcroft and Ullman (1974)): (1) All these
problems are polynomial time equivalent in the sense that any one can be translated
to any other in polynomial time. Therefore a polynomial time solution to any one of
them would yield a polynomial time solution to all of them. (2) Many important, well
known combinatoric problems which have been studied for a long time are included in
this class. (3) No polynomial time solution has been found for any of these long-
standing problems, so it is believed that NP-complete problems can’t be solved in
polynomial time, although this has yet to be proved.

2. Definitions of resource allocation model.
Resource status. A resource allocation system consists of"

1 banker,
n processes,
r resource types.

Since there are r resource types, a resource vector is an r-tuple of nonnegative real
numbers. E.g., in the case r 3 the resource vector (1, 0, 3.2) denotes 1 unit of the first
type of resource and 3.2 units of the third type.

If x (Xl," , Xr) and y (Yl," , Yr) are resource vectors, then define
x _<- y means Xi _<- y for all i,
x=>y means xi->- y for all i, i.e., y<-x,
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x<y means x-<_yandx#y,i.e.,xi<-_yiforalliandxi<yiforsomei,
x>y means y<x.
The system resource status $ of a resource allocation system consists of the

banker’s status and the status of each of the processes:

(1) S=(x, P1, ,P,).

The banker’s status is defined by a resource vector x which specifies the banker’s
stockpile, i.e. the resources presently available for allocation. The current status of the
ith process Pi consists of a termination request Rio and any finite number of parlial
requests RI, Ri, possibly none"

(2) P, (R,o,’’’ ,Rim,), mi>=O.

Each request is specified by a pair of resource vectors

(3) R, (y,;, z,),

such that

(4) yio -> yil=>" >= yi,,, for each process

Pi is used ambiguously to denote either the th process or its status.
The meaning of the requests Rio, Rix,’’’, Ri,, is as follows: The banker must

eventually allocate all of yio to Pi for Pi to complete its work, return Z,o to the banker,
and terminate, i.e. cease to exist. If the banker allocates yl =< yio to Pi then Pi can
perform part of its work and reach a halting point where it can return zil to the
banker. Pi will need to get back Zil, together with that part yio-yil of y;o which has
not yet been allocated to Pi, in order to complete its work. If the banker allocates
yi2 < Yil to ei then Pi can perform a shorter initial segment of its work, halt, and return

zi2 to the banker. Ri3,’’’, Rim, are requests to perform successively shorter initial
segments of Pi’s work.

Also Y0’ will be called the cost of Rii, Zii the return of R0, and (zii-Yii) the
profitability (to the banker)of Rii.

In summary, a system resource status S is a data structure of the form

x

S--
(YlO, ZIO)’’" (Ylml, Zlrn)

where x, Yii, zii are r-tuples of real numbers such that

(6) AXI: x, yii, z0 -> 0,

r, n, m1,’ , rnn are integers such that

(7) AX2: r_>-l,

for each 1,..., n,

(8)

n, ml, mn>=O,

AX3: YiO -> Yil >--" -> Yim,.

Effect of allocation. The banker is capable of allocating request Rii if the banker’s
stockpile is at least as large as the cost of Rii, i.e. x => Y0. This paper is solely concerned
with the question "Does a feasible allocation sequence exist for S?" When the
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appropriate definitions are given it will be easily seen that we can limit our attention to
allocation strategies such that after the banker allocates Y0 he waits for the ith process
to return zq before making another allocation.

So, if x-> yij the banker can allocate R0 and the result is to change the system
resource status S as follows:

x becomes x +
If j 0, i.e. Rii is a termination request, then Pi is deletedfrom S;
Else, i.e. j >_- 1, i.e. Rii is a partial request, then

Rig for k j,..., mi are deleted from S,

Rig for k 0,..., j-1 are modified according to yig becomes

R, is a request to obtain resources to perform an initial segment of the work of Pi
which includes the shorter initial segments Rid+i," Rim,. So allocation of Rq causes
Ri.j/l,’’’, Ri,, to be deleted along with Rii. Allocation of Rq causes the banker’s
stockpile to be increased by the profitability (zii- yii) of Rii. However, in order to
allocate Rig, k < j, the banker must return (zij- yq) to Pi. That is, the cost yig of Rig is
increased by (z0- Y0).

Suppose that S satisfies the axioms AX1, AX2, AX3 of the definition of a system
resource status, and the banker is capable of allocating Rii, i.e. x >_-yq. Then it is easily
verified that the new S’ which results from allocating Rii will satisfy AX1, AX2, AX3.

Consider the requests Ro, R1,. , R,, of process P. AX3

(9) yo>=. .>=y,,

is necessary so that after allocation of Ri the new costs

(10) yi=yi+(zi-Yi) for]=0,...,i-1

will satisfy AX1,

(11) y;->O for/’=0,. ., i-1,

while preserving AX3

(12) Yo=’’"--Yi-1.

Deadlock prediction problem Q-DP(S). Given system resource status S, the
banker’s objective is to eventually allocate the termination request Rio of every
process Pi. The banker is to choose his first allocation al to be one of the requests Ri.
of S which he is capable of allocating, i.e. x -> Y0. Allocation a changes S to S. Now
the banker is to choose one of the requests of $1 which he is capable of allocating to be
his second allocation a:. This changes the system resource status to S:. And so on. The
question is, is there such a sequence al,. , ar of allocations for S which the banker
is capable of allocating and which will terminate all the processes Pi, i.e. delete all
requests R0 from S?

An allocation sequence for S will denote a sequence

(13) A =a,... ,at,

where each at is a request R0 of S such that"

(14) each R0 occurs at most once;

(15) each Rio occurs exactly once;

(16) if Rii and Rig occur in A with j > k,
then Rii occurs in A before Rik.
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A feasible allocation sequence for S will denote an allocation sequence for S such that
at each time 1,..., T after allocating a 1,’’’, at-1 the banker will be capable of
allocating at.

S will be called safe if there is a feasible allocation sequence for S, unsafe
otherwise. The deadlock prediction problem is the predicate Q-DP(S)= "S is safe."

3. Constraints on system resource statuses.
Classification of requests. A request will be classified as a producer or consumer if

its allocation increases or decreases the banker’s stockpile, i.e. if it is profitable or
unprofitable to the banker to allocate the request:

Rii produces resource type k means (zii)k -(yii)k >= 0.
Rii is a producer means z0- Y0 => 0, i.e. Rq produces all resource types.
Ri is a consumer means zii- Yii O.
Rii is a mixture means R0 is neither a producer nor a consumer, i.e.

(Y0) > 0 for some k and (zii)- (Yii) < 0 for some k.
Thus, R0 is both a producer and a consumer if Yii-- zii. If there is only 1 resource

type then every request must be a producer or a consumer.
The requests Ro," , Rm of process P will be called linearly ordered if the set of

their profitability vectors, together with the 0 vector, is linearly ordered with respect
to size: For all i,/" -0,. , m
(17) (zi- Yi) (zi- Yi) or (Zi- yi) (Z]- yj),

(18) (Zi--Yi)O or (z--yi)<=O.

Thus, if there is only 1 resource type then the requests of every process are linearly
ordered.

Classification of resource types. A resource type is ordinarily called "reusable" if,
upon termination, each process will return precisely the quantity it has been allocated.
This definition cannot be translated into a constraint on S because the system resource
status, as defined here, does not record past allocations, only the present resource
status.

Given S, for the purpose of this paper the kth resource type will be called reusable
if, for each process Pi, the termination request produces this resource type and,
furthermore, produces at least as much as any of the Pi’s partial requests:

(19) (Zio)k (Yi0)k -->-- 0 for all Pi,

(20) (ZiO)k--(YiO)k >= (Zij)k- (Yii)k for all Pi, j 1,..., mi.

Classification of constraints on S.
NO-PART: There are no partial requests, i.e. each process Pi makes just a

termination request Rio.
P-C" Every request is either a producer or a consumer, i.e. none are

mixtures.
LIN-ORD: Every process has linearly ordered requests.
REUSE: Every resource type is reusable.
1-RES: There is only 1 resource type.
HIER: "Hierarchically partitioned resources" are defined in 6.

Let XXX> YYY mean that the set of S which satisfy XXX properly includes the set
of S which satisfy YYY, i.e. XXX is more general than YYY. The constraints on S
which are listed above are easily seen to have the relative generalities shown in Fig. 1,
with the exception of HIER, for which the proof is given in 6.
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NONE

NO-PART P-C

NO-PART & P-C

O-DP (S) is
NP-complete

O-DP (S) is
polynomial time

NO-PART & REUSE

FIG. 1. Relative generality of various constraints on S.

4. Theorems: complexity of Q-DP(S). The following theorems establish the
dividing line, shown in Fig. 1, between more general constraints on S for which the
deadlock prediction problem Q-DP(S) in NP-complete and less general constraints
for which Q-DP(S) is computable in polynomial time. Since the components of a
system resource status S are defined to be real, "polynomial time" is stated formally in
the theorems to mean a polynomial number of arithmetic operations (compare, add,
subtract). For NP-complete to have meaning it is necessary for S to be discrete. Each
of the sets of $ for which it will be shown that Q-DP(S) is NP-complete will be shown
to have this property with one of the following additional constraints: S is a 0-1 system
resource status if every scalar resource quantity of S, i.e. every component of every
resource vector of S, is 0 or 1. The components of a 0-2 system resource status are 0, 1
or 2.

The proofs of the following theorems are in the final sections.
THEOREM 1. Let $ range over 0-1 system resource statuses without partial requests.

Then O-DP(S) is NP-complete.
THEOREM 2. Let S range over 0-2 system resource statuses such that (1) all

resources are reusable and (2) each process is allowed i partial request. Then O-DP(S)
is NP-complete.

THEOREM 3. Let S range over system resource statuses such that (1) there are no
partial requests and (2) none of the (termination) requests is a mixture, i.e. each is a
producer or a consumer. Then the banker’s algorithm can be generalized to compute
O-DP(S) in rN log N arithmetic operations, where r is the number of resource types and
N the number of requests.

The following theorem subsumes Theorem 3.
THEOREM 4. Let S range over the system resource statuses such that the requests of

every process are linearly ordered. Then the banker’s algorithm can be generalized to
compute O-DP(S) in rN log N arithmetic operations.

5. Motivation and implications.
Reason for partial requests. The reason for allowing a process to make partial

requests, in addition to its termination request, is as follows: If a process is only
allowed to make a termination request, then there are circumstances in which the
banker is forced to delay an immediate request, but could allocate it immediately if
the process were allowed to state a partial request which includes a promise to return
something temporarily before termination. For instance, suppose that a process were
able to say "Give me x (perhaps a channel) and I will return x before asking for any
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more resources." If the banker has x available, he can certainly allocate such a
temporary request immediately without increasing the possibility of deadlock.

Example: partial requests for reusable resources. In the following example the
resources are reusable in the ordinary sense, as opposed to the definition in 3. That
is, they are physical resources which are passed back and forth between the banker
and the processes, never being created or destroyed. There are 2 resources and the
resource vectors (a, b) are meant to be interpreted as a units of memory+b tape
drives.

TABLE
Initial resource requirements of example.

Process # #

step (30, 1) (20, 2)
between steps (20, O) (20, O)
step 2 (20, 2) (40, 2)
both steps (30, 2) (40, 2)

TABLE 2
Present resource distribution in example.

banker (20, 0)
Process #1 (10,1)
Process # 2 (10, 1)

TABLE 3
Present S and results of allocations in example.

So $1 $2

banker’s stockpile x (20, 0) (10, 1) (0, 2)
cost return cost return cost return

Process # requests
termination Rio (20, 1) (30, 2) (10, 2) (30, 2)
partial Rll (20, 0) (10, 1)

Process #2 requests
termination Rzo (30, 1) (40, 2) (30, 1) (40, 2)
partial R2 (10, 1) (0, 2) (10, 1) (0, 2)

(10, 2) (30, 2)

(20, 2) (40, 2)

NotewSo is current system resource status. $1, S result from allocation of RI, R21.

There are 2 processes, each of which is to perform 2 steps. The resources required
by each step are shown in Table 1. Each process has the option of halting temporarily
after its first step and returning the resources used in the first step, except for 20 units
of memory needed to retain intermediate results.

The banker initially had (40, 2), of which (10, 1) has already been allocated to
each of the processes shown in Table 2. The present system resource status $o is
shown in Table 3. Note that the termination requests show the resources required to
complete both steps. The system resource status, as defined here, can’t describe step 2
separately. $1 and $2 in Table 3 show the system resource statuses which the banker
calculates will result from allocation of Rll followed by R21. These are the only
requests which the banker is capable of allocating. $2 is deadlocked, i.e. the banker’s
stockpile is not adequate to allocate any of the outstanding requests. Therefore, S0 is
not safe. The purpose of this example is to make the following points:
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(1) Since So arose from allocation of resources which are reusable in the ordinary
sense, the resources of S0 are reusable in the sense of this paper. In particular, all
termination requests are producers.

(2) Even though the resources are reusable in the ordinary sense, the partial
request Rll of So is a mixture.

(3) So is unsafe in this particular case only because the definition of "system
resource status" used in this paper does not allow the processes to include certain
information in their request statements. Namely, after allocation of Rx, Rl it is true
that the banker’s stockpile will be (0, 2), but Table 1 shows that Process 1 will be
holding (20, 0) between steps, so will only need (0, 2) to perform Step 2. If the banker
allocates this, then he will receive back (20, 2) and be able to terminate Process 2 also.
So appears to be unsafe because it doesn’t show that Process 1 needs less memory in
Step 2 than in Step 1.

So, because the definition of system resource status used here does not allow
certain types of information, the banker’s decisions will be overly conservative in
some cases. In this case, in the course of making immediate allocation decisions the
banker would have delayed the immediate request which led to So, even though the
actual resource disposition is safe.

(4) If the banker initially had 10 more units of memory, then x would be (30, 0)
in So and (10, 2) in S. Now So is safe. However, if the partial requests weren’t allowed
then So would be unsafe, indeed deadlocked. This shows that allowing partial
requests, even of the limited type defined in this paper, permits the banker to behave
less conservatively without danger of deadlock.

Reason for termination mixture requests. Nonreusable resources arise when
fictitious resources are introduced to model synchronization constraints which are
logically necessary. E.g., a process which is to send N messages via a small buffer will
show in its termination request that it produces N messages and consumes N buffer
spaces. A receiver of N messages produces N buffer spaces and consumes N
messages. These are 2 examples of termination mixture requests.

Any set of termination requests, mixture or nonmixture, can arise in a system of
communicating processes in which space in various buffers are the only scarce
resources: The termination request "Give me some of resource types T1, T2," and I
will return some of T3, T4," "" could mean "I need space to put some messages in
buffers T1, T2," and then I can finish my calculations, accepting some messages
from buffers T3, T4,’’’ ."

Any use of Dijkstra’s P and V operations on a semaphore (e.g. Hansen (1973))
can be regarded as immediate request for, and return of, a unit of some type of
resource. The associated semaphore value denotes the banker’s stockpile of this
type of resource.

Possible tradeolls. Barring the apparently unlikely possibility of a polynomial
time solution being found for the NP-complete problems, future research on the
deadlock prediction problem, with nonreusable resources allowed or with partial
requests allowed, can proceed in 3 directions: (1) fast solutions for restricted cases of
this problem, as reported by Holt (1972); (2) heuristic solutions for the general
problem which will "usually" solve it in polynomial time, even though exponential
time will be required in the worst cases; and (3) fast algorithms for the general
problem which will not always be correct but will always err on the conservative side:
all unsafe system resource statuses will be correctly classified, but some safe system
resource statuses will be classified unsafe. The third direction is a tradeoff between
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computation time and efficiency of resource utilization, since it will cause the banker
to delay some immediate requests which could be allocated immediately without
causing deadlock.

6. Hierarchically partitioned resources. Hansen (1973) describes a generalization
of the banker’s algorithm for the deadlock prediction problem with resources which
are reusable in the ordinary sense, in which partial requests of the following restricted
types are allowed: The banker must partition his resources into divisions Do," ,
a priori. Each process starts by stating the maximum quantity of resources which it will
require from each of the resource divisions. The immediate requests of each process
are constrained by the requirement that no additional resources be requested from
until all resources already allocated from Di/l, ", D, are returned.

I will now show that the partial and termination requests which can occur with
hierarchically partitioned resources are linearly ordered. Therefore, this case is
included in those solvable by the generalization of the banker’s algorithm which will
be described in the proof of Theorem 4 in the final section.

Consider any process P. Suppose that it originally stated that its resource vector
requirements will be Uo,"., u, from Do,"’, D,, and it has already been allocated
Vo,’’’, v,,. Since the resources are reusable, the present termination request of P is
implicitly "Give me"

(21) yo= (uo-vo)+

"and I will return"

(22) Zo Uo +" + u.,.

The constraints on the immediate requests imply the partial requests "Give me"

(23)

"and I will return"

(24) zj=uj+. .+u,.

As is to be expected with reusable resources, (21, 22) shows that all termination
requests are producers. (23) shows that the partial requests (23, 24) of each process
satisfy AX3 in the definition of a system resource status. Finally, (23, 24) shows that
the profitabilities of the requests of P

(25) (Zj- yj)--/.)j -[-" "3t- Vm

are linearly ordered:

(26) (z0-yo)>= _-> (z,- y,)>_- 0.

The above proof that hierarchically partitioned reusable resources lead to linearly
ordered requests remains valid if (1) the resources are partitioned differently for each
process, and (2) the resource partitioning changes dynamically.

7. Proof of Theorem I: termination requests is NP-complete. Q-DP(S) is NP
since it can be computed by trying all allocation sequences. Let S range over system
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resource statuses without partial requests. It remains to show that Q-DP(S) is NP-
hard.

Let Q-CS(F) be Cook’s (1970) prototype NP-complete problem, the satisfiability
of propositional formulae F in conjunctive normal form" bl,’", b. are the binary
variables and C1, Cq are the clauses of F.

(27) F(ba,..., b,)= Ca &... & C,

where

(28) G x v. v x,,

where each xi is a literal b or --nb for some k 1,. , p. Q-CS(F)= true iff there is a
value assignment to b,. , b such that F(b,. , b)= true. In order to prove that
Q-DP(S) is NP-hard it remains to construct a polynomial time reduction F- S such
that Q-DP(S)= Q-CS(F).

GivenF, foreachi=l ,pletC C+, denote the clauses Q ofF such
that b Q, and C-1, , C-, denote the clauses Q such that -nbi Q. Now S can be
constructed as follows. The resource types are b,..., b,, C1,’", Cq. The banker’s
stockpile is

(29) x 1 unit each of b,..., b.
For each 1, , p there are 2 processes P[, P- competing for the allocation of the
banker’s unit of b" P= has the termination request "Give me"

(30) Y 1 unit of bi,

"and I will return"

(31) z 1 unit each of Cil Cin.
There is one more process Po with the termination request "Give me"

(32) y0 1 unit each of C1, Cq,

"and I will return"

(33) zo 1 unit each of bl,""", bq.

To see that S is safe iff F is satisfiable, note that for each 1,. , p the banker
must decide whether to allocate his unit of bi to P or to P[. There is a feasible
allocation sequence for S iff there is a way to make these p decisions such that the
banker will receive in return at least 1 unit each of C,. , Cq, in order to be capable
of allocating the termination request of P0. Termination of P0 returns 1 unit each of
ha, , bp to the banker so that he can terminate the remaining P- and P-. There is a
more detailed presentation of this type of proof in the following section.

8. Proof of Theorem 2: partial requests for reusable resources is NP-complete.
Now the problem is to find a polynomial time reduction F S such that each process
of S has a termination request (yo, z0) which is a producer and a partial request (y, z)
of any type subject to (z-yl)-< (z0-yo). Given F, define S as follows. Let the
C, resource types, and the banker’s stockpile x be defined as in the previous section.
For 1,..., p let P: have the termination request "Give me"

(34) Yi0 1 unit each of C1, Cq, bi,

"and I will return"

(35) Z io 1 unit each of C,. ., Cq, bi, C +/-il, , Ci,,
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and the partial request "or give me only"

(36) Y I=1 1 unit of bi,

"and I will temporarily return"
+/- C +/-(37) Zil 1 unit each of Cil, in,.

Let Po have just the termination request "Give me"

(38) y0o 1 unit each of C1,’", Cq,

"and I will return"

(39) Zoo 2 units each of C1, , Cq.

The following argument, similar to that of the previous section, shows that there is a
feasible allocation sequence for S iff F is satisfiable.

Suppose there is a feasible allocation sequence A for S. Initially the banker’s
stockpile contains none of the Ci. In order to allocate any of the termination requests
it is necessary to find a set of the partial requests which can be allocated with x 1 unit
each of bl," b, such that these allocations return at least 1 unit each of CI," Cq.
As in the previous section these allocations consist of choosing for each bi whether to
allocate bi to R/1 or R i-x. In order to satisfy F, set b; true or false depending on
whether A allocates bi-to R -1 or to R i-x. Then all the clauses of F will be satisfied.

Conversely, suppose it is possible to set each bi true or false such that all the
clauses of F are satisfied. Then it is possible to allocate each bi to the partial request of
either P- or P[ in such a way tha the banker will receive at least 1 unit of each Ci. The
banker can then allocate P0, so he will have at least 2 units of each Ci. For those P:
such that the partial request R:x was allocated, the termination request becomes
"Give me"

(40) yi0 1 unit each of Ci,’", Cq, Ci%,’", Ci%,,
"and I will return"

(41) zi0 1 unit each of C1, , Cq, Cil, Ci,, bi.

So, the banker will be capable of allocating any of these termination requests. They
are producers, so he will be capable of allocating all of them. Then the banker will
have at least 1 unit of each bi and each Ci. So he will be capable of allocating the
termination request of any of the remaining P:. They are producers, so he will be
capable of allocating all of them.

9. Proof of Theorem 3: generalization of banker’s algorithm for nonmixture
termination requests.

Motivation. In this section the discussion is limited to system resource statuses
with only termination requests. The following section will allow linearly ordered
partial requests.

The original banker’s algorithm applies to termination requests for reusable
resources. That is, all requests are producers. The algorithm constructs a sequence of
allocations by choosing the successive processes Pi to be terminated in any order
subject only to the constraint that when Pi is terminated the banker has enough
resources to do so. S is safe iff a feasible allocation sequence is found on the first try.

The basic idea of the banker’s algorithm is that if system resource status S has a
request R which is a producer, and the banker is capable of allocating R, then
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immediate allocation of R can’t hurt. Namely, if there is a feasible allocation sequence
for S

(42) a,. ,ai, R, ai+2," ,aN,

then there is a feasible allocation sequence for $ such that R is the first allocation:

(43) R, al, ai, ai+2, aN.

Allocating R can only increase the banker’s stockpile. So, if the banker is capable of
allocating a1,"., ai before allocating R then he will still be capable of allocating
a l, ai after allocating R.

More generally, if there is a feasible allocation sequence for termination requests
then any producer allocation can be moved earlier and any consumer allocation can be
moved later. So, in seeking a feasible allocation sequence for S the banker can limit
his attention to sequences which allocate the producers first and the consumers last.
The banker’s algorithm can be used to determine if the producers can be allocated
first. To determine if the consumers can be allocated last, reverse the direction of
time" Start the banker with the stockpile which results from the allocation of all the
requests of S and ask if he can "deallocate" the consumers. In this time-reversed dual
problem the consumers become producers, because they are deallocated rather than
allocated, so the banker’s algorithm can be used.

In summary, producers should be allocated first, consumers last, and mixtures in
the middle. The producers can be allocated in any feasible order. In the time-reversed
dual problem the consumers can be deallocated in any feasible order. However, if
there are mixtures then Theorem 1 says that it is difficult to determine if there is a
feasible order for allocating them.

Generalized banker’s algorithm. Let S contain only nonmixture termination
requests. Then $ is safe iff it passes the following 3 tests:

(1) Construct $’ by deleting consumers from S. Use the banker’s algorithm to
determine if S’ is safe.

(2) Compute the banker’s stockpile after allocating all (termination) requests:

(44) xf X + (ZIO-- YlO) -t-" "l" (ZnO-- YnO).

For S to be safe it is necessary that

(45) xf-->0.
(3) Construct the time-reversed dual status $" for the consumers of S: In S" the

banker’s stockpile is x" xf; and for each consumer request (y, z) of S, S" contains the
producer request (y", z")= (z, y). Use the banker’s algorithm to determine if S" is safe.

Proof of validity of generalized banker’s algorithm. It only remains to show that a
system resource status $ without partial requests is safe iff its time-reversed dual $* is
safe. Suppose that there is a feasible allocation sequence for S which consists of
allocating the requests

(46) (YlO, zlo)" (YnO, ZnO)

in that order. Then the time-reversed dual allocation sequence

(47) (Z,o, Yn0)""" (ZIO, YlO)

is feasible for S*. To see this, note that the definition of a feasible allocation sequence
can be rephrased as follows: Start with banker’s stockpile x, then subtract ylo, then
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add zlo, then subtract y20, and so on. The banker’s stockpile must be _>-0 after each
subtraction. If the dual allocation sequence is applied to S*, then the banker’s
stockpiles after the subtractions will be the same in the reverse order.

The same argument shows that if there is a feasible allocation sequence for S*
then its time reversed dual allocation sequence is feasible for S.

Computation time for banker’s algorithm. Holt has shown that the banker’s
algorithm can be performed as follows with rN log N comparisons and rN additions
and subtractions, where r is the number of resource types and N the number of
requests (-n, the number of processes, if there are no partial requests): (1) Let the
(termination) requests be denoted Ri- (yi, zi), i- 1,..., N. Form the r N matrix
Y (yl, , yN) where the costs y are the column vectors. Order each of the r rows
of Y. (2) Repeatedly extract the minimum element from any row k, 1 <- k <- r, of Y so
long as the element (y)k being extracted is -<(x)k. When (yi) is extracted from Y add
1 to a counter associated with the request R. When the counter of any R reaches r,
this means that the banker is capable of allocating R. So add (z- yi) to x. (3) S is safe
iff this procedure extracts all the elements of Y.

I0. Proof of Theorem 4: generalization of banker’s algorithm for linearly
ordered requests.

Simplification of S. Let S be a system resource status with partial requests such
that the requests of each process are linearly ordered. Consider a process P with
requests Ro, R1,. , R,, where R (y, z). If the banker makes the sequence
R,,,. , R 1, Ro of allocations for successively longer initial segments of P’s task, then
the banker’s stockpile will pass through a sequence of values

(48) X,X +(Zm--Ym), ,X +(Zl--Yl),X q-(Zo--Yo)

which are linearly ordered resource vectors. That is, they are definitely larger or
smaller than each other, so can be depicted by a graph as in Fig. 2. To define the

FIG. 2. Relative size of successive banker’s stockpiles when requests are linearly ordered.

index max it is convenient to introduce an initial partial request which does nothing:

(49) Rm+l (0, 0).

Then max is defined by

(50) (Zmax-- Ymax) (Zi- y) for m + 1, m,. , O.
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First S will be separated into $1, $2. Then $1 willbe simplified to S and $2 to S.
$1, $2 are defined as follows: For each process P the requests up to and including

Rmax are put in $1 and the requests after Rmax in

(51) Rm+l, Rm, RmaxG $1,

(52) Rmax-1, R1, Ro 6 $2.

The banker’s stockpile of $1 is that of S:

(53) Xl-"X.

The banker’s stockpile of $2 is the result of allocating all requests Rmax in S:

(54) x2 x -1- E (Zmax-- Ymax),
P

where e means sum over all processes of S.
Every process P of S is a process of $1 with termination request Rmax. If

(zi- Yi)< 0 for 0, , m then Rmax em+l and P has just the termination request
Rm+l in S1. If Rmax R0 then all the requests of P in S are included in $1 and P does
not occur in $2.

S is obtained from Sx by deleting those partial requests which will become
consumers after allocation of a previous partial request:

(55) Ri:S if(zk-yk)>--(zi-yi)forsomek=m+l,m, .,i+1.

So, the profitabilities of the requests of S are isotonically increasing:

(56) (Zm’+l- ym’+l) < (Zm’-- y,,’)<""" < (Zmax--)"max).

This is depicted by the dashed line on the left side of Fig. 2.
S’2 is obtained from $2 by deleting all partial requests. Thus, each process of S

has just a termination request which is a consumer. This is depicted by the dashed line
on the right side of Fig. 2.

Motivation. It will be shown that
LEMI: S is safe :> S is safe and $2 is safe;
LEM2" S is safe :> S is safe;
LEM3" $2 is safe :> S& is safe.

Furthermore, $] is safe iff the banker’s algorithm yields a feasible allocation
sequence. S is safe iff the banker’s algorithm yields a feasible allocation sequence for
the time-reversed dual of S’2.

It was shown in the previous section that the banker should allocate the producers
first and the consumers last. This is the motication for LEM1. Actually, the banker
should never allocate a consumer if he doesn’t have to, and he is not required to
allocate partial requests. This is the motivation for LEM2. I can’t motivate LEM3, but
its proof is trivial.

Generalized banker’s algorithm. When S has been transformed into S, S& then
the generalized banker’s algorithm of the previous section becomes applicable to the
more general problem of linearly ordered requests. Namely, S is safe iff it passes the
following 3 tests:

(1) Use the banker’s algorithm to determine if S is safe. That is, choose a
sequence of allocations for $ in any order which the banker is capable of making and
see if all processes are terminated. The only adaption of the banker’s algorithm
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required by the fact that $ has partial requests is that when Ri is allocated all
previous partial requests R,, , Ri+l must be deleted along with Ri.

(2) Determine what the banker’s stockpile will be after allocating all requests of
S:

(57) x x +2 (zo- yo).
P

For S to be safe it is necessary that

(58) xr>_-0.

(3) Construct the time-reversed dual S of S" The banker’s stockpile of S is

x x and the (termination) requests of S"2 are those of $ with cost y and return z
reversed. Use the banker’s algorithm to determine if S is safe.

Proof of validity of generalized banker’s algorithm. To prove LEM1, let A be a
feasible allocation sequence for $1 followed by a feasible allocation sequence for
Then A is a feasible allocation sequence for S. Conversely, let A be any allocation
sequence for S. A rifle will be given for transforming A to A’, and a second rule for
transforming A’ to A1A2, such that

(1) Aa is an allocation sequence for $1; Az is an allocation sequence for $2;
(2) A feasible for S =), A’ feasible for S;
(3) A’ feasible for S A1A2 feasible for S;
(4) AaA:z feasible for $ =), A1 feasible for $1 and A2 feasible for $2.
A is transformed to A’ by inserting Rmax in A for each process P for which Rmax is

not in A" Since R0 must be in A, it follows that if Rmax is not in A then A is of the form

(59) A =(..., R,...),

where

(60) max > i,

and

(61) Rmax,’’’, Ri+l are not in A.

Then insert Rmax just before R"
(62) m’: (.. ", emax, ei, ").

A is obtained from A’ by deleting from A’ all Ri such that <max. A is
obtained from A by deleting all Ri such that i->_ max.

Most of the above 4 properties claimed for A’, A1, A2 are easily verified. I will
show (3): A’ feasible for S ::)> A 1A2 feasible for S.

Note that AA is a permutation of A. Let

(63/ (A’)i =(... Ri ),

(64) (A1A2) =(... ,R)

be the prefixes of A’ and A1A2 through allocation of Ri. I will show that the banker’s
stockpile after allocating (AIA) is => that after allocating (A’). Case 1: /_->max,
i.e. (A1A2)g is a prefix of A1. Then (A1A) is obtained from (A’) by deleting
allocations after R’max of various processes P’. These allocations decrease the banker’s
stockpile when (A’)i is allocated. Case 2: <max, i.e. (AIA) is obtained from (A’)
by inserting the allocations through Rax for some processes P’. These allocations
increase the banker’s stockpile when (A1A2) is allocated.
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To prove LEM2, let A be a feasible allocation sequence for S. Then A is a
feasible allocation sequence for $1 since the requests of $1 include those of S and the
banker’s stockpile is the same in $1 and S. Conversely, let A be a feasible allocation
sequence for $1. Suppose some Ri is in A,

(65) A (..., R,,...),

but the preceding requests

(66) Rj, Ri_l Ri+l where j >

of this process are not in A. From AX3,

(67) Yi <- Y’-I ----<" ----< Yi+I Yi,

it follows that Ri...., Ri+l can be inserted before R and the resulting allocation
sequence

(68)

will be feasible. In this way A can be transformed into a feasible allocation sequence
A’ for $1 which includes all partial requests, including those of S. It only remains to
show that if we delete from A’ those partial requests which are not in S, then the
resulting allocation sequence for S was obtained from S1 by deleting those partial
requests which would decrease the banker’s stockpile with respect to some previously
attained value.

To prove LEM3, let A be a feasible allocation sequence for S. Then A is a
feasible allocation sequence for Sa. Conversely, let A be a feasible allocation sequence
for Sa. Delete all allocations of partial requests from A to obtain an allocation
sequence A’ for S;. A’ is feasible because the deleted allocations are requests after
Rmax in S, so reduce the banker’s stockpile.

To see that the banker’s algorithm can be used to determine if the time-reversed
dual of S’a is safe note that S; has no partial requests. So this is a special case of
the algorithm of the previous section.

To see that the banker’s algorithm can be used to determine if S is safe, note
that all requests of S are producers. So any allowed allocation can be chosen to be
first, since it will only increase the banker’s capability of allocating the other requests.
Furthermore, for each process,the profitabilities of the successively larger partial
requests are monotonically increasing. Therefore, after making the first allocation the
new system resource status will retain the properties that all requests are producers
and the profitabilities of the successively larger requests of each process are mono-
tonically increasing. So the continued use of the banker’s algorithm remains justified.

Problem asymmetry. S was obtained from $1 by deleting some of the partial
requests. S was obtained from Sa by deleting all the partial requests. This asymmetry
in the methods used to handle the partial requests of S before and after Rmax is due to
an asymmetry in the particular way I have chosen to allow the processes to make
partial requests" P is allowed to state reduced needs in order for the computation to
reach some intermediate point short of termination, but he is not allowed to say that
his needs will be reduced after some intermediate point is passed. For example, in my
formalism P can inform the banker that it needs y0 (1, 1) to terminate and yl (1, O)
to reach an intermediate point, but P can’t tell the banker that P will only need (0, 1)
after it has reached the intermediate point.
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APPROXIMATE REDUCTION AND LAMBDA CALCULUS MODELS*
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Abstract. This paper gives the technical details and proofs for the notion of approximate reduction
introduced in an earlier paper. The main theorem asserts that every lambda expression determines a set of
approximate normal forms of which it is the limit in the lambda calculus models discovered by Scott in 1969.
The proof of this theorem rests on the introduction of a notion of type assignments for the lambda calculus
corresponding to the projections present in Scott’s models; the proof is then achieved by a series of lemmas
providing connections between the type-free lambda calculus and calculations with these type assignments.

As motivation for these semantic properties, we derive also some relations between the computational
behavior of lambda expressions and their approximate normal forms, and we establish a syntactic analogue
of the general considerations motivating the continuity of functions in Scott’s lattice theoretic approach.

Key words, lambda calculus, Scott’s models, approximations, approximate normal form, continuity,
theory of computation

1. Introduction. In [12, 5] we discussed a notion of approximate reduction as a
tool for analyzing the A-clculus models of Scott [9], [10], [11]. In this paper we
develop the notion more formally and fill in the technical details and proofs omitted
from the discussion in [12]; we assume the reader is familiar with [12] and with the
general nature of Scott’s lattice theoretic approach.

As in [12] our study concerns the relation between the syntactic and semantic
aspects of the A-calculus. The conventional notion of normal form is inadequate for
such an investigation because, although we can take a normal form as a convenient
representation of the result of a A-calculus program when it has a normal form, we
cannot consistently regard an expression as being "undefined" when it fails to have a
normal form. The notions of approximate reduction and approximate normal form are
introduced to overcome these limitations and show that the process of reduction is, in
a limiting sense, complete for purposes of evaluationmevery term determines, by
reduction, a set of approximate normal forms of which it is the limit in Scott’s
D-model. Informally, we can read this and the other results to be proved here as
showing that the meaning of an expression in D captures exactly the input-output
behavior determined by the possible computations involving the expression.

After a quick review of the D-model in 2, we define approximate reduction
and related concepts in 3 and develop their semantic properties. This leads to the
main limit theorem (Theorem 3.5 below), the proof of which is the heart of the paper
and will be given in 4. Section 5 continues with several results relating the compu-
tational behavior of terms and their approximate normal forms which support our
informal understanding of Theorem 3.5. Section 6 concludes the paper with a brief
discussion of the related work of Hyland, Levy, and Welch.

2. Technical preliminaries. We consider a A-calculus with one special constant,
denoted by fl, so the terms consist of all expressions fashioned out of variables and
by application and abstraction, fl is used to stand for ’undetermined’ parts of terms;
an occurrence of approximates a (sub-)term in the sense of giving no information
about it, so terms containing can be thought of as partial terms, or approximate
terms.
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Research Council Grant to C. Strachey, Programming Research Group, Oxford University Computing
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We shall generally use lower case letters for variables and upper case letters for
terms, and adopt the usual conventions (e.g. association to the left) regarding omission
of parentheses. For the definitions of contexts, substitution, redexes, reduction and
conversion (a-,/-, and r/-), normal form, etc., and the concepts of solvability and
head normal form, we refer the reader to [1], [3], [7], and [12].

Our semantics of this calculus is based on solutions of an isomorphism

D [D-D]

with Do a complete lattice and [Doo Do] the lattice of continuous functions from
Do to itself, where the functions and forming the isomorphism are continuous.
(Except for emphasis, hereafter the isomorphism functions and will generally be
omitted.) As usual, we use __=, [_J, and _k to denote, respectively, the partial ordering,
the least upper bound operation, and the least element of complete lattices.

We consider Scott’s solutions for Do, the construction of which provides an
increasing sequence of projection2 functions on Doo such that every element of Do is
the limit of its projections and satisfying a number of other useful laws. The following
theorem summarizes, with subscripts denoting projections, the relevant facts we shall
need in 4; see [12, 3] for a more detailed outline and informal discussion, and,
e.g. [9] or [10] for a full account of Scott’s construction with proofs.

THEOREM 2.1. In Scott’s solutions for Do, ]’or each integer >= 0 there is a pro-

fection function on Do such that the following hold"

(P1) x,_x,c-=x, O<-n<-m,

(P2) _t_. A_,

(e3) x= [[ x.,

(P4) (x.)m X min(n,m ),

(PS) (11 x). II {x,,:x

(P6) x (z) y (z) for all z Doo

x (z)=_ y (z) for all z Doo

(P7) x(y)= L x,,+l(y,,)

(P8) 2_ (y)= _i_,

(P9) x0(y) x0 x(_l_ )0,

(PIO) Xn+l(y) X(yn)n Xn+l(Yn).

.forX

: x
_

y,

For those who prefer, complete partial orderings (partially ordered sets with a least element in which
every directed subset has a least upper bound) may be used throughout without significantly affecting our
development or results; we choose to work with complete lattices for ease of comparison to the referenced
papers.

To avoid ambiguity with other meanings in the literature, here a projection is a continuous function p
from a complete lattice D to itself such that p(x)_x for all x D.
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IVARLet VAR, EXP and EN =,..oo denote the sets of all variables, terms, and
environments, respectively, where DVooAa is the set of all functions from VAR to D,
and make ENV a complete lattice by the "pointwise" partial ordering (i.e. p NVO’ iff
p(X)DO’(X) for all x VAR). As explained fully in [12, 2], terms are interpreted in
D by a mapping

: EXP [ENV D]

defined, for p s ENV, by the clauses

(s) x(o)=ox,

($2) MN(o) *(M(o))(N(o)),

($3) Ix.M(p)= *(la6D.M(p[d/x])),

($4) [n(p) L,

where o[d/x] p’ ENV is given by

d, ifx’x,
O[x’, if x’ x.

Then, corresponding to equality and the partial ordering in D, determines an
equivalence relation and a quasiordering between terms, defined by

M=N iff M(o) YN(p) for all O ENV,

M N iff M(p) N(p) for all p e ENV.

THeOReM 2.2. The relation =D provides a modelfor the A-calculus system based
on a---conversion"

Ma---cnvN implies M =D N,

and the ordering has the following substitutivity property:

M N implies C[M] C[N] for all contexts C[ ].

Further, Xfor all terms X, and two -conversion rules are valid in D:

() nx=n,
() ax. .

Proof. See [12]. 13
For several results in 4, 5, we need the notions of descendants and ancestors

[7]. When terms are being reduced, these provide a means of associating parts of the
later terms in a reduction sequence with parts of the initial term in the sequence (from
which they are "descended"), and vice versa. We shall need the notions only for
/3-conversion, though there are similar definitions for a- and ,?-conversion.

First, suppose X is reduced to X’ by contraction of a/3-redex R =-(Ax.M)N with
contractum R’=-[N/x]M. We define a function father from parts of X’ to parts of X
such that every subterm S’ of X’ has a unique father in X, as follows:

1. If S’ is not part of R’, its father is the corresponding subterm of X.
2. If $’ is all or part of an occurrence of N which was substituted for x in M, its

father is the corresponding part of the occurrence of N in R.
3. If S’ is any other part of R’, its father is the corresponding part of the

occurrence of M in R.
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The relation son is the inverse of father. Every subterm of X thus has a unique son in
X’, except that neither the redex R being contracted nor its rator nor any of the free
occurrences of x in M have any sons, while parts of N have k sons, where k is the
number of free occurrences of x in M.

The relations descendant and ancestor are the natural extensions, by transitivity,
of son and father to reduction sequences. It is easily seen that any descendant of an
occurrence of D, is itself an occurrence of f, that any descendant of a redex is itself a
redex, and that after each step in a reduction sequence a redex fails to have a
descendant iff either it is the redex being contracted or it is part of the rand N of the
redex (Ix.M)N being contracted and there are no free occurrences of x in M.

Redexes which are descendants of redexes are also called residuals, a notion
heavily used in the classical proofs of the Church-Rosser Theorem. In particular, it
leads to a definition of a restricted kind of reduction which always terminates (not in
general in a normal form). Let Y be a set of redexes in a term X. Then a reduction

R R R

(2.1) X=-Xo )Xl X2 " Xn-1 Xn X’

is called a reduction relative to if the redex Ri contracted in each step Xi-1 X is a
residual of a redex in Y, and this reduction is complete if there are no residuals of in
the last term X’.

The following are well known:
LEMMA 2.3 (The Lemma of Parallel Moves). If is any set of -redexes in a term

X, there is a complete reduction ofX relative to , and all complete reductions relative to
end in the same term X’.
THEOREM 2.4 (The Church-Rosser Theorem). If Xcnv Y there is a term Z such

that X red Z and Y red Z. Hence, if a term has two normal forms X and Y, then X
a-cnv Y.

Not all methods of reduction are equally effective in reducing a term to normal
form (if it has one). However, any reduction can be standardized in the following
sense. If R and S are two/3-redexes in a term X, we call R senior to S if the left-hand
end of R lies to the left of the left-hand end of S in X. Then a reduction (2.1) is called
a standard reduction iff for each 1, 2, , n 1, Ri/l is not a descendant of a redex
in X-x senior to R; or, equivalently, iff Ri/l lies in or to the right of the contractum of
Ri in X. (Note that this does not imply that R+ is not a descendant of a redex, only
that if it is then no ancestor of R+ is senior to any redex contracted earlier in the
reduction.)

A special case of standard reduction is normal order reduction, in which each step
is determined by contraction of the lefimost redex, i.e. the (unique) redex senior to all
other redexes in a term.

THEOREM 2.5 (The Standardization Theorem). If X/3-red X’ there is a standard
reduction from X to X’. Hence, if X has a normal form, X can always be reduced to
normal form by normal order reduction.

Proofs of Lemma 2.3, Theorem 2.4, and Theorem 2.5 may be found in [1] or [3].

3. Approximate reduction. Intuitively, approximate reduction is intended as a
means of determining (partial) information about the values of terms, by considering
the form of expressions to which terms can be transformed by (/3-)reduction. We
restrict ourselves here to the formal definitions and supporting concepts and refer the
reader to [12, 5] for a general orientation.
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DEFINITIONS. An f-redex is a subterm of the form fX or Ax.f. A sequence of
zero or more replacements of f-redexes by f is called an O-reduction. An O-normal
form is a term which does not contain an fl-redex.

A term A is said to O-match M if A and M are identical except at subterms
which are occurrences of fl in A, and to f-approximate M if A can be O-reduced to
an O-match of M. Then, A is said to be a direct approximant of M if A fl-
approximates M and is in/-normal form, and is called the best direct approximant of
M if A is the f-match obtained from M by replacing its (outermost) B-redexes by f.
The set (M) of approximate normal forms of M is defined by

M(M) {A: ::lM’.M/3-red M’ and A is a direct approximant of M’}.

Example 1. Suppose

M =- Ax.X(Rly)(yRe)(x(Az.R3))

reduces to

M’- Ax.x(x(Aw.R4x)y)(yR2)(x(Zz.z(Rsy)))

where R1, R2, R3, R4, R5 are fl-redexes, and let

A1 Ax.x (D,)(y f),)(D,,),

A2 =- Ax.x(fy)(yO)(x(Az.f)),

A3 -" IX.X (X (1 W.-X)y )(y [’)(X (IZ.Z (-y))),

A4 ,x.x (x’y )(y ")(x (Az.z )).

Then A1 is a direct approximant of M (and of M’), A2 and A3 are the best direct
approximants of M and M’ respectively, and A4 is another direct approximant of M’
and is in D,-normal form (as is A 1). All four (and any term fl-reducible to any one of
them) belong to both M(M) and M(M’).

The definition of direct approximants just given is one of several alternatives. In
particular, it differs slightly from that of [12, 5] where terms D-reducible to f-
matches were not considered. Since D,-reduction preserves meanings (by Theorem
2.2), the wider definition adds no new meanings in D. Its use here, at the suggestion
of one of the referees, is convenient for precision in stating several auxiliary lemmas
and their proofs; in particular, it enables equations like M(M)= M(M’) to mean
exactly that, without the need for a qualification of "up to D-conversion" or some-
thing similar.

Note also that every term can be D,-reduced to one which is in fl-normal form
(because f-reduction always decreases the length of terms). All the results to be
proved remain true, exactly as stated, if the definition of direct approximants is
restricted to allow only those in O-normal form. (One or two of the proofs, however,
would be more cumbersome to express.)

The following two lemmas list some simple consequences of our definitions.
LEMMA 3.1. f-approximation is transitive.

Proofi Since f-reduction is transitive, it suffices to show that when A D-matches
M and M reduces to M’ by contraction of an D.-redex W, there is an O-match A’ of
M’ such that Aft-red A’. If W is part of a subterm of M replaced by D in A, then A is
an f-match of M’ and there is nothing to prove; otherwise, the subterm of A
corresponding to W in M is an f-redex, contraction of which yields the required
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LEMMA 3.2. (a) IfA f-approximates M, then A M.
(b) a Mfor all A sg(M).
Proof Part (a) follows from the minimality of f and the substitutivity property

for mentioned in Theorem 2.2; then (b) follows using the validity of /3-reduc-
tion.

For the main result below (Theorem 3.5) it is definitely necessary to consider all
approximate normal forms of a term, or at least a subset larger than one determined
using any particular order of reduction. For instance, normal order reduction alone is
not sufficient:

Example 2. Consider M hx.x (AA)(R), where A--= hx.xx and R is any/3-redex
which does not have value +/- in Doo. Then AA is the leftmost/3-redex in M, so, since
AA reduces only to itself, the successive terms in the normal order reduction of M are
all identical to M (i.e. the reduction never gets around to operating on the redex R).
Hence, the successive best direct approximants in this reduction are all equal to
A --hx.x (D,)(D,), for which A M but A # DM.

In other words, the successive best direct approximants in any particular reduc-
tion of a term M may converge to a limit smaller than the value of M; however, they
do form an increasing sequence of approximations to M, and the set ’(M) is always a
directed set, as shown by the next two lemmas.

LEMMA 3.3 Suppose M fl-red M’. Then:
(a) IfB and B’ are the best direct approximants ofM and M’, respectively, then B

-approximates B’.
(b) Every direct approximant ofM is a direct approximant ofM’.
(c) M and M’ have the same set of approximate normal forms.
Proof. Let R 1, R2, , R, be the outermost fl-redexes in M.
For (a), by transitivity it is sufficient to consider the case where M is deduced to

M’ by contraction of a single fl-redex R.
If R is not one of the outermost redexes, then R must be internal to one of them

and disjoint from the rest. M and M’ are then identical except at some subterm
internal to one of their outermost redexes, so B B’ in this case.

Now suppose R is one of the outermost redexes in M, say R R for definiteness.
Let X be the contractum of R, and let C[ be the context of R and X in iV/and M’,
respectively, i.e. the context such that M--C[R] and M’--C[X]. The redex R is now
disjoint from the other outermost redexes in M, so, for 2, 3, , n, R has a unique
residual in M’ identical to Ri and this occurs as part of the context C[ ]. Letting C’[]
denote the result of replacing R2, R3,’’’, Rn in C[] by O,, then B =-C’[f]. For B’,
there are two cases, depending on the structure of the contractum X of R:

Case 1. X is a variable or a combination. Then X cannot be contained in an
outermost redex O of M’ (else O would be the residual of a redex in M containing R,
contradicting R being an outermost redex of M). Thus, the outermost redexes of M’
consist of R2, R3,""", R, and the outermost redexes of X. So if Bx denotes the best
direct approximant of X, then B’= C’[Bx], which is D-matched by C’[f] =-B.

Case 2. X is an abstraction. If X is not the rator of a combination in M’, then
B’---C’[Bx] follows as in Case 1. So suppose X is the rator of a combination XZ in
M’. Then XZ is the unique descendant of a combination RZ in M and is an
outermost redex in M’ (else R could not have been an outermost redex in M). Some
of the Rg, say Rz, R3,""", R (1 <-k =< n), may occur as parts of the rand Z of XZ in
M’, and are therefore not outermost redexes in _M’. Thus, the outermost redexes of
M’ consist of R+, R,+2, ’, R, and XZ.
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Let Co[ be the context such that M--C0[RZ] and M’--Co[XZ]. Let Bz be the
best direct approximant of Z (i.e. the result of replacing R2, R3, ’’’, Rk in Z by f)
and let C[] be the result of replacing Rk+x, Rk+2, "’’, Rn in Co[] by f. Then
B C[fBz], which is O-reducible to C[f] B’.

This completes the proof of (a). Part (b) now follows using the transitivity of
f-approximation from the observation that every direct approximant of a term
f-approximates its best direct approximant.

For (c), (M’)_(M) is immediate, for every direct approximant of a term to
which M’ is reducible is, since M/3-red M’, clearly also a direct approximant of a term
to which M is reducible. For the reverse inclusion, suppose A E (M) is a direct
approximant of a term M" to which M is reducible. Then, by the Church-Rosser
Theorem, there is a term M’" such that M’/3-red M"’ and M"/3-red M’". The latter
implies, by (b), that A is a direct approximant of M’" and hence, since M’/3-red M’", is
an approximate normal form of M’. []

LEMMA 3.4. For every term M, the set g(M) is directed with respect to the
quasiordering .

Proof. The proof is straightforward and uses the Church-Rosser Theorem and
Lemmas 3.2 and 3.3 by an argument similar to that just given for Lemma 3.3(c).

Now we can state the main theorem that, passing to values in Doo, every term is
the limit of its approximate normal forms:

THEOREM 3.5. For all terms Mand environments p,

//IIM]](p) LJ{7/A]](p):A E ,d(M)}.

COROLLARY 3.6. For all terms M, 7/M]](p) +/- [or all environments p iff M is
unsolvable iffM does not have a head normal jorm.

Proof. See [12, Cor. 5.3]. [3
Of course, these last two results essentially show that every term has, in a certain

sense, an infinite normal form. This is pursued further by Nakajima [8].

4. Proof of Theorem 3.5.

To show: 7/’M]](p)= L__J{//IIA]](p): A (M)}

That the r.h.s.
_

1.h.s. we know already, since A s(M) implies A M. For the
reverse ordering, we proceed via a notion of type assignment for the A-calculus
appropriate to these models, suggested to us by J. M. E. Hyland in early 1972. Our
"types" will be integers and a type assignment will consist of an association of
(arbitrary) integers with every subterm of a term; the intended interpretation is that
the corresponding projection of the value of the subterm is to be taken. A typed
analogue of B-reduction will then be defined and shown to preserve the values of
terms with type assignments. Then, as with all typed -calculi, every typed term T will
be reducible to, and hence equivalent to, a typed term T’ in normal form. The
connection with untyped approximate normal forms is then achieved by observing
that the untyped version of T’ is one of the approximate normal forms of the untyped
term corresponding to T.

We break the proof into five major steps as follows:
I. Represent type assignments formally by writing the integers associated with

subterms as superscripts on the subterms. (We choose superscripts rather than sub-
scripts to keep the distinction clear as to when we are talking of the (typed) terms and
when we are talking of the projections, denoted by subscripts, of their values.) Then,
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for a typed term T, we shall write T* for the corresponding untyped term obtained by
deleting the superscripts, and, for an untyped term M, we shall write r(M)=
{T: T* M} for the set of typed terms representing type assignments for M.

II. Define the interpretation of typed terms by a mapping

-" {typed terms} [EN D]

(defined as for 7/’, with the addition that superscripts are interpreted as the cor-
responding projection) and show that, for any untyped term M, the join of the values
3- r]](p) taken over all T r(M) is equal to 7/’[[M]] (p ).

III. Define a concept of typed fl-reduction which preserves values under 3-. Note
that a/3-redex (Ax.M)N with a type assignment has the form

O ((Ax. T)(’)W)(i), T ’(M), W "r(N), i, ] >= O;
then, roughly, corresponding to the properties (P9) and (P10) of projections, we shall
define the contractum O’ of O as

(a) if 0, then O’--- [f()/x]T();
(b) if n + 1 > 0, then O’ ([ W(")/x]T("))(i.
IV. Show that typed reductions can always be chosen so as to reduce any typed

term T to a T’ in normal form (by successively contracting the rightmost redex of
maximal degree, where the degree of a redex is the integer, in III, assigned to its
rator).

V. Show that (T’)* is a member of s4(M), where T’ is obtained from T ’(M)
as in IV (by extending the notion of f-matching to typed terms and determining an
ordinary reduction of M f-matched by the typed reduction from T to T’).

With I-V achieved, we then have, for all T e r(M),

3--[[ T]] (p ) [ T’ (O for T’ determined by IV

T’(T’)*(O)___
[{7/’[[A]](p)" A 6 s(M)}

since, compared to ,
does not apply projections

since (T’)* 6 sO(M) by ’V

which will, by II, complete the proof of Theorem 3.5. The rest of this section
formalizes each of the steps I to V.

Step I. Syntax o[ typed terms. Formally, we define the set of typed terms
inductively as follows:

1. For n ->0, x (n) and 1(n) are typed terms.
2. If T and W are typed terms, so is (TW) for every n _>-0.
3. If T is a typed term and x is a variable, then (Ax. T)(") is a typed term for every

n>-0.
4. If T is a typed term, so is T(") for every n ->_ 0.

Compared to our informal discussion above, the last clause has been added here for
he technical convenience of allowing multiple superscripts.

In 1 to 4, the superscript n on the whole term will be called the type of the term.
Although we call our system a "typed" A-calculus, notice that there is no type
restriction on the formation of function applications (unlike other typed calculi). If we
wished, we could impose such a restrictionme.g., based on the construction of Do,
that (TW)() be admitted as being well-formed only when T and W are of type n + 1
and n, respective--but this would only complicate matters and is unnecessary here,
since the isomorphism between Do and [Do Do] allows every term to be meaning-
fully applied to terms of any other or the same type.
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The notation T* is given by

(x")* x,

((TW)"))* =- T* W*,

((hx. T)(’))* hx. (T*),

(T("))* --- T*,
and the sets r(M) are given explicitly by

(x)= {x": n _-> 0}

z(MN)= {(TW)("): T z(M), W z(N), n _-> 0},

z(hx.M) {(hx. T)(": T z(M), n _-> 0},

(f) {: n >_- 0}.

Step II. Interpretation of typed-terms. We define the semantic function 3- by

(T1) 3-[Ix ("]] (p) (px]),,

(T2) 3-[[(rw)("l] (0) (O(3-[I T]] (O ))(3-[I W]] (O))),,,

(T3) 3-(Ax.T)(")(O)=(W(AdDo.ffr(O[d/x]))),,
(T4) lIn"]](o) +/-,

(T) -T"I](0) (-T(o))..

COROLLARY 4.1. For all typed terms T, if n is the type of T, then

(a) -T(o)=- (’T*(O)). =- VT*(O)
(b) -[[(T("))’)]](p) -[[T(mi"("’))]](O ), ]:or all m, k >=0

(c) [or all ordinary terms M and environments p, the set

{Yl T]](0): 7" e ,(M)}

is directed, and

M(o) I1{-T(o): T e ,(M)}.

Proof. All parts are straightforward from the definitions except the second part of
(c), which follows by structural induction on M, using continuity and the property (P3)
of projections, l-]

Note that Corollary 4.1(b)shows that multiple superscripts provide a "re-typing"
operation in the syntax corresponding to the composition law (P4) for projections. We
assume hereafter that such simplifications--replacing multiple superscripts by their
minimumare applied to typed terms automatically without explicit mention.

Step III. Typed reduction. As for ordinary B-reduction, we first define a substitu-
tion operation. The definition is just what one would expect by saying that we do the
substitution as usual while carrying the type assignments alongif T -(M) and
W z(N), then the typed substitution W/x]T =- T’ -(M’) denotes the ordinary
substitution [N/x]M--M’ with the type assignment T’ for M’ as follows:

1. Proper subterms of occurrences of N substituted for x in M are assigned the
same type as under the type assignment W for N.
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2. Occurrences of N itself are assigned the smaller of the type of W and the type
assigned by T to the occurrence of x in M replaced by the occurrence of N.

3. All other subterms of M’ are assigned the same type as the corresponding
subterm of M under the type assignment T for M.

LEMMA 4.2 (The typed substitution lemma). For all typed terms T, W, variables x,
and environments p,

I[ W/x]r](o)= - rl](0[- w(o)/x]).

Proof. The proof is a straightforward, but tedious, structural induction on T,
using Corollary 4.1(b) and the composition law for projections. I-1

A typed term will be called a typed redex if it is of the form

O ((hx. T)(i)w)(i), i, j >- O.

The typed contractum Q’ of Q is then defined as given in the statement of Step III
above, with typed substitution read as just given.

LEMMA 4.3 (Validity of typed reduction). For any typed redex Q with contractum
Q’, ]’or all environments p,

o(o)

Proof. Let Q, O’ be as given above, with i-> 0 the degree of O. There are two
cases to consider: (a) 0, and (b) n + 1 > 0.

(a) 3-O(p)-- 3-[[ ((hx. T)()W)(i)(p

((A ! D.3-T(p [fl/x ]))o(3- W](p )))i

(( I).7"(o[/xl))(+/- ))o

(-[ r]l(o[_L/x]))o

7"((O[-((o)/x])
3[[[()/x]T()]](p) =- 3-Q’]](p)

3-[[O] (p ) =- 3- (hx. T)("+ W))(p )

by (T2), (T3) (with
applications of , W
omitted)

by (P9) and (P4)

by def. of
function application

by (T4)and (T5)

by Lemma 4.2.

((ha D.’T(p[fI/X]))n+l(- W(p)))j as in case (a)

((3-[[ T]](p [(3-[[ W(p)),/x])),)i using (P10)

(3-[[ T(")]](p 3-[[ W(")(p)/x 1))i by (T5) twice

(-[ W(")/x]T(n)]](p)) by Lemma 4.2

3"[[([W(")/x]T(")(i)(p) 3-O’(p) by (T5)

Step IV. Typed terms always have normal forms. The proof here is a standard one
for typed h-calculi; compare, e.g., [7, p. 107]. First, a term will be said to be of
maximal degree n if it contains a redex of degree n but none of higher degree.

LEMMA 4.4 (The normalization theorem).
(a) Every typed term of maximal degree n + 1 can be reduced to one of maximal

degree <= n.
(b) Every typed term of maximal degree 0 can be reduced to one in t3-normal form.
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Hence, by induction on the maximal degree,
(c) every typed term can be reduced to one in -normal form.
Proof. For (a), suppose X is of maximal degree n + 1, and let

Q --- ((Ax. T)i)w)i)

be a redex in X of degree n + 1 whose operand W does not contain a redex of degree
n + 1 (e.g. choose the rightmost redex of degree n + 1). We show that the result X’ of
contracting O in X contains one less redex of degree n + 1 and no redex of higher
degree. Part (a) then follows by induction on the number of redexes of degree n + 1
in X.

Let P’ be a redex in X’. Then P’ must be the son of a combination P in X whose
rator must be either (i) an abstrac{ion, (ii) a variable, or (iii) a combination.

In case (i), P itself is a redex in X, so, by definition of the type assignment for X’
in terms of that for X, the degree of P’ is equal to that of P. Now, if P had degree n + 1,
then P could not be part cff W (by choice of O), so P’ is the unique son of P in X’.
Since the redex contracted is of degree n + 1 and has no sons in X’, this implies there is
one less redex of degree n + 1 (and no redex of higher degree) in X’ whose father was
a redex in X.

In case (ii), an abstraction must have replaced a variable in the combination P.
Since the free occurrences of x in T are the only variables replaced when O is
contracted, the rator of P’ must be an occurrence of W which has been substituted for
x. But, by definition, such subterms of X’ are assigned a type <- one less than the
degree of the redex being contracted, so P’ has degree <= n in this case.

In case (iii), an abstraction has replaced a combination. Since the redex being
contracted is the only combination which can be so modified by a contraction, the
rator of P’ must be the contractum of O, which, by definition, is assigned a type <= n.
Hence again P’ is of degree -< n for this case.

Thus, redexes in X’ have degree n + 1 iff their father in X was a redex of degree
n + 1, and there is one less redex of degree n + 1 in X’ and no redex of higher degree.

For (b), now suppose X is of maximal degree 0, and let O be any redex as
above of degree 0 in X. Clearly, the result X’ of replacing O in X by its contractum
[f()/x]T() is of shorter length than X, so it suffices to show that X’ is of maximal
degree 0, for then (b) follows by induction on the length of X.

Let P’ be any redex in X’ and consider cases as above. In case (i), as before P’ and
its father in X have the same degree, which must be 0 as X is of maximal degree 0.
Case (ii) cannot arise this time since occurrences of x in T are replaced by f. In case
(iii), the rator of P’ must be the contractum of O as before, so P’ has degree 0 by
definition of the type assigned to the contractum of a redex of degree 0.

Step V. Connecting typed and approximate reductions. Call a typed term T an
O-match of an untyped term M if T* is an D-match of M. (Note this includes the
special case where T -(M), for then T* M.)

LEMMA 4.5. Suppose T [l-matches M and T reduces to T’ by contraction o] a
typed redex O. Then there is a -redex R in Msuch that T’ )-matches the result M’
contracting R in M.

Proo]’. Since T is an f-match of M, the subterm of M corresponding to O in T
must be a /3-redex. Choosing R as this redex, the result follows easily from the
definitions by a case analysis on the degree of O. 71

COROLLARY 4.6. For every T -(M), there is a typed reduction of T to a typed
term T’ such that (T’)* sd(M).
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Proof. Let T’ be any typed term in B-normal form for which there is, by Lemma
4.4, a typed reduction from T to T’. If we apply Lemma 4.5 to each step in this typed
reduction, there is an untyped term M’ such that M B-red M’ and T’ D-matches M’.
Since T’, and hence also (T’)*, is in B-normal form, this implies that (T’)* is a direct
approximant of M’, whence (T’)*

5. Computational properties of approximate normal forms. In this section we
establish several results which provide technical support for expecting properties such
as Theorem 3.5 to hold in any "reasonable" model of the A-calculus. Specifically, we
shall show that a knowledge of the approximate normal forms of a term is sufficient to
determine its overall computational behavior (discussed in [12] without the proofs).

THEOREM 5.1. For all terms M and contexts C[ ], C[M] has an O-free normal
form (a head normal form) iff C[A] has the same f-free normal form (a similar head
normal form) ]’or some A sg(M).

Theorem 5.1 can be proved directly (by specializing the argument below to
normal order reductions and head reductions), but we shall derive it here as a
corollary of a more general result of some interest in itself:

THEOREM 5.2. For all terms M, -normal forms A’, and contexts C[ ], A’
4(C[M]) iff there is an A s4(M) such that A’ (C[A]).

Equivalently, Theorem 5.2 can be stated as

(C[M]) J{C(C[A]) A 6 4(M)}

which gives an interesting syntactic analogue of the reasoning underlying the
continuity of functions in Scott’s work. In words, for the special case C[M]-=FM of a
function application, it says: to obtain an approximate normal form of FM requires
only an approximate normal form of the argument M.

Theorem 5.1 is immediate from Theorem 5.2 and the observations that (a) if a
term has an )-free normal form N, then N is always one of its approximate normal
forms, and (b) if a term has a head normal form AXIX2"’" Xn.ZXlX2’’’ Xm, where
m, n _->0 and z is a variable, then AXlX2’’’ x,.zff.., f is one of its approximate
normal forms.

For the proof of Theorem 5.2, we need first a series of lemmas comparing the
reductions of terms and their f-approximates, to enable us to substitute arbitrary
terms, in particular f, for subterms inessential to a reduction. To facilitate the
treatment of several results, we introduce the notation

R R R

(5.1) X=-Xo Xl ->X2 >Xn-1 >Xn X’
for a/-reduction of length n -> 0 from X to X’, where R is the redex contracted in e
ith step from X_ to X, for 1, 2,. ., n.

LZMMA 5.3. Suppose 9 is a set of -redexes in a term X and X B-red X’ without
contraction of a residual of a redex in 9. Let Z be the ft-match of X obtained by
replacing the outermost members of 9 by fl. Then there is an [l-match Z’ of X’,
obtainable by replacing a set of -redexes in X’ by fl, such that Z/3-red Z’.

Proof. Let 9’ be the set of residuals in X’ of members of 9, and let Z’ be the
[l-match of X’ obtained by replacing the outermost members of 9’ by f/. Let (5.1) be
the given reduction from X to X’ of length n. By transitivity it suffices to consider the
case n 1, for which, since R1 is not a member of 9 (by the condition on the given
reduction from X to X’), either R is part of a member of 9 or there is a/3-redex S in
Z corresponding to R in X0. In the former case, Z’---Z and there is nothing to
prove; in the later case, it is easily seen that Z’ is the result of contracting the redex S
in Z. [-1
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The next three lemmas are directed toward showing that taking f-approximates
can be postponed across a B-reduction. Recall that f-approximation was defined by
combining f-matching and O-reduction, and includes these two relations as particular
cases (by reflexivity). Postponement of taking f-matches is easily shown:

LEMMA 5.4. If Z l)-matches X and Z/3-red Z’, them is a term X’ such that Z’
lq-matches X’ and X/3-red X’.

Proof. By transitivity, we may assume that Z’ results from Z by contraction of a
single/3-redex S. Since Z l)-matches X, the subterm of X corresponding to $ in Z
must be a/3-redex, contraction of which yields the required X’.

For f-reduction, more care is required as, somewhat surprisingly perhaps, it is
not always true that when Z O-red X and Z/3-red Z’ there is a term X’ such that Z’
D,-red X’ and X/3-red X’. (A counterexample would be given by taking Z =-(Ax.fl)N,
Z’= f, and X =fiN, where N is any term.) In general, one can only conclude the
existence of a term X’ such that Z’ l)-approximates X’ (and X/3-red X’). We show
first:

LEMMA 5.5. Suppose Z O-red X and Z/J-red Z’ by contraction of a single
3-redex S in Z. Then either Z’ O-approximates X or there is a term X’ such that Z’
O-red X’ and X/3-red X’ by contraction of a single -redex in X.

Proof. We argue by induction on the length of the O-reduction. If Z-=X, the
result is trivially true (by taking X’ X), so suppose Z reduces to Y by contracting an
D,-redex W and Y f-red X. Let S (Ax. U)V and let C[ be the context of $ in Z, i.e.
Z C[S]. Two cases arise, according as W is the rator of S or not.

If W is the rator ,x. U of S, then U D, else W would not be an fl-redex. Then
Z’---C[fl] O-matches C[f V]-- Y f-red X, whence Z’ f-approximates X by tran-
sitivity of O-approximation (since O-matching and f-reduction are special cases).

If W is not the rator of S, the subterm of Y corresponding to S in Z is a/3-redex
R and the descendants of W in Z’ are f-redexes W1, W2,"’, Wk (where k 1
unless W is part of V, in which case k is the number of occurrences of x in U). Let Y’
be the term obtained by contracting R in Y, then note that Z’ f-red Y’ by contracting
W1, W2,’", Wk in any order. The result now follows by applying the induction
hypothesis to Y. 71

LEMMA 5.6. Suppose Z/3-red Z’ and Z O-approximates X. Then X is -reducible
to a term X’ which is l-approximated by Z’. (See Fig. 1, where horizontal arrows
denote/3-reductions and vertical dashed lines denote that the lower term D,-approx-
imates the upper term.)

FIG.

Hence, if Z has an O-free normal form (a head normal form) then any term
O-approximated by Z has the same O-free normal form (a similar head normal form).

Proof. For the first part, by transitivity it suffices to consider the case that Z/3-red
Z’ by contraction of a single/3-redex, for which case the result is straightforward from
the definition of f-approximation and Lemmas 5.4 and 5.5. The second part then
follows from the observations that an f-free normal form f-approximates only itself
and any term l-approximated by a head normal form is a similar head normal
form. [3
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COROLLARY 5.7 (Postponement of taking fl-approximates). If X can be trans-

formed to Z’ by a sequence of operations each of which is either a -reduction or the
replacement of subterms by an f-approximate, there is a term X’ such that X/g-red X’
and Z’ lq-approximates X’.

Proof. Since both/g-reduction and f-approximation are reflexive and transitive
relations, we can assume without loss of generality that the transformations from X to
Z’ consist of an alternating sequence of f-approximates and #-reductions, beginning
with an -approximate and ending with a B-reduction, as in Fig. 2(a). If we apply
Lemma 5.6 inductively, for 0, 1, , n 1, with X X, Z Zg+, and Z’ Zg+,
there are terms X+I as shown in Fig. 2(b), from which the result follows by setting
X’X,.

X o

n--1

z. z’.=-z’

FIG. 2(b)

COROLLARY 5.8 (’if’ part of Theorem 5.2). IrA eg(M) and A’ (C[A]), then
A’6 (C[M]).

Proof. By definition of (M) and (C[A]), when A 6 (M) and A’6 (C[A])
there exist terms M’ and Y’ such that

C[M] C[,M’]

C[A]- Y’

A’
from which the result follows by Corollary 5.7 (with X C[M] and Z’-= A’). fi

FIG. 2(a)

x=,Xo ,x, ,x---....--- x._, ,x.=x’
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For the "only if" part of Theorem 5.2, we show first that a certain restricted kind
of outermost reduction is sufficient to generate all approximate normal forms of a
term (much as normal order reduction suffices to reduce a term to normal form, when
one exists). Then we shall take advantage of the restricted form of these reductions to
set up an induction on their length and hence determine an approximate normal form
A e 4(M) sufficient to generate the given A’ e 4(C[M]).

DEFINITIONS. By the reach of a redex R in a term M we shall mean the largest
subterm of M of the form RX1X2"" Xn (n->0). A redex will be called a stable
outermost (s.o. for short) redex just when it is not within the reach of any other redex.
(Equivalently, a redex is an s.o. redex iff it is what we might call a sub-head redex;
that is, iff it is the head redex of the largest subterm not in head normal form
containing it.)

As an example, consider the term

hx.x (hy.Ra (y (xR2)R3)R4)(x (R5R6(/z.R7x ))(RsR9))

where R1, R2,""", R9 are redexes. Then R1, R2,""" ,g9 are all outermost redexes,
but only R1, Rs, Rs are s.o. redexes; for instance, the reach of R1 is the subterm
Ra(y(xRz)R3)R4 and the reach of R is the subterm RsR6(Az.Rvx).

The motivation for these rather technical definitions is that the notion of a redex
being an s.o. redex provides sufficiently general conditions for both the following two
facts:

COROLLARY 5.9.
(a) If two terms are identical except at a non-s.o, redex ofeither, they have the same

direct approximants in particular, there[ore, this holds if either is the result of
contracting a non-s.o, redex in the other.

(b) Suppose R is an s.o. redex in a term X and Z is the result of contracting
any other redex in X. Then R has a unique residual which is an s.o. redex
in Z.

We leave the proof to the reader. Both parts are straightforward consequences of
the definitions and, for (a), the observation that if a redex is not an s.o. redex there is a
unique s.o. redex within whose reach it lies.

Corollary 5.9(b) is, of course, the reason for the terminology stable outermost.
By contrast, it should be noted that Corollary 5.9(b) fails for outermost redexes in
general--if R is an outermost (but not s.6.) redex, it does have a unique residual
but this is not necessarily an outermost redex in Z (e.g. consider the residual of R
after contracting S =-(hx.hy.A)B in the term SR, where A and B are any terms). (In
fact, in an earlier draft we made just this mistake in presuming that residuals of
outermost redexes are always outermost redexes; this fails because a containing redex
can be generated by a reduction, as in the example.)

A (/3-)reduction will be called an s.o. reduction if each step in the reduction is
defined by contraction of an s.o. redex; if such a reduction is also a standard reduction,
we shall call it an s.s.o. (standard, stable outermost) reduction.

LEMMA 5.10. IfX is any term and A’ 4(X), there is an s.s.o, reduction ofX to a
term Y’ for which A’ is a direct approximant of Y’.

Proof. By definition, A’ s4(X) implies A’ is a direct approximant of a term X’ to
which X is reducible. By the Standardization Theorem, we can assume a reduction
(5.1) from X to X’ which is a standard reduction of length n -_> 0. Then, roughly stated,
the required reduction is obtained by simply deleting those steps in (5.1) for which the
redex contracted is not an s.o. redex; more rigorously, we argue the existence of Y’ by
induction on n as follows.
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If n 0 there is nothing to prove, so suppose n > 0. We can assume also that R, is
an s.o. redex, otherwise A’ is a direct approximant of X,-1 (by Corollary 5.9(a)) and
the result follows by the induction hypothesis.

Now let ] be the least integer (0_<-]<n) such that the part of the standard
reduction (5.1) from X. to X, ---X’ is an s.o. reduction.

If/" 0 we are done, so suppose 0 < ] < n. By choice of ], Rj+I is an s.o. redex in
X., while Rj is contained within the reach of some s.o. redex S in X/-1. Then S has a
unique residual S’ which is an s.o. redex in Xi (by Corollary 5.9(b)), and the con-
tractum Q of Ri is contained within the reach of S’. Since (5.1) is a standard
reduction, R.+I lies in or to the right of Q; but since Ri+l is an s.o. redex and Cj lies
within the reach of S’, this can occur only if Rj+I lies entirely to the right of Ci (in fact,
entirely to the right of the reach of S’).

The standardness of the reduction (5.1) now implies that the part of (5.1)from X/
to X, -= X’ is a (s.s.o.) reduction lying entirely to the right of Q in X.. Hence, there is a
corresponding s.s.o, reduction

Ri+I Ri+2 Rn
Xj_l Y/., )r/.+l------) y.=_y’

lying entirely to the right of the non-s.o, redex R in X/’-l, $O that X’ matches Y’
except at a non-s.o, occurrence of Ri in Y’.

Hence, the direct approximant A’ of X’ is a direct approximant of Y’. Since

is now a standard reduction of length n-l, the result follows by the induction
hypothesis. 71

Next we need the following lemma comparing the relative lengths of certain s.o.
reductions:

LEMMA 5.11. Suppose
(a) the reduction (5.1) from X to X’ is an s.o. reduction,
(b) Z is the result of contracting any fl-redex S in X, and
(c) Z’ is the result of a complete reduction ofX’ relative to the residuals of S in X’.

Then there is an s.o. reduction from Z to Z’ of length m <- n, with equality iff none of the
redexes R1, R2,’’’ ,R, contracted in (5.1) is a residual of S (with R1 considered a
residual of $ iff it is S).

The lemma is, in fact, a partial converse to one derived in [3, p. 140] in the proof
of the Standardization Theorem, and we shall prove it using essentially the same
technique. The converse is only partial because the method of proof depends, in Case
2 below, on the given reduction being an s.o. reduction. If (5.1) is an arbitrary
reduction, there is still a reduction from Z to Z’, but its length may be greater than n;
we shall need the decrease in the length of reduction in order to apply the lemma
inductively in the succeeding corollary.

Proof. We may assume that S is not RI, as all claims are trivially obtained in that
case.

For i= 1, 2,..., n, let Ei denote the set of residuals of S in Xi. We shall
determine a reduction

P1 P2 Pm
(5.2) Z =- Zo ----* Z1 > Z2 arn Z
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and integers ko, kl, kn satisfying the conditions" for 0, 1, 2,. , n"

(i) for ki, Pj/I is an s.o. redex in Zj,
(ii) k0 0, and either ki+ ki or ki+ ki + 1,
(iii) if ] ki, then a complete reduction relative to Ei converts X to Zi.

(The various quantities involved are depicted in Fig. 3, where the dotted arrows
labeled with E’s denote complete reductions relative to Ei.) We prove (i), (ii), and (iii)
simultaneously by induction on an index q over the range 0 _-< q _-< n.

FIG. 3

For q 0 we need only set Zo-= z and k0 0 and take P1 as the residual (unique
by Corollary 5.9(b)) of R1 in Z for (i)-(iii) to hold.

Now assume (i), (ii), (iii) are satisfied for all i<-q for some q in the range
0_-<q < n. Let p kq, and let W denote the result of a complete reduction of Xq+l
relative to Y_.q+. There are two cases to consider, according as Rq+a is or is not a
residual of S in Xq:

Case 1. Rq+a is a residual of S in Xq. Then, setting kq+t kq gives (i) and (ii) for
q + 1. For (iii) notice that

Ra+ Y’a+l
Xq >Xq+l W

is a complete reduction of Xq relative to Eq; hence W--Zv by the lemma of parallel
moves and the induction hypothesis (iii) for q, which gives (iii) for q + 1.

Case 2. Rq+l is not a residual of S in Xq. Since Rq+l is an S.O. redex in Xq (by
supposition (a)), by applying Corollary 5.9(b) to each step in any complete reduction
relative to Eq from Xq to Zv, we see that Rq+l must have a unique residual, say R/I,
which is an s.o. redex in Zp. Setting Pp+l R+ and k+l P -k- 1 kq -t- 1 gives (i) and
(ii) for i=q + 1. For (iii), Fig. 4 shows two complete reductions relative to the set

E U {Rq+l} of redexes in X; hence W=-Zp+ by the lemma of parallel moves.

Rq+

W

Z,+1

FIG. 4

This completes the induction. Now setting m kn, from (iii) with n we have
Z, Z’. From (ii) and the manner in which the k were defined, we have m k,, <- n
with equality holding iff Case 2 applies for all q. E]

COROLLARY 5.12. Suppose there is an s.o. reduction from C[M] to a term X’.
Then there are terms M’ and Z* such that M/3-red M’, X’ fl-red Z*, and C[M’] can
be reduced to Z* without contraction of a residual of a redex in M’. (See Fig. 5, where
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the wavy arrow denotes a reduction without contraction of a residual of a redex in
M’.)

C[M]

C [M] X’ =IM’, Z*. C [M’]
jZ*’e/

X

FIG. 5

Proof. Taking X-= C[M], let (5.1) be the given s.o. reduction of C[M] to X’. If
none of the redexes R1, R2," , R, in (5.1) is a residual of a redex in M, we are done.
Otherwise, let $ be a redex in M for which some Ri is a residual of S (e.g. choose S
such that is least), and let M’ be the result of contracting S in M. If we take
Z C[M’] in Lemma 5.11, there is a term Z’ such that X’/3-red Z’ and C[M’] can be
reduced to Z’ by an s.o. reduction of length < n, from which the result follows by
induction on the length of s.o. reductions.

COROLLARY 5.13 ("only if" part of Theorm 5.2). If A’ sC(C[M]) there is an
A sg(M) such that A’ s(C[A]).

Proof. Assume A’ sC(C[M]). By Lemma 5.10 there is an s.o. reduction of C[M]
to a term Y’ for which A’ is a direct approximant of Y’. Let M’ and Z* be the terms
determined by Corollary 5.12 (with X’-- Y’) such that M/3-red M’, Y’/3-red Z*, and
C[M’] can be reduced to Z* without contraction of a residual of a redex in M’. Let
A sO(M) be the best direct approximant of M’, obtained by replacing the set of
outermost redexes in M’ by , and let Z’ be the f-match of Z* determined by
Lemma 5.3 (with X--C[M’], X’-= Z*, and Z-= C[A]), so that C[A]/3-red Z’. See
Fig. 6.)

C[M]

C [M’],’best direct
approximant Z*

for M’

C[A]

FIG. 6

direct
approximant

A’

6. Related work. The proceedings of the Rome conference [2] contains much
valuable related material on appropriate normal forms, in particular in the papers of
Hyland [4], [5], Levy [6], and Welch [13]. To aid comparison with those papers (see
also the comments of Hyland [4, p. 94]), it may be noted that the sets s(M) con-
sidered here are the same (except that only those members in f-normal form are

Then, from Lemma 5.3, Z* matches Z’ except at a set of redexes in Z*, so Z*
and Z’ have the same direct approximarkts; and, by Lemma 3.3(b), every direct
approximant of Y’ is a direct approximant of Z*. Hence, A’ is a direct approximant of
Z’, which together with C[A] B-red Z’ gives A’ s(C[A]). !-1

This completes the proof of Theorem 5.2.
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included) as the sets w(M) of Hyland, but different from the sets A(M) of Levy (in
that Levy’s treatment specifically does not take Ax.D, as an D,-redex).

These minor differences apart, there is the following connection between the
results. As was pointed out to us by one of the referees, an easy consequence of
Corollary 5.13 is

COROLLARY 6.1. If sC(M)c_ sg(N) then sC(C[M])_ sC(C[N]).
Or, in words: the relation sg(M)c_s(N)defines what Hyland [4, p. 83] calls a

partial order relation on terms of the A-calculus. (Such a relation is also sometimes
referred to as a congruence relation, with respect to the formation rules for terms.)
This is Corollary 2.4 of Hyland [4], and is the same as Levy’s Theorem 3 if is
replaced by A.

Two further points of comparison are worth noting"
1. Though the results are similar, the proof methods differ. Where Levy and

Welch use inside-out reductions for their proofs, we used stable outermost reductions
above. For the proofs in 5 this has the advantage of being somewhat shorter, mainly
because the proof could then proceed directly, in Lemma 5.10, via the standardization
theorem for the basic A-calculus, rather than first having to establish a Church-
Rosser-like property for an extended calculus. (However, inside-out reductions
remain interesting in their own right and, indeed, have important applications in other
directions; e.g., in the Tait/Martin-L6f proof of the Church-Rosser theorem, and in
Levy’s work on labeled A-calculi [6] and, as yet unpublished, on "optimal" reduction
procedures.)

2. There is a basic difference in the approach of Hyland and myself versus that of
Levy and Welch. For our study, the interpretation of terms is given independently
of the notions associated with approximate normal forms; then Theorem 3.5 and
Corollary 3.6 are read off as properties of the resulting models, with Theorem 5.2
and Corollary 6.1 provoiding (some of) the supporting motivation. In Levy’s and in
Welch’s work, Theorem 3.5 is adopted as the definition of an interpretation of terms
(in certain syntactic domains, based on sets of approximate normal forms, but differing
slightly between their two papers); then Corollary 6.1 is needed in order to show that
such a syntactic interpretation does provide a model (i.e. the axioms are satisfied) for
the A-calculus. Whichever approach one follows, however, the thesis is the same: in
any "reasonable" model for the A-calculus, one expects (the interpretation of) every
term to be determined as a limit of (the interpretations of) its approximate normal
forms. (Other conclusions, and further references, were given in [12].)

Acknowledgments. I am especially grateful to Professor Dana Scott, who first
suggested the idea of investigating approximate normal forms to me, and to Martin
Hyland for the notion of type assignment used in the proof of Theorem 3.5.
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CORRECTING COUNTER-AUTOMATON-RECOGNIZABLE
LANGUAGES*

ROBERT A. WAGNERt AND JOEL I. SEIFERASzl:

Abstract. Correction of a string x into a language L is the problem of finding a string y L to which x
can be edited at least cost. The edit operations considered here are single-character deletions, single-
character insertions, and single-character substitutions, each at an independent cost that does not depend
on context. Employing a linear-time algorithm for solving single-origin graph shortest distance problems, it
is shown how to correct a string of length n into the language accepted by a counter automaton in time
proportional to n on a RAM with unit operation cost function. The algorithm is uniform over counter
automata and edit cost functions; and it is shown how the correction time depends on the size of the
automaton, the nature of the cost function, and the correction cost itself. For less general cases, potentially
faster algorithms are described, including a linear-time algorithm for the case that very little correction is
necessary and that the automaton’s counter activity is determined by the input alone. Specializing the main
result to counter automata which do not use their counters gives general linear-time correction into regular
languages.

Key words, correction, syntactic error correction, error correction, counter automaton, regular
languages, finite automaton, nondeterministic automaton, counter automaton languages, formal languages,
edit operations, strings, editing strings

1. Introduction. Every practical language processor must provide for handling
malformed input. The method called "correction" proceeds by modifying the input
string x into a new string y such that y is an acceptable (correct) string which
minimizes the distance between x and y according to some measure of the nearness of
two strings. We adopt, as a flexible measure of distance, the weighted cost of modify-
ing x into y when the only allowable modification operations are single-character
deletion, insertion, and change operations.

Previous papers [2], [4], [5], [7] have investigated the time required to correct an
input string x into various types of languages. The results have depended heavily on
the language class. In terms of the string x to be corrected, Table 1 gives the main
results. In Table 1, s is the number of nonterminals in a regular grammar for L, and
is the number of productions in a context-free grammar for L.

TABLE

Language L Correction time

Singleton {y} O(lyl xl)
Regular O(s2" Ix
Context-free O(t x 3)

This paper presents three new results, all simple applications of a "flow"
algorithm for computing the shortest distance to each vertex of a graph from a
specified origin. These results reduce correction time to

* Received by the editors April 2, 1976, and in revised form August 15, 1977. This work was supported
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MCS77-06613 to Pennsylvania State University.
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37235.

Computer Science Department, Pennsylvania State University, University Park, Pennsylvania 16802.
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(1) O(t. Ixl) for regular languages generated by regular grammars with pro-
ductions,

(2) O(stlxl2/s2tlx[) for languages recognizable by nondeterministic counter
automata with s states and state transitions,

(3) O(dtlxl) for languages recognizable by the "counter-consistent" subclass of
nondeterministic counter automata with state transitions, where d is the
actual cost or weight of the cheapest correction, a quantity not known a
priori.

Results (1) and (2) above are proved under extremely general assumptions about the
assignment of weights to the edit operations. Result (3) requires that every nontrivial
edit operation have positive weight.

The algorithm for result (2) does require time proportional to ]X 2 in the worst
case, so it is not very practical. Since d can be proportional to Ixl, result (3) is not
significantly better in the worst case. However, result (3) can be used in a "practical"
correction algorithm which runs in time O(n. ]:(n)) by arbitrarily "rejecting" any
input string x whose correction cost exceeds /e(n). (The "rejection" action could
produce information about the first encountered error or errors, as more conventional
language processing systems do.) Here " can be any desired sublinear function; e.g.,
f(n) can be constant, log2 n, or x/-.

Even the class of counter-consistent counter automata in result (3) contains
relatively small machines which recognize languages of some practical interest. For
example, an endmarked version E@ of the set E of comma-free FORTRAN arithmetic
expressions can be recognized by a deterministic counter-consistent counter automa-
ton having just four states. (See Fig. 1 for a grammar which generates the language E.)
Therefore, one can correct x quickly into E by using result (3) to correct x@ into E@.

Note that result (2) is worse than linear even in terms of the size of the counter
automaton. By restricting the weight assignment as in result (3) and by slightly
restricting the counter automaton itself so that it cannot increment its counter without
advancing its input, however, we can reduce correction time to

(4) O(tlxl2+ dtlxl) for the languages recognized by such automata with state
transitions, where d is an a priori upper bound on the cost of cheapest
correction.

Result (4), applicable to a wider class of counter-automaton languages than result (3),
gives a bound on correction time which grows quadratically with Ix[ but only linearly
with the size of the state transition diagram for the automaton.

We first present a graph model of the correction process, which converts an
automaton M and a string x into a new automaton M whose language is the set of all
sequences of edit operations that modify x into strings accepted by M1. By solving a
single-origin shortest distance problem in a graph obtained from the state transition
diagram of M, we can then find an edit sequence of minimum weight accepted by M.
The construction of M and the graph appear in the proof of Theorem 1 in 3.

To solve the single-origin shortest distance problem of Theorem 1, we use the
algorithm FLOW [6]. This algorithm, outlined and briefly justified in the Appendix,
solves such problems in time proportional to max (E, V, D) for a directed graph with
E edges, V vertices, and greatest calculated shortest distance D. We show in the
Appendix how to modify FLOW to specialize it to the application in Theorem 1. The
resulting algorithm FLOWR generates the graph of Theorem 1 directly from Ma, x,
and the weight assignment. The generation is so linked to the shortest distance
calculation that only those vertices within distance D, the minimum cost of correcting
x into L(M1), of the origin and the edges that connect them are generated. Thus
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FLOWR requires only time O(max (E’, D)) to solve the shortest distance problem,
where E’ is the number of edges leaving vertices within distance D of the origin.

The graph of Theorem 1 is composed of multiple copies of the state transition
diagram of M1. One copy occurs for each pair consisting of a prefix of x and a possible
counter contents for Mx after it has read an "edit image" of that prefix. To use
Theorem 1 we must limit the counter values we must consider to a finite set. Result (1)
is obtained trivially as Corollary 1 by limiting the counter to a single value. Result (4)
is obtained as the slightly less trivial Corollary 2. In 4 we derive a general O(Ix[)
bound on the counter contents, and this yields result (2) as Theorem 2. By separately
limiting the counter values that can be paired with each prefix of x for counter-
consistent automata, we obtain result (3) as Theorem 3 in 6. In 5 we consider cases
in which the a priori bound d of result (4)can be computed.

Finally, let us note that the various correction algorithms presented here and
elsewhere can be combined to give a single algorithm which runs asymptotically as fast
as the fastest algorithm in every case. This can be done simply by running the finitely
many algorithms in parallel, but more practical combinations can be developed to take
advantage of the algorithms’ similarities.

2. Definitions. We choose to view a counter automaton as a pushdown automa-
ton with a dedicated bottom-of-store symbol ($) and only one other pushdown symbol
(+). Formally, then, a counter automaton (CA) is a quintuple M= (K, E, 6, qo, F),
where

K is a finite set of states,

q0 K is a designated start state,

F_ K is a set of designated final states,

vz is a finite input alphabet, and

8 is a (nondeterministic) next-state ]:unction.

The choice of next state depends on the current state, possibly the next input symbol
(but each input symbol is considered only once), the top counter symbol (d unless only
the bottom-of-store symbol $ remains), and how many counter symbols are to replace
the top counter symbol (0 for decrement, 1 for no change, or 2 for increment).
Therefore, 8 is a function from K x (:E 71 {h }) x {, $} x {0, 1, 2} into the power set of K.
If 8(q, a, b, 2)= for all q, a, and b (i.e., M never increments its counter), then M is a

finite automaton (FA).
Frequently below we will denote by s and t, respectively, the number of states and

the number of transitions of a CA M (K, 2,, 8, q0, F). In terms of our formalization,

s IKI and t= 16(q, a, b,f)l.
q,a,b,i

Each total state of the CAM (K, E, 8, q0, F) is a triple

(state, unread suffix of input string, counter contents from top to bottom)
/ x :* x {, $}*.
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Define the relation I- on K E* {d, $}* as follows"
M

(q, ax, by) (q’, x’, y’)if

q’6(q,a,b,O), x’=x, y’=y, or

q’6(q,a,b, 1), x’=x, y’=by, or

q’s6(q,a,b, 2), x’=x, y’=by.

Define (q, ax, by)l (q’ x’, y’) to mean (q, ax, by)M (q’ X’, y’) and Iby[, lY’[ < d.
M,d

k k k
Define --, to be the k-fold compositions of I---, respectively (i.e. Q -- R if

M M,d M M,d M

k
there are Qo, Qk with Q Qo k--- Q1 - ’- Qk R, and similarly for ).

M M M M,d

Let -- be the respective reflexive transitive closures of -- (i.e., Q -- R if
M M,d M M,d M

,
for some k, and similarly for ). When no confusion can arise, we will omit

Mr,d

the subscript M from these relations.
We define acceptance by simultaneous empty store and final state. The language

accepted by the CAM (K, , 6, q0, F) is

L(M) {x 6 Z*l(q0, x, $) - (q, A, h for some q 6 F},
M

and the sublanguage accepted with counter bounded by d is

L(M, d)= {x 6 E*l(qo, x, $)1 * (q, A, A) for some q F}.
M,d

Let E be a finite alphabet. The members of the alphabet A=
{(a b)[a, b E U { }, ab } are called edit operations over E. The edit operation
(a - b) is an insertion, deletion, or change if a A b, a b, or a b, respec-
tively. An edit sequence S zX* edits x E* to y Z*, denoted x - y, if

either
or

S=A and x=y=A
the following hold for some a, b, S’, x’, y’:

S=(ab)S’,

X ax t,

y by’,

x’ y’.
S’

Informally, note that every original character is edited exactly one time (perhaps by a
trivial change (a a)) and that no new character is ever edited. For L _. 2,*, define
x -L (S correct x into L) to mean that x -y holds for some y L. Note that y is

S S

determined by x and S.
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Any edit cost function W: A N (where N is the set of nonnegative integers) can
be extended to a cost function W: A*N by the rule W(SS’)= W(S)+ W(S’). We
consider only cost functions which satisfy

W(aa)=O,

W(al a3) -<_ W(al a2)+ W(a2- a3).

Informally, these conditions assure that no editing cost could be saved by editing some
original character less than once or by editing the results of earlier editing. When we
occasionally consider a partial edit cost function, prohibiting those edit operations not
in the domain of W, we will interpret the second condition above as insisting that
W(al- a3) be defined if both W(al a2) and W(a2 a3) are. Frequently below we
will denote by c the cost of the most expensive edit operation allowed (i.e., c
max { W(S)[S A and W(S) is defined}).

For any edit cost function W as above and any nonempty language L
_
*, define

Cw(x, L)= min { W(S)Ix L}.
s

(The set W(S)lx -L} is nonempty if W is total, since x can be edited to any y L by a

sequence of Ix[ deletions followed by [yl insertions.) We call the problem of determin-
ing Cw(x, L) and some S with W(S)= Cw(x, L), x -L (some minimum-cost correction

sequence) the problem of correcting x into L. In the case that W is only a partial
function on A, the problem also includes deciding whether correction is possible using
only the allowed edit operations (those in the domain of W).

The string-to-string correction problem, the problem of correcting an arbitrary
string into an arbitrary singleton language, can be solved in time proportional to the
product of the lengths of the two strings [7]: The problem of correcting an arbitrary
string into any fixed context-free language can be solved in time proportional to the
cube of the length of the string[2]. We show below that a string can be corrected into a
CA language in time proportional to just the square of the length of the string and into
a regular language in time proportional to just the string length (earlier reported in
[5]). In neither case, moreover, does the time grow very quickly with the size of the
CA or FA specifying the language.

3. The graph construction. The key to our results is the construction in the proof
of Theorem 1 of this section of a directed graph from any given counter automaton
M1, string x, and positive integer m. The graph G is constructed as the "configuration
transition diagram" of a new automaton M with L(M)= (Six L(M, m)}. By choos-

s
ing m sufficiently large and labeling each edge in G with the edit operation and cost
associated with the corresponding transition of M, we transform the problem of
correcting x into L(M) to a single-origin shortest distance problem. The relevant
properties of the algorithm we use for solving this single-origin shortest distance
problem are summarized in Lemma 1 below.

DEFINITION. A weighted directed graph is a triple G (V, E, W), where

V is a finite set of vertices,

E
_
V V is a set of edges,

W" E N is an assignment of weights to the edges.
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A path from vertex s to vertex v is a sequence

(U1, /92)(/92, /93)’’ "(/9k-1, /gk) E*,

where s vl, v Vk. Extend W to W: E* N by the rule W(pq)= W(p)+ W(q). For
s, v e W, define

Ds(v)= min {W(p)Ip is a path from s to v}.

LEMMA 1. Given a weighted directed graph G (V, E, W), a single designated
origin vertex s V, and a designated set F

_
Vof destination vertices, a RAM with unit

operation cost Junction 1 can find a path p from s to a member ofF with

W(p) min {Ds(v)lv F}
in time proportional to

W(p)+[{(u, v)6E[D(u) <- W(p)}l.

Proof. In order of increasing distance from s, mark each unmarked vertex with
both the weight of a shortest path to it and the preceding vertex on that path, stopping
when a member of F gets marked. "Partly traversed" edges can be stored sorted in a
circular array of linked lists according to weight yet to be traversed. A Pidgin ALGOL
version of this algorithm is included as an appendix to this paper; further details
appear in [6].

THEOREM 1. Given
(i) an arbitrary CA M1 (K, Y., 61, qo, F). with q.a.6d161(q, a, b, j)[ state tran-

sitions,
(ii) an arbitrary edit cost [unction W: A--> N, where A {(a --> b)la, b Y_, LI { },

abCh},
(iii) an arbitrary word x Z*, and
(iv) an integer m so large that Cw(x, L(MI, m))= Cw(x, L(MI)),

correction of x into L(M1) can be performed in time proportional to

max (Cw(x, L(MI)), t. m.

on a RAM with unit cost function.
Proof. Let M1, t, W, A, x, m be as described, with x al. "an, ai E for 1 <- _-<

n Ix[. We will describe a new CAM with input alphabet A. Informally, M will apply
its input edit sequence to x (if possible) and behave like MI on the result. The string x
will be built into M, the second component of each state indicating how many
characters of x have been edited so far. Formally, M (K x {0,. ., n}, A, 6, [qo, 0],
F x {n}), where 6 is defined as follows for each accessible q K (of which there are at
most t+l), i{0,..., n}, a’Y--, b{, $}, j{0, 1, 2}:

6([q, i], (A --> a’), b,/’)= l(q, a’, b,/’) x {i}

(insertion of a’ somewhere between ai and a+l),

6([q, i], (ai+l "> a’), b,/)= l(q, a’, b,/’)x {i + 1}

(change of ai+l to a’),

6([q, i], (ai+ --> h), b, 1)= {[q, + 1]}

For simplicity, we slightly abuse the proportionality terminology in such statements. The correct
statement here uses a product such as (t + 1)(m + 1)(Ix[ + 1) in place of t. m Ix[, but the distinction matters
only in the degenerate case that one of the factors is zero.



CORRECTING COUNTER-AUTOMATON-RECOGNIZABLE LANGUAGES 363

(deletion of ai+l),

8([q, i], A, b,/’)= 81(q, A, b,/’) {i}.

For arguments not mentioned above, the value of 6 is .
By design, L(M,m)={SsA*]x-L(MI, m)}. Since m is so large that

Cw(x, L(M, m))= Cw(x, L(M)), it follows that

Cw(x, L(M)) min {W(S)]S L(M, m)}.

Informally, then, Cw(x, L(M)) is just the cost of a cheapest path from the start state
to a final state in a state transition diagram for a finite automaton accepting L(M, m).
In particular, let G be the weighted directed graph with vertex set K {0,..., n}
{0,..., m} and with an edge of weight W(a b) or 0 from [q, i, j + 1] to [q’, i’, lYl]
whenever

([q, i], (a b), i$)- ([q’, i’], A, y)

or

([q, i], ,, i$)- ([q’, i’], ,, y),

respectively. The minimum-cost sequences in L(M, m)_ A* correspond to the paths
of minimum cost in G from the vertex [q0, 0, 1] to vertices in {[q, n, 0]lq F}. By the
algorithm of Lemma 1, such a path of minimum cost can be found in time proportional
to the larger of the minimum cost (Cw(x, L(MI)))and the number of edges in G. The
number of edges in G is at most mt’ if M has t’ transitions. From the states in K x {i}
for each particular i, M has at most insertion-transitions, at most change-
transitions, at most 2(t + 1) deletion-transitions (at most two from [q, i] for each of at

most t+l accessible states q eK), and at most A-transitions; hence t’_<-

5(t + 1)(n + 1), and the number of edges is at most proportional to mtn. 71
Remark. A path of minimum cost above need not go through any vertex twice, so

for s =]KI the minimum cost cannot exceed the number s(n + 1)(m + 1)of vertices
times the weight c of the costliest edge. This gives a time bound proportional to

max (csmn, tmn ).
If we disallow some of the edit operations in z and omit their transitions from M,

then the algorithm will still discover an edit sequence S with x L(M), W(S)=
S

Cw(x,L(M)) in time proportional to max(Cw(x,L(M1)),tmn) if there is one.
Because the minimum cost cannot exceed s(n + 1)(m + 1)c, on the other hand, the
shortest path algorithm of Lemma 1 can conclude, after time proportional to

max (csmn, tmn) without detecting such a sequence, that none exists. This gives a time

bound proportional to max (csmn, tmn) for both determination of correctability and
actual correction.

Every finite automaton M1 is a counter automaton which satisfies L(Mx, 1)=
L(Mx). If we restrict attention to FA’s in Theorem 1, therefore, the parameter m need
not be supplied; m 1 will always suffice. The result is Corollary 1.

COROLLARY 1. Given
(i) an arbitrary FA M1 with input alphabet , and state transitions,
(ii) an arbitrary edit cost function W: {(a b)la, b : t_J {M, ab A} N, and
(iii) an arbitrary word x Z*,
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correction of x into L(M1) can be performed in time proportional to
max (Cw(x, L(M1)), t.

In terms of the number s of states of the FAM1 and the length n of x, the
algorithm earlier reported in [5] requires time proportional to s2n. Corollary 1
represents an improvement when t<s2 and Cw(x,L(M1))<s2n. In practice, both
conditions often do hold. (Note that s, t, respectively, are the numbers of nonter-
minals, productions in the regular grammar corresponding to M1.)

For any fixed m, there is a counter automaton M1 with L(M1, m)= L(MI). In
the case of general counter automata, therefore, there is no fixed m which can serve as
above. The following argument, however, shows that rn can still be left implicit (to be
computed) in a setting that is only slightly restricted if an a priori bound on
Cw(x, L(M1)) is available. We show in the next section that m can always be left
implicit.

COROLLARY 2. Given
(i) an arbitrary CA Ma=(K,E, 6,qo, F) with state transitions and with

61(q, , , 2)= J for every state q,
(ii) an arbitrary edit cost function W and integer e > 0 with W(A a) >= e for each

a , satisfying 61(q, a, , 2) for some state q,
(iii) an arbitrary word x E*, and
(iv) an upper bound d on Cw(x, L(M1)),

correction of x into L(Ma) can be performed in time proportional to

max (d, tlxl2, d tlxl) <-max (tlxl, dt]x]).
e

Proof. Let M1, W, e, x, d be as described. (Of course e can actually be computed
quickly fromM and W.) Take S with W(S)= Cw(x, L(M1)) -< d, and take M as in the
proof of Theorem 1. By showing

L M, Ixl + die + 2)= {S’[x -->L(MI, Ixl + die + 2)}

we will conclude that

Cw(x, L(M1, Ixl / d/e + 2))= Cw(x, L(Ma)).

Hence, correction can be performed by computing m Ix +d/e +2 and applying
Theorem 1.

By design, S L(M). Consider any accepting computation of S by M. Because
6([q, i], A, , 2)= 6a(q, A, , 2)x {i}= for every q and i, no A-transition in this
computation increments the counter, except possibly from $ to $. By design of M, no
deletion-transition increments the counter either. There are at most n change tran-
sitions, since each one increments the second component of the state. Except for
insertion-transitions, therefore, the counter is incremented at most n =lxl times
(except from $ to $). Since 8([q, i], (A -> a’), , 2)= 8(q, a’, :, 2)x {i}, the cost of the
insertion consumed by each insertion-transition which increments the counter (except
from $ to $) is at least e. From W(S) <- d, it follows that there are at most d/e such
transitions. In the entire computation, therefore, the counter is incremented at most
n+d/e times, except from $ to $. Therefore, the longest possible counter is
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4. A general bound on m. We show in this section that any s-state CA M1, edit
cost function W, and string x to be corrected into L(M1) satisfy

Cw(x, L(M1))= Cw(x, L(M1, m))

for m s (Ix[+ s)+ 1. This value of m is easy to compute, so it will follow by Theorem
1 that such correction can be performed in time proportional to

max (Cw(x, L(M1)), stlxl 2, s2t[xl),
where M1 has state transitions.

The bound m s(lx] + s)+ 1 is obtained by recalling that

{Six L(M1, m )} L(M, m)

for the CAM described in the proof of Theorem 1 and by showing that for each edit
sequence S L(M) there is a sequence S’ L(M, m) with W(S’) < W(S). We assure
W(S’) <- W(S) by obtaining S’ as a permutation of a subsequence of S. To this end, we
show in Lemma 2 below how to permute accepting computations by M to limit the

number of long subcomputations of the form ([q, i],x, y)--([q’, i’],x’, y’) for i= i’;
we show in Lemma 3 how to excise from the resulting computations some of the few
remaining long subcomputations of this form.

Lemmas 2 and 3 are stated and proved for any fixed CAM having certain
essential features of the CA described in the proof of Theorem 1. Let M=
(K x {1,. ., n }, A, 6, [qo, 1], F x {n }) be any fixed CA with

,([q, i], a, b, i)--- K x {i, + 1},

,([q, i], a, b, ]) (K x {i})= ,a(q, a, b, ])x {i}

for every q, i, a, b,/’, where 61 does not depend on i. The first condition forces the
second components of the states in any computation to form a nondecreasing
sequence. The second condition will enable us to replace certain subcomputations
beginning and ending in state [q, i] by relocated but otherwise similar subcom-
putations beginning and ending in a state [q, i’] with i’ i.

The easiest subcomputations to manipulate depend only on the top counter
symbol and result in a net counter change of at most 1. Any accepting computation in
which the counter contents reaches "+15 can be parsed into a sequence of 2m + 3
such subcomputations, the first m + 1 of which increment the counter and the last
m + 2 of which decrement the counter. This leads us to define an m-level derivation of
x A* to be a sequence of 2m +2 subcomputations which chain together into an
accepting computation by M of x and

each of which except the last depends only on the top counter symbol,
the first m + 1 of which result in net counter increments of 1 each,
the next m of which result in net counter decrements of 1 each,
the last of which results in a net counter decrement of 2 (emptying the counter).

Formally, an m-level derivation consists of

a sequence [qo, 1] [qo, io]0 ", [qm/l, ira+l] [Pro+l,/m+X], [P0, f0] 6
F x {n } of states,

a sequence v0," , v,, w,,,. , Wo of input subwords with
X I)0" "VmWm" WO, and
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a sequence k0," ", k,, l,,,. ., lo of subcomputation lengths

such that

([qo, io], Vo, $)-([q, i], ,, $),
(lad, id], Vd, )-Y- ([qd+l, id+l], /, ) for d 1,..., m,

([Pd+l, jd+l], Wd, )b-([pd, jal, h, ) for d m,. ., 1,

hi, wo, a).

The length of such an m-level derivation D is the integer ID[=
ko+" + k,, + l,, +. + 1o. (Note that each k, ld is positive.) Partition {1,. ., m + 1}
into the sets

LD(i) {d >= l[ia i},

and partition each set LD(i) into the sets

LD(i, q)= {d ->_ ll[qa, ia] [q, il}.

Similarly define

RD(i) {d >= l[ia= i},

RD(i, q)= {d => ll[pd,/’a] [q, i]}.

LEMMA 2. LetD be an m-level derivation of x. Then there is an m-level derivation
D’ of some permutation x’ of x, such that [D’[ ID[ and, ]’or each q K, there is at most
one {1,..., n} with [LD’(i, q)l > 1 and at most one {1,..., n} with IRD,(i, q)] > 1.

Proof. The proof is by induction on the weighted sum

SD (n i) ILD(i)I + IRD(i)I >= o.
i=1 i=1

The lemma is trivial for So 0, so we give only the induction step. If D’= D, x’= x
does not already satisfy the lemma, then there is some qK such that either
[{il [LD(i, q)[> 1}[> 1 or I{i[ IRD(i, q)l > 1}1> 1. The arguments are similar, so assume
[{i1 ]LD(i, q)[> 1}[> 1; i.e., assume there are integers ex, fl, e2, f2 with

1 <=el <fl <e2<fz<=m + 1,

iel= il <ie2= i2,

qel qfl qez-- ql’2 q,

where the components of D are as in the formal definition above. (Our argument
makes use of only el, fl, e2.) Consider the following permutation x’ of x"

(V0"" "/3ex-1)(/)ex" "/)fl-1)(V/’l" "1)ez-1)T(Ve.’" "IAmWm’’" WO)

1.)Tr(O)" "V(m)Wm" Wo X,
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where

d

7r(d) i +fl-ele2 +fl

for O<_-d

for e -< d < el + e2-fl,

for el + e2--fl d < e2,

for ee <=d <-m +1.

Define

Let D’ consist of

p(d)= e2

for 0_-< d < e + e2-fl,

for e + e2--fl -< d < e2,

for e2 <-_d <=m + 1.

state sequence [q,(o, io(o)],’" ", [q,r(m+l), io(m+l)], [Pro+l, jm+l],"" ", [P0, j0],

subword sequence v,(o)," ", v,(,,), Wm," ", Wo, and

length sequence k,(o), ", k=(m), l, ., lo.

Because 1 above "does not depend on i," D’ is an m-level derivation of x’. Because
is a permutation, [D’[ ]D[. Note that

e + e2-fa N d < e2 el N (d)< fx
ie N i() i:

i(a iel (since ie if).

Because p is obtained from the permutation w by changing the values at these
arguments d to ee, there are only two exceptions to Ito,(i)l Ito(i)l and

and

ILD’(ie2)l [Lo(ie2)[ + (f e).

Therefore, SD, equals SD (n iel)(f e)+ (n ie)(f e), which is smaller than SD
(since e < fl and iel < iez). By the induction hypothesis, therefore, there is an m-level
derivation D" of some permutation x" of x’ (and thus of x, too) such that ID"l- ID’l-
Iol and such that, for each q e K, there is at most one with ItD"(i, q)l > 1 and at most
one with ]Ro,,(i, q)[ > 1.

LEMMA 3. Let x L(M). Then a permutation of some subsequence of x lies in

L(M, m + 1) for m IK[ (n + ]KI- 1).

Proof. The proof is by induction on

k

kx =min {k[([qo, 1],x, $)k--([q, n], A, A) for some q e F}_-> 0.

The lemma is trivial for kx 0, so we give only the induction step. If x L(M, m + 1)
does not already hold, then there is an m-level derivation D of x with IDI kx. By
Lemma 2, therefore, there is an m-level derivation D’ of some permutation x’ of x,
such that ID’l=k and, for each qeK, there is at most one ie{1,..., n} with
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[Lo,(i, q)l> 1 and at most one i {1,..., n} with ]Ro,(i, q)l> 1. Let D’ consist of the
sequences

[qo, io],"" ", [qm+l, ira+l], [Pm+X,/m+l],"" ", [Po,/0],

I)0 ", 1)m Wm ", Wo

ko, ", kin, lm, ", lo.
The nonempty sets Lo,(i, q) form a partition of {1,. ., m + 1}, so

ILo,(i, q)] m + 1 >IK[. (n +]K[- 1).
qK i=

For at least one particular q K, therefore, we must have

]Lo,(1, q )1 +... + ]Lo,(n, q)] _-> n + [K 1.
At most one i{1,..., n} can satisfy ILo,(i, q)l> 1, so we must actually have
[LD,(i, q)l->lgl/ 1 for some particular i. Similarly, there must be some particular
p K, j {1,..., n} with IRo’(j, P)I >= ]K[ + 1.

Either [Lo,(i)[ does or does not exceed [Ro,(j)l. The arguments are similar for the
two cases, so assume Ito,(i)l--< IRo’(j)l. Then we can choose h so that

{d + hid Lo,(i)}
_

Ro,(j).

Then A {d + hid Zo,(i, q)} is a subset of Ro,(j) with IA]- [Zo,(i, q)[ > g. Because
IAI > Igl and {Pele A} K, we must be able to find e, e’ A such that Pe Pc’, e < e’.
Expressing e, e’ A as e d + h, e’= d’ + h, we then get

d’-d=e’-e>O,

[qa, ia] [qa’, ia,] (since qa qd’, ia ia, i),

[Pe, je] [Pe’, je’] (since Pe Pc’, je je’ j).

Let x’ be the following subsequence of x: Vo’"va-lva l)mWrn’’’We’We-l’’’Wo.

Then the following sequences make up an (m -(d’-d))-level derivation D" of x’ with

[qo, iol,’’ ", [qa-,, ia-,l, [qa,, ia,l,..., [q+, im+ll,

[Pro+l, fro+l],"" ", [Pc’, je’], [Pc-l, je-l],"" ", [P0, ]’01,

l)O " l)d-l l)d’ ", l)rn Wrn " We’ We-l ", W0,

ko, ", kd-1, kd’, ", kin, lm, ", le’, le-1, ", lo.

We must have kx, =< ]D"I < ID’[. By the induction hypothesis, therefore, a permutation
of some subsequence of x’ (and thus of x, too) lies in L(M, m + 1).

THEOREM 2. Given
(i) an arbitrary CA M1 with s states and state transitions,
(ii) an arbitrary edit cost function W, and
(iii) an arbitrary word x,

correction of x into L(M1) can be performed in time proportional to

max (Cw(x, L(M1)), stIx[2, s2tlxl)
on a RAM with unit operation cost function.
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Proof. Consider the CAM described in the proof of Theorem 1. By the discussion
at the beginning of this section, we need only show that for each S L(M) there is
some S’ eL(M, s(Ixl / s)/ 1)which is a permutation of a subsequence of S.

Suppose S L(M). Note that M is of the form required for Lemma 3, with n and
Igl in Lemma 3 equal to Ix[ /a and s here, respectively. By Lemma 3, therefore, a
permutation of some subsequence of S lies in

L(M,s((Ixl+ 1)+s-1)+ 1)=L(M,s(Ixl+s)+ 1). [3

Remark. Recall that even if we prohibit some edit operations and make W only a
partial function, correction can be performed in time proportional to
max (csm Ix I, tm Ix’), where c is the cost of the most expensive edit operation allowed.
Thus general CA correction can be performed in time proportional to

max (cslxl2, stlxl2, cs31xl, s2t[xl).

5. A potentially better bound on m. Recall that Corollary 2, when it applies,
gives an upper bound on m (for Theorem 1) that depends on an a priori upper bound
on Cw(x, L(Ma)). If the latter bound is small, as it commonly is, then the bound on m
can be significantly smaller than the general one. Usually W is a total function, in
which case one a priori bound on Cw(x, L(M1)) is very easy to compute: the cost of
deleting all the characters of x and then inserting all the characters of a minimum-
length member of L(MI).

COROLLARY 3. Given
(i) an arbitrary CA M=(K,E, 6a, qo, F) with state transitions and with

61(q, ,, , 2)= for every state q,
(ii) an upper bound k on rain {[w[ [w e L(M)},
(iii) an arbitrary (total) edit cost function W with W(a-. b)<-c for every edit

operation (ab) and with W(Aa)>-e for each a6E satisfying
tl(q, a, , 2) for some state q, where c >-e > O, and

(iv) an arbitrary word x *,
correction of x into L(Ma) can be performed in time proportional to

max(clxl, ck,
c el)-tlxlZ,-ktlx
e e

Proof. Compute d (Ix[ + k). c and apply Corollary 2. l1
By Theorem 2 with W(ab)= 1 for a b and with x =,, we can actually

compute k min {Iwl Iw L(M)} above in time proportional to Igl2 t, This value need
be computed only once for any fixed CA M1, so the time is not significant if many
strings are to be corrected into the same language L(Ma). Otherwise, there is a general
value of k which can be used.

LEMMA 4. IfM1 is an s-state CA with L(Ma)# and Wis any edit cost function,
then the length of a shortest string x L(M1) with Cw(A, {x})= Cw(A, L(M)) does not
exceed s3+ s. In particular, the length of the shortest string in L(M1) does not exceed
s3+s.

Proof. Let M1 (K, , 6, q0, F) be any fixed CA, and let d be any fixed positive
integer. By induction on

k min kl(qo, x,$)l (q, I, ,) for some q e ->0,
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we prove that each x L(M1, d) has a subsequence x’ L(MI, d) with [x’l <- ds. This
will suffice because Lemma 3 (with n IAl+ 1 1) implies that at least one member of
L(M) with the desired property lies in L(M1, s 2 + 1).

The assertion to be proved is trivial for kx 0, so we give only the induction step.
If Ix <--as does not already hold, then we must have kx => Ix > ds. Fix some compu-
tation

(q0, x, $)= (q0, x0, y0)l (qkx, xkx, y)= (q, ,) with q F.
Ml,d Ml,d

Since 1-<_ lyl <--d for each i< kx and k > ds, there must be some particular i,/" with
0<=i</’<k, qi =qj, yi yj. If z is the prefix of x with x =zx, then x’=zxi is a
subsequence of x with x’eL(Ml, d), k,<=k-(f-i)<kx. By the induction hypo-
thesis, therefore, there is a subsequence x" of x’ (and thus of x, too) with x" L(MI, d),
Ix"l<-ds.

Remark. We conjecture that the minimum length is actually closer to s 2 than to
3

S

COrOILArV 4. Given
(i) an arbitrary CA Ma=(K,Z, 61, qo, F) with state transitions and with

6(q, a, , 2)= ]:or every state q,
(ii) an arbitrary (total) edit cost function W with W(a b)<-c for every edit

operation (a b) and with W(A a)>=e [or each a Z satis]ying
l(q, a, , 2) Q fOe some state q, where c >= e > O, and

(iii) an arbitrary word x *,
correction ol x into L(M) can be per)Cormed in time proportional to

max(clxl, cIKI3, c c-tlxl2,-Igl tlxl
e e

Proof. Compute k IKI3+ IKI and apply Corollary 3.
An edit cost function W with W(a b) always the same positive constant for

a b is a common practical choice for W. Such a choice simplifies Corollary 4.
COROLLARY 5. Given
(i) an arbitrary CA Mx=(K,E, 61, qo, F) with state transitions and with

6(q, A, , 2)= for every state q,
(ii) a (total) edit cost function W with W(a b) c > 0 whenever a b, and
(iii) an arbitrary word x Y_,*,

correction of x into L(M) can be performed in time proportional to

max (tlxl2, Ig[3tlxl).

Proot Apply Corollary 3 to perform the correction with W(a b)= 1 whenever
a b. Then just multiply the result by c.

Ii. Counter-consistent automata. An ideal language correction scheme would
require only time proportional to the length n of the string to be corrected. Even if
there is a small a priori bound on correction cost (d in Corollary 2), the schemes we
have presented so far require time proportional to n2", so these schemes are probably
not practical. In this section we show that correction into the language accepted by a
CA which is "counter-consistent" (defined below)can be performed in time pro-
portional to n times the minimum correction cost (even if this cost is not known a
priori), provided no nontrivial edit operation is free. Although this still amounts to
quadratic time for strings which err at any fixed rate (such as once every million
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characters), it is asymptotically much faster for strings which are correct or nearly
correct as submitted. If we are willing to revert to more traditional error recovery
whenever correction cost exceeds some fixed level, then this gives a linear-time
algorithm for such correction. (Just cut off the algorithm after time proportional to n
times the fixed level has elapsed.) More realistically, if we wish to allow correction up
to cost log n or n 2, then we can perform such correction in time proportional to n log n
or n2 respectively

DEFINITION. A CAM (K, , 6, qo, F) is counter-consistent if there is some
function f: Y_. U {A }--> {0, 1, 2} such that

t(q, a, b,/’)= ; unless /" =f(a).

The class of languages accepted by counter-consistent counter automata may be
of some practical interest. In Fig. 1 we describe a subset of the FORTRAN arithmetic
expressions whose concatenation with the endmarker @ is accepted by the counter-
consistent CA shown in Fig. 2.

P: := IIS(E)I(E)
E: := PIE + PIE PIE*PIE/P

FIG 1. A grammar for a subset E of the FORTRAN arithmetic expressions. I represents a scalar variable
or constant name, S represents the name of a singly-subscripted variable or single-argument function.

I:1

(’2( ):0

{+-/*}:

(’2

FIG. 2. The state transition diagram of a counter automaton which accepts E@, where E is the language
generated by the grammar given in Fig. 1. The start state is 1, and the only final state is 4. The arcs from q
labeled ab: ] represent the transitions in 6(q, a, b, j). An arc labeled a: abbreviates a pair of arcs labeled a j
and aS: j, and an arc labeled {al" "ak}: abbreviates arcs labeled ai: for 1,. ., k.

THEOREM 3. Given
(i) an arbitrary counter-consistent CA M1 (K, Y_., tl, q0, F) with state tran-

sitions,
(ii) an arbitrary edit cost function W with W(a --> b) 0 only for a b, and
(iii) an arbitrary word x *,

correction ofx into L(M1) can be performed in time proportional to lxl Cw(x, L(MI)).
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Proo]’. Let M1, t, W, x al. ’alxl be as described, and let : Y_, (_J { }-> {0, 1, 2}
satisfy

()= 1,

61(q, a, b, /’)= unless/’=/’(a).

Construct a new CAM with state set K x {0, ., Ix 1} as in the proof of Theorem 1. As
in the earlier proof, the number of transitions in M from the states in K x {i} for each
does not exceed 5(t + 1). Because M1 is counter-consistent and every nontrivial edit

operation has cost at least 1, ([q0, 0], S, $)-- ([q, i], ,, y) implies that lyl differs from
M

1 +l-<_i’<_-i (f(ai,)-1) (the counter length in the case of no correction to al" .a) by at
most 2. W(S) (2 for each correction made) in either direction. If we employ the
algorithm of Lemma 1 as in the proof of Theorem 1, therefore, we discover some edit
sequence in L(M) of minimum cost Cw(x, L(M1)) without examining more than

([xl+ 1). (1 +4. Cw(x,L(M1)))" 5(/+ 1)

edges in the graph we construct. The CAM is of such a regular nature that from just
M1 the necessary edges can be generated quickly on demand without constructing the
whole graph (see the Appendix). In this way, since the bound on the number of
examined edges exceeds the number of transitions and the minimum cost
Cw(x,L(MI)), correction can be performed in time proportional to

Remark. The edit cost function need not be total for the above result.

Appendix. The algorithm FLOWR. Let G (V, U, W) be a weighted directed
graph with maximum edge weight c, and let s V be a designated origin vertex. The
algorithm FLOW [6] is designed to preserve the following invariant as DIST is
stepped through the values 0, 1, 2,. .:

D[v]= {D_l(V) if Ds(v) <-DIsT,
otherwise;

BACK[v] some u for which Ds(v)= D(u)+ W((u, v))
if D(v)<=DIST and v s;

SORT[i] {(u, v)[D(u)<=DIST and D(u)+ W((u, v))= > DIST}
(note then that SORT[i] will be empty unless DIST < <-DIST+c);

the edge e (u, v) has been handled exactly once if

Ds(u)<-DIST < D(u)+ W(e)

and exactly twice if

DIST>=D(u)+ W(e).

If we suppress some inessential details, such as the arc-linkage mechanisms and
computing indices into SORT modulo c+l to save space, then FLOW can be
outlined as follows, assuming D[v] is initially 1 for every vertex v:
1 procedure FLOW: begin
2 DIST := 0; ENTER(s);
3 while edges remain in SORT do begin
4 while SORT[DIST] is not empty do begin
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5
6
7
8
9

10
11
12
13
14

remove any edge (u, v) from SORT[DIST];
it D[v] 1 then begin BACK[v] := u; ENTER (v) end

end; [Now the invariant holds.]
DIST := DIST + 1

end
end
procedure ENTER (v ): begin
D[v] := DIST;
for each edge e leaving v do put e into SORT[DIST + W(e)]

end
Note that the time spent restoring the invariant (from line 7 back around to line 7
again) is proportional to 1 plus the number of edges handled. By the invariant, the
cumulative number of edges handled through line 7 can be at most twice the number
of edges (u, v) for which Ds(U)<-DIST. Therefore, the cumulative time spent by
FLOW through line 7 is at most proportional to

DIST + I{(u, v) E[D(u) <- DIST}I.
For this paper, three modifications to FLOW, applied to the graph described in

the proof of Theorem 1, are needed:
1) a criterion which stops FLOW as soon as DIST reaches Dtqo.0,11 ([q, n, 0]) for

some q F (this value will be Cw(x, L(M1)));
2) a mechanism added to ENTER which generates each edge in the graph of

Theorem 1 directly from x al. "an and a representation of M1; and
3) a special scheme which avoids initializing D[v] for any vertex v not actually

needed during the calculation, and a similar scheme to initialize the entries of
SORT.

We call the resulting algorithm FLOWR. For each vertex v [q, n, 0] with q an
accessible final state of M1, FLOWR initializes D[v] to -2. All other vertices are
implicitly initialized to -1, with actual initialization postponed until the procedure
REF below is called right before the vertex is first referenced. A device using a stack,
suggested by Aho, Hopcroft, and Ullman [1, p. 71, exercise 2.12], makes this post-
ponement possible. The same device could be used in lines 29-33 to initialize newly-
used entries of SORT to ; alternatively, the method of [6], which limits SORT’s
size to only c + 1 entries, may be preferable.
1 procedure FLOWR: begin
2 STK ".= 0;
3 for each accessible q F do
4 begin REF([q, n, 0]); D[q, n, 0] := -2 end;
5 DIST := O; REF([qo, O, 1]); ENTERR ([qo, O, 1]);
6 while edges remain in SORT do begin
7 while SORT[DIST] is not empty do begin
8 remove any edge (u, v) from SORT[DIST];
9 REF(v); := D[v];

10 if < 0 then begin
11 BACK[v] := u; ENTERR (v);
12 if -2 then terminate the next time the end of line 14 is reached
13 end
14 end; [Now the invariant holds.]
15 DIST := DIST + 1
16 end
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17
18
19
20
21
22
23
24
25
26
27

28
29

3O

31

32
33

34

end
procedure REF(v ): begin

if (O<-Z[v]<STK and ST[Z[v]] v)
then [v has been referenced before]
else begin ST[STK] := v; Z[v] := STK;

DIv] :=- 1; STK := STK + 1 end
end
procedure ENTERR (v ): begin
D[v] := DIST;
let v be Jr, i, j];
let T be

{[p, a, kllp 6x(r, a, , k), k <2}
{[p, a, kllp 61(r, a, d;, k)}
{[p, a, k]lp a(r, a, S, k)}

ior each [p, a,,k] T do begin
if a h then

if l</=m,
if l</<m,
if l=j<m,
if j=0;

put (v, [p, i, j- 1 + k]) into SORT[DIST + W(A a)];
if (a A and < n) then
put (v, [p, + 1, j- 1 + k]) into SORT[DIST + W(ai+l a)];

if a A then
put (v, [p, i, j- 1 + k]) into SORT[DIST]

end;
if < n then

put (v, [p, + 1,/’]) into SORT[D[ST + W(ai+l a )]
end

Further commentary on FLOWR:
1) Each reference to any array indexed by the vertex v is preceded by the call

REF(v), which handles any necessary initialization in constant time.
2) The initialization of D[q, n, 0] to -2 for each accessible final state q is

handled by a call to REF at the outset. Since there are at most + 1 accessible states,
the time required is at most proportional to t.

3) Lines 9-12 are added to cause FLOWR to cause termination wb.en some
vertex v with D[v] -2 is first reached by an edge removed from SORT in line 8.
(By postponing termination to the end of line 14, we can find all such closest
destinations.)

4) The set T in line 27 depends only on the accessible state r and how ] compares
with 1 and m. All such sets can be precomputed in time proportional to t.

5) Lines 28-33 of ENTERR correspond to lines 13-14 of ENTER; they
generate the edges of G only as they are about to be placed in SORT[i] for some i.
The time spent in these lines is proportional to 1 plus the cardinality of T. Since each
member of T leads to the construction of either one or two edges here, the time is
proportional to 1 plus the number of edges handled.

The comments above account for all the significant differences between FLOW
and FLOWR. It follows that the end of line 14, where the invariant holds, is reached
in time proportional to

+ DIST + I{(u, v)lDtqo,O,l(U)<--DIST}l.

Since FLOWR terminates when DIST reaches Cw(x,L(M1)), termination occurs
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within time proportional to

+ Cw(x, L(M1))+ I{(u, v)lO[c/o,0,1] (u) Cw(X, t(Ma))}l.
If some edit operations are disallowed by making W only a partial function, then

FLOWR will have to discover which corresponding edges to omit from G. It can do
this by testing in lines 29, 30, and 33 whether W(, a), W(ai/ a), and W(ai+
,), respectively, are defined. Since time is spent discovering the omitted edges,
however, the timing analysis above will apply only if we do count each omitted edge
(u, v) with Dtqo.O,ll(u)<=DiST as being a member of {(u, v)lDtqo,O.l(u)<=DIST}.
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GENERALIZED SYNTAX DIRECTED TRANSLATION,
TREE TRANSDUCERS, AND LINEAR SPACE*

BRENDA S. BAKER"

Abstract. When trees are denoted by "terms" or "parenthesized expressions", which are strings, the
class of top-down tree transducers (automata which map trees into trees and read their input trees from the
root toward the leaves) form a subclass of a nondeterministic version of the generalized syntax directed
translations of Aho and Ullman. It is shown that every nondeterministic syntax directed translation
(NGSDT), and therefore every top-down tree transduction, can be carried out by a Turing machine which
uses an amount of work space which is linear with respect to the size of the input and output. For every n,
the family consisting of the images of recognizable sets of trees under the composition of n top-down
transductions is shown to be properly contained in the family of deterministic context-sensitive languages.

Key words, tree, tree transducer, syntax directed translation, context-sensitive language

Introduction. Several models of "syntax-directed transduction" have been pro-
posed to describe the generation of machine code from parse trees during the process
of compilation of a computer program. In one common formalism, the syntax directed
translation scheme (SDT) [1]-[3], a transformation is associated with each rule of a
context-free grammar; the transformation permutes the order of the nonterminals in
the right hand side of the rule and introduces output symbols. The SDT transforms a
given parse tree by applying these transformations at the nodes labeled with the
corresponding rules of the grammar; at each node, the tree is altered by deleting sons
labeled by terminal symbols, reordering sons labeled by nonterminals, and introduc-
ing new sons labeled by terminal symbols. The output is the yield of the new tree (that
is, the string obtained by concatenating its leaves from left to right). An SDT
generates exactly one segment of the output string from each subtree of the parse tree,
and the length of the output string is always linear with respect to the number of nodes
in the parse tree.

However, a more powerful model, called "generalized syntax directed translation"
(GSDT) has also been studied [4]. In this model, more than one segment of output
string may be obtained from each subtree of the parse tree; in general, the length of
the output string may be exponential with respect to the number of nodes in the parse
tree. Examples have been found of common programming language statements for
which the natural translation into machine code can be done by a GSDT but not by an
SDT [4].

Another development has been the study of automata called "tree transducers"
which map trees into trees [5]-[8]. Of interest here are "top-down" tree transducers,
which read input trees by beginning at the root and working toward the leaves (think
of a tree as being drawn with the root at the "top"). Certain classes of syntax directed
transductions correspond to certain classes of top-down tree transductions. In partic-
ular, applying a generalized syntax directed translation is equivalent to applying a
deterministic top-down tree transduction and then taking the yield of the resulting
tree. In 1, we define nondeterrninistic generalized syntax directed translations
(NGSDT’s) which correspond in the same fashion to nondeterrninistic top-down tree
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transducers. Denoting trees by "terms" or "parenthesized expressions" (which are
strings) allows us to regard nondeterministic top-down transductions as mappings
from trees into strings; by this definition, nondeterministic top-down tree trans-
ductions become a subclass of the class of nondeterministic generalized syntax direct-
ed translations. We use this relationship in order to treat generalized syntax directed
translations and top-down tree transductions within the same framework; the relevant
definitions are presented in 1.

In 2, we show that for every NGSDT (and therefore every nondeterministic
top-down tree transduction) G, the set of input-output pairs of G can be recognized
by a deterministic Turing machine which uses an amount of work space which is linear
with respect to the size of the input and output.

In 3, we apply this result to answer (affirmatively) a question of Thatcher
[5]: whether the yield of a top down tree transduction is a context-sensitive lan-
guage, In fact, we show that for every n, the image T of the composition of n top-
down tree transductions is always a deterministic context-sensitive language, and so is
yield (T).

In 4, we investigate the class of bottom-up tree transductions (bottom-up tree
transducers read trees by starting at the leaves and reading toward the root). Using the
results of 2 and 3, it is shown that for every n, the image of the composition of n
bottom-up tree transductions is always a deterministic context-sensitive language. The
results in 3 and 4 are phrased in terms of a hierarchy of families of tree languages
generated by top-down and bottom-up tree transductions; this hierarchy has been
studied earlier in [7], [8], [13].

1. Preliminaries. In this section, we define (finite labeled) trees, nondeterministic
generalized syntax directed translations, and top-down tree transducers. Finite
labeled trees are treated here as special types of strings.

Rather than labeling trees over arbitrary alphabets, we restrict the alphabets so
that if a symbol b occurs at two nodes a and/3, then a and/3 have the same number of
sons.

DEFINITION. A ranked alphabet is a pair (E, r) where E is a finite set of symbols
and r: E - is a "ranking" function. For b E and n , if r(b)= n, we say that b is of
rank n. For each n , let Y_,, denote the set r-a(n), which is the set of symbols of E
which have rank n.

Usually in dealing with a ranked alphabet (E, r), we will drop the r and write only
Y_,, since r is implicit in the notation E,.

Trees are defined in terms of ranked alphabets and the set l-I, which we define to
be the set containing left and right brackets and comma.

DEFINITION. Let E be a ranked alphabet. The set E. of (finite labeled) trees over
the alphabet E, is the least set of strings in (E t_J l-I)* such that:

1) For b A0, b Y_,,.
2) For n _-> 1, b Y-,n, and ta, t2 tn Y_,,, b[tl, t2 t,] E,.
If T is a set of trees, T is said to be a tree language.
Next, we define nodes of trees; nodes are denoted by "Dewey decimal" notation,

i.e. by a string in *, where denotes the set of positive integers. Concatenation is
denoted here by., as in .

DEFINITION. For a tree ., nodes of and labels of nodes of are defined
recursively as follows:

This result was also announced by Kosaraju [12].
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1) If Eo, then e is a node of with label "2

2) If b[tl In], where n > 0, b E,,, and tl tn E,, then e is a node of
with label b, and for 1 _-< _<-n, if a is a node of ti with label c, then i.a is a
node of with label c.

We assign special names to certain types of nodes and to relationships between
nodes as follows.

DEFINITION. Let be a tree in E,, and let a and/3 be nodes of t.
1) If the label of a is in Eo, then a is a leaf of t.
2) If for some , a =/3 i, then/3 is the father of a and a is a son of/3.
3) The node e is the root of t.
Every node a of a tree determines a subtree t/a defined as follows.
DEFINITION. Let be a tree in E,. For a node a of t, the subtree t/a of is defined

recursively as follows:
1) Ifa=e, thent/a=t;
2) If t=b[tl t,], where n>0, bE,, and tl,...,t,E,, and a=i./3,

where 1 _<- _-< n and/3 6 *, then t/a ti/.
An important parameter of a tree is its depth, defined as follows.
DEFINITION. Define the depth of a tree in E, inductively by"
1) For b Eo, depth(b)= 1.
2) For b 6 ,,, and tx t,, e E,, depth(b[ta,..., t,])= 1 / maxx__, (depth(tg)).
The length of a tree or string is the number of symbols occurring in it (including

symbols in H). The length of a string w is denoted by w I.
An important operation on trees is the yield operation, which takes the leaves of

a tree and concatenates them to form a string. Since trees have been defined as a
special case of strings, the yield of a tree may be defined in the following manner.

DEFINITION. Let E be a ranked alphabet, and let 5;,. If
UlblUEb2... umbrnum+, where bl,..., b,,, eND, and ul u,+l ((E-Eo)UII)*,
then yield(t)= bx... b,. For a set T of trees, yield (T)- {yield (t)lt T}. For a family

of sets of trees, yield()= {yield(T)l T 6 }.
To define nondeterministic generalized syntax directed translations, we need to

reserve a special set of symbols for use as "variables"; these symbols will appear in
rules of a translation to mark places at which strings are to be substituted when the
rule is applied to an input tree. As variables, we choose the countably infinite set
X {X1, X2, X3 }. For each n > 0, let X, denote the set {xa, X2 Xn}, and let Xo
denote the empty set.

DEFINITION. A nondeterministic generalized syntax directed translation
(NGSDT) is a 5-tuple G (Q, E, A, R, Qo), where

1) Q is a finite set of states,
2) 51 is a finite ranked alphabet called the input alphabet, such that E fl II 4,,
3) A is a finite output alphabet,
4) Qo--%- Q is a set of starting states,
5) R is a finite set of rules, R

_
t.3 .->_o (Q x X.) x (A (Q x X,,))+. A rule is usually

written in the form (q, b)--> w, where q Q, b X., and w (A t_J (Q X,))+, for
some n > 0.

The behavior of an NGSDT starting in state q on input w is defined recursively as
follows.

DEFINITION. Let G (Q, X, A, R, Q0) be an NGSDT,-and let q Q.
1) If bE0, then G(q,b)={wl(q,b)-wR}.

The empty string is denoted by e.
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2) If b e E., n > 0, and tl,..., tne E., then

G(q, b[tl tn])-- {UlZlU2Z2 UmZmUm+l e A*[m >_--0, and for
some (qx, xil) (q.,, xim)e O x Xn,
(q, b)--> Ul(qx, Xil)U2... U,,,(q,, Xim)Um+l is a
rule in R and for ]- 1 m, zj e G(qj, tii)}.

3) If w e G(q, t), we say that G generates w from starting in state q. For a tree t,
the set of all strings generated from by G is G(s)= qOo G(q, s). For a set T
of trees, the set of strings generated from T by G is G(T)= U trG(t). The
transduction performed by G is T(G)= {(s, t) e E, x A*lt G(s)}.

Note that the transduction performed by G is a set of ordered pairs representing
the input-output relation of G. We illustrate NGSDT’s in the following example [6].

Example. Let 2, {+,., y, c} be a ranked alphabet, where + and have rank 2,
and y and c have rank 0. We construct an NGSDT G which takes the formal
derivative with respect to y of the expressions represented by input trees in E,, where
c represents a constant. Let A {+,., 1, 0, y, [, ]}. Let G ({d, I}, E, A, R, {d}), where

R {(d, +)--> [(d, xx)+ (d, x2)],
(d,’)-> [[(d, Xl)" (I, x2)]+[(Lxx)" (d, x2)]],
(d, y )- , (d, c)- o}
{(I, o’)-> o’[o" e {y, cI} U
{(1, O’)-’)[(Z x1)o’(/, x2)11o" e {-1-, }}.

Notice that G(d, +[. [c, y], y])={[[[0, y]+[c 1]]+ 11}. In general, for a tree teE.,
G(I, t) is the singleton set containing the expression represented by written in infix
notation, and G(d, t) is the singleton set containing the formal derivative with respect
to y of the expression denoted by t.

In a rule (q, c)-> w, where c e En, n > 0, each variable xi, 1 <- <_- n, may occur 0 or
more times in w. If xi does not occur in w, we say that the rule deletes the ith subtree of
the node labeled b. For q # q2, it is possible for both (q l, xi) and (q2, xi) to appear in
w. Note that w is not allowed to be the empty string. One may think of a "compu-
tation" of an NGSDT as beginning with a single rule applied to the root of the input
tree; if the right side of the rule contains pairs (ql, Xil) (q,,, x,), the/’th pair begins
a new "computation" on the iith subtree of the root, starting in state q., for/’-
1 m. If trees are drawn with the root at the "top", an NGSDT may be considered
to operate by reading the tree "top-down".

Certain restrictions may be placed on NGSDT’s in order to ensure that the output
is always a tree; the restricted NGSDT’s are called top-down tree transducers. In order
to specify these restrictions, we need to define the indexing of trees by sets of symbols.

DEFINITION. If E is a ranked alphabet and A is an alphabet, then E,(A), the set of
trees in E, indexed by A, is defined recursively as follows.

1) E0 U Ac_ E.(A).
2) If beE,, n >0, and tx,..., t, e E.(A), then
DEFINITION. An NGSDT G (O, E, ZX U H, R, Oo) is a nondeterministic top-

down tree transducer if A is a ranked alphabet, A II , and

R c_ U (OxE,)xA.(OxX,).
n>=O

We illustrate top-down transducers in the following example.
Example. Let -{b, c} be a ranked alphabet, in which b has rank 2 and c has

rank 0. Let A {f, g, c} be a ranked alphabet in which f and g have rank 2 and d has
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rank 0. Then M ({qo}, , A U II, R, {qo}) is a nondeterministic top-down tree trans-
ducer, where

R {(qo, b)--->f[(qo, xi), (qo, xl)], (qo, b)--> g[(qo, xl), (qo, x)], (qo, c)--> d}.

At each labeled b, M generates either an f or a g and starts two computations on the
left subtree. Therefore, if s is a tree in E, such that the path from the root to the
leftmost leaf has exactly k nodes, then G(s)= {t A,I every path from the root of to a
leaf has exactly k nodes} and yield(G(s))={d2k-1}. Furthermore, yield(M(;,))=
{dZ"ln _>- 0}.

DEFINITION. An NGSDT G is deterministic (a DGSDT) if it has exactly one
starting state and for each state q and each input symbol b there is exactly one rule
with left side (q, b).

Although top-down tree transducers have been defined to be a subclass of
NGSDT’s, they may be used to characterize the class of NGSDT’s as follows.

PROPOSITION 1. Let A E. A*, A f3 1-I E f3 1-I . A T(G) for some
NGSDT (DGSDT) ( if and only if A {(s, yield(t))l(s, t) T(M)} for some non-
deterministic (deterministic) top-down tree transducer M.

Proof. Given an NGSDT G=(O,E,,R, O0) with Af31-I=, let m=
max {Ivl ]u-->v 6R}. Let F={dnll =<n =<m} be a set of new symbols such that each di
has rank i. Let M=(Q,E, A t3FI, R’, Q0) be a top-down tree transducer, where
R’={u-dn[Bx, B2,..., B,]Iu->B B, 6R and each Bi At3 O X}. It is easy to
see that T(M) {(s, yield(t)) (s, t) T(M)}.

Conversely, let M (O, E, A kJ l-I, R, Oo) be a top-down tree transducer, where
f3II=. Construct an NGSDT G=(Q,E,A,R’,O0) by setting R’=
{u ->yield(t)lu -.tR}. It is clear that T(G)={(s, yield(t))](s, t)6 T(M)}. 71

In the last example we constructed a top-down transducer M such that
yield(M(Z.))= {d2" ]n -> 0}. Since this set is not context-free, we see that top-down
transducers, and therefore NGSDT’s, can generate non-context-free sets from input
sets which are special sets of trees called recognizable sets.

DEFINITION. A set of trees T is recognizable if there exists a nondeterministic
top-down transducer M such that R {slM(s) }.

Recognizable sets have been extensively studied because their properties cor-
respond to those of regular sets of strings [9], [10]. It is known that every recognizable
set is a context-free set of strings; furthermore, a set of strings is an e-free context-free
language if and only if it is the yield of a recognizable set [11].

To show that sets are context-sensitive, we use the well-known fact that a set is
(deterministic) context-sensitive if and only if it is accepted by a nondeterministic
(deterministic) multi-tape Turing acceptor within linear space. We assume that the
reader is familiar with nondeterministic multi-tape Turing acceptors; since the con-
structions here are not affected by minor variations in the model of multi-tape Turing
acceptor used, we do not define them formally. However, we specify that a
nondeterministic multi-tape Turing acceptor M operates within linear space if there is
a constant m such that for each input w, every computation of M on w visits at most
mlw[ tape squares on any tape. In 3, we use the well-known fact that every
deterministic context-sensitive language is accepted by a deterministic one-tape Tur-
ing acceptor which operates in linear space and halts in every computation.

2. Relationship to Turing machines. In this section, we show that for any
NGSDT G, there is a Turing machine M which accepts T(G) using an amount of
workspace which is linear with respect to the length of the input (s, t). This is not an
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obvious fact, since a machine which carries out an NGSDT must be able to handle
"copying": That is, if (q, b)- ua(pl, xj)u2.., u,,(p,,, xj)u,/ is a rule of the NGSDT
G, then m independent computations of G occur on the jth subtree of the node
labeled b. One way of dealing with them is to create m copies of this subtree; but when
this process is repeated at successive nodes, it may result in using an exponential
amount of space.

The method used in the construction presented here is the following. To deter-
mine whether (s, t) is in T(G), M simulates a computation of G as follows. If
(q, b)o ua(pa, Xia)U2... u,,(p,,xi..)u,,/a is a rule of an NGSDT G, it is applied to a
tree b[s,..., sn] by checking ul against t, computing on the subtree sh, checking u2
against t, computing on the subtree sg2 etc. The number of rules stored at any one time
is never greater than the depth of the input tree, and the total working space is no
greater than the length of the input. The actual construction is complicated by the
need for M to check all possible computations of G on s if G is nondeterministic.

THEOREM 1. If G is an NGSDT, then T(G) is a deterministic context-sensitive
language.

Proof. We will construct a deterministic one-tape Turing machine M which
accepts T(G) and operates in linear space. Given (s, t), M checks whether s is a tree.
If so, M tries all possible computations of G on s to determine whether there is one
which generates t. The difficulty lies in arranging for M to encode the computations in
a form which allows it to investigate them all systematically.

Obtain a new NGSDT G’ from G by replacing each rule u v by a rule u {v},
where { and } are new symbols. The brackets in a string such as {bc{c{d}}{ef}} output
by G’ indicate which substrings of the output correspond to subcomputations on
subtrees of s. Intuitively, M tries all such possible bracketings to find one representing
a computation of G producing t. Unfortunately, M can’t use this encoding directly,
since the size of the bracketed string is not necessarily linear with respect to the size of
t. Instead, M obtains an encoding which is linear with respect to the size of by
replacing each sequence of {’s or }’s by a single { or }, respectively. From the rules of G,
M will be able to determine where there should be multiple occurrences of { or }. M uses
this encoding to keep track of which computations of G it has already checked.

Given input s # t, M tries all possible ways of adding brackets to and tests each
such bracketed string t’ to see if it corresponds to a computation of G generating
from s. Generating all possible bracketings can be done in a straightforward manner
using linear space. The only difficulty lies in showing that M can determine in linear
space whether t’ corresponds to a computation of G generating from s.
M simulates a computation of G by processing each rule from left to right. At any

time, certain nodes of s are marked active. The active nodes of s form a path leading
from the root of s to the lowest active node of s. Each active node n is marked with a
rule of G and a state. In addition, if a child of n is active, n has an active index k such
that the child corresponds to a computation generated from the kth variable in the
rule.

Certain brackets of t’ are also marked active. If the rule at an active node n has
right side ua(qh, xil)u2 u,(q.,, Xim)btm+l, then each of the m variables in the rule has
a corresponding pair of .active brackets. If node n ik is also active, corresponding to a
computation generated.from the kth variable of the rule, then the brackets cor-
responding to the kth variable are also said to correspond to node n ik.
M can determine which active brackets correspond to which node or variable in a

rule as follows. The leftmost { and rightmost } correspond to the root. Assume M has
identified the { and } corresponding to an active node n, and these are at squares A and
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B, respectively. Suppose the right side of the rule is ul(qil, xh)u2.., u,,,(qi.,, Xim)Um+l.
The square C containing the { corresponding to the first variable is A if u e, and the
square containing the first active { to the right of A otherwise. Similarly, the square D
containing the } corresponding to the last variable is B if u,+l is null, and the square
containing the first active } to the left of B otherwise. If no child of n is active, there
are exactly m pairs of active brackets from C to D, and each pair corresponds to one
variable of the rule. Otherwise, suppose the active index of node n is k. The brackets
of the first k- 1 variables are the first k- 1 pairs of active brackets starting at C, and
the left bracket of the kth variable is the next active { to the right. The brackets of the
last m- k variables are the m- k pairs of active brackets ending at D, and the right
bracket of the kth variable is the preceding active }. There may be additional active
brackets between the brackets corresponding to the kth variable of the rule.

Now, we can describe how M determines whether t’ corresponds to a compu-
tation of G generating from s starting in state q0.

(1) Initially, M marks the root active with state q0.

(2) (Try next rule). If there is no active node, reject t’ as no computation can
generate it f?om s. Otherwise, let n denote the active node furthest from the
root. If all rules have been tried at n, mark n inactive and go to (3).
Otherwise, mark n with the next rule which has not yet been tried at n. If this
rule has the wrong state or label, go to (2).

(3) (Match up indices in the rule with brackets). Let n denote the active node
furthest from the root. Using an appropriate algorithm for generating suc-
cessive ways of matching up brackets with indices of the rule at node n,
generate the next such way, making the previous matching brackets inactive
and the new ones active. If the last possible way of matching brackets with
indices has been tried, go to (2). See whether the output symbols in the rule
are the same as the appropriate symbols between the brackets matching the
indices of the rule. If not, go to (3). If the right side of the rule contains no
indices, mark this node inactive and go to (4) to process the next index of its
parent. Otherwise, set the active index to 1. If the first variable in the rule is
Xk, mark node n k active with the appropriate state from the rule, and go
to (2).

(4) (Process next index). If no node is active, halt and accept. Otherwise, let n
denote the active node furthest from the root and let j denote the index just
processed at n. If ] is the last index of the rule at n, mark n and the brackets
corresponding to the variables of n’s rule (but not to n itself) inactive and go
to (4). Otherwise, set the active index to/" + 1. If the (/" + 1)st variable in the
rule is x, mark node n k active with the appropriate state from the rule, and
go to (2).

3. Main theorem. In this section, we show that for every n, if the composition of n
top-down tree transductions is applied to a recognizable set, both the resulting set of
trees L and the set of strings yield(L) are context-sensitive languages; this answers a
question raised by Thatcher [5]. In fact, the family of all languages L and yield(L)
obtained from recognizable sets by the composition of tree transductions is properly
contained in the family of context-sensitive languages. The theorems are stated in terms
of a hierarchy of families of tree languages which has been studied in [7], [8].

DEFINITION. Let Do denote the family of recognizable sets. For n >_-0, let Dn+l
{M(T)I T D, and M is a top-down tree transducer}.
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Clearly, Dn is also the family of tree languages obtained from recognizable sets by
the composition of n top-down tree transductions.

We begin by stating a definition and a lemma and showing how the lemma may be
used to prove the above theorems. The remainder of the section is devoted to the
proof of the lemma.

DEFINITION. A top-down tree transducer M (Q, E, A, R, Qo) is linear if each
variable occurs at most once within the right side of each rule in R.

LEMMA 1. Let F be a family of tree languages which is closed under linear
top-down transductions. If So F and Mo is an NGSDT, then one can construct a tree
language S F and an NGSDTMsuch that

1) M(S)= Mo(So) and
2) for every M(S), there exists s S such that M(s) and Isl <- 61tl.

Furthermore, ifMo is deterministic, then so is M.
Using the above lemma, we now prove the main theorem.
THEOREM 2. For every n >=0, Dn and yield(Dn) are properly contained in the

family of deterministic context-sensitive languages.
Proof. First we show that D,, and yield(D) are contained in the family of

deterministic context-sensitive languages. The proof is by induction on n. To begin
with, yield (Do) is the family of e-free context-free languages [11 ], and Do is contained
in the family of context-free languages (this is easily shown by techniques in [11]). For
some n->0, assume that D, is contained in the family of deterministic context-
sensitive languages. Now, D is closed under linear top-down tree transductions [13].
Consider any language L in Dn+l U yield(Dn/l). By Proposition 1, there exist S D,
and an NGSDT G such that G(S)= L. By Lemma 1, we may assume that for every
w L, there exists s S such that w G(s) and Is[ =< 6lwl. Since s D,, S is a deter-
ministic context-sensitive language (by the induction hypothesis). Therefore, there
exists a one-tape deterministic Turing acceptor M which accepts $ and operates in
linear space. Also, by Theorem 1, T(G) is context-sensitive. Therefore, there is a
one-tape deterministic Turing acceptor MT-( which accepts T(G) and operates in
linear space.

Construct a one-tape Turing acceptor ML to accept L as follows. Suppose ML is
given an input string w. By imitating Ms and MT-(), M/ successively tests all strings u
of length at most 6[w[ to determine whether u D and (u, w) T(G). If Mr. finds a
string u such that u Dn and (u, w) T(G), M accepts w. Otherwise, M rejects w.

Clearly, L is the language accepted by ML and M operates within linear space.
Therefore, L is a deterministic context-sensitive language.

It remains to show that for n -_> 0, D, and yield(D), cannot be equal to the family
of deterministic context-sensitive languages. In the case of Dn, this is true for the
trivial reason that not every deterministic context-sensitive language is a set of trees.
Now, for n _->0, {yield(T), yield(T)U{e}[T D,,} is closed under string homomorph-
ism [13]. But the closure of the family of deterministic context-sensitive languages
under string homomorphism is the family of recursively enumerable sets. Therefore,
yield(D) is not equal to the family of deterministic context-sensitive languages. I1

COROLLARY 1. U ,>=oD, and U ,,_->o yield (Dn) are properly contained in the family
of deterministic context-sensitive languages.

To motivate the proof of Lemma 1, let us consider a simple example to see
how an input tree s can be much bigger than the output produced from it by a
GSDT.

Example. Let E {a, b, c} be a ranked alphabet, where a, b, and c have ranks 0, 1,
and 2, respectively. Let A ={f, g} be an alphabet. Let M ({p}, E, A,R, {p}) be a
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GSDT where

R {(p, c)-f(p, x2), (p, b) (p, Xl), (p, a) g}.

Clearly, fg e M(c[c[a, a], b[b[a]]]). The reason that fg is smaller than the input is that
no output was generated from the left subtree c[a, a] or from the b’s. In fact, M never
even "scanned" the left subtree.

We formalize the above relationships by defining computation trees for GSDT’s.
Intuitively, a computation tree describes which rules are applied at which nodes of an
input tree in a "computation" of a GSDT. Then, given a particular input s and output
and a computation tree which describes how a GSDT obtains from s, we can

determine which nodes of s are never "scanned" and which nodes have no output
produced from them in this computation. We will prove the lemma by constructing
linear transducers which nondeterministically eliminate nodes which are never
scanned and nodes of rank 1 from which no output is produced; enough information is
preserved so that a new GSDT can imitate the original one on the modified input.

DEFINITION. Let &/= (K, Y., A, p, Ko) be an NGSDT. For a rule u- v, where
V -"/91(Pl, Xil)V2 Din(Pro, Xim)Vm+l of P, and Vl, Vm+l e A*, we say that (Pi, Xii) is
the ]th index of v, for 1 _-</" -< m. We obtain a ranked alphabet (P) as follows. If u -* v is
a rule of P, and v has m _-> 0 occurrences of indices, then (v) is a symbol in (P) of
rank m.

For q e K and s e Z., COMP(q, s), the set of computation trees of M for (q, s) is a
subset of (P), and is defined recursively as follows.

1) For q e K and b e Eo, COMP(q, b)= {(v)lv e A* and (q, b)- v e P};
2) For q e K, n > 0, b e Z.,, and S sn e Z.,
COMP(q, b[Sl,..., sn])

{(v)lv e A, and (q, b)--) v e P}
U{(v)[ua Um][m >0, (V)e(P)m, (q,b)-veP, and for
1 _-< j _-< m, if the jth index in v is p[x] then ui e COMP(p, s)}.

If u e COMP(q, s), we say that u is a computation tree of M]’or (q, s).
Output is associated with a computation tree as follows.
DEFINITION. Let M (K, E, A, p, K0) be a top-down tree transducer. If u is a

computation tree of M, then OUTPUT(u) is defined recursively by:
1) For (u) e (P)o, OUTPUT((u )) u;
2) For u=(r)[ul Urn], where m>0, re(P),, and Ul ,Ume(P)., if r=

vl(pl, xil)v2 Vm(p,,, Xim)Vm+, where vl Vm+l e A*, then

OUTPUT(u)= vlOUTPUT(ux)v2OUTPUT(u2) 1)m OUTPUT(um)Vm+I.

Thus, the output from (r)[ul Um] is determined by r and the output from
Ul,..., Urn. We illustrate computation trees and their output in the following example.

Example. Let M ({Po, pl}, Z, A, p, {P0}) be an NGSDT, where A {f, g, h}, E
0 [--J 2, 0 {d}, 2 {b}, and P contains the following rules:

(Po, b)f(pl, Xz)(po, x2), (po, b)- gh,

(po, d)-*h, and (pl, b)--)(po, xl).

Clearly, (P)o {(gh), (h)}, (P)I {((po, Xl))}, and (P):= {(f(pl, x2)(po, x:))}.
Notice that ((po, xa))[(h)] and (gh) are computation trees for (pa, b[d,d]) and
(po, b[d, d]), respectively. Moreover, (f(pl, x2)(po, x2))[(po, Xl))[(h)], (gh)] is a
computation tree for (po, b[d, b[d, d]]) with output fhgh.
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Computation trees and the OUTPUT function characterize the output of an
NGSDT as follows.

PROPOSITION 2. Let M (O, E, zX, R, 0o) be an NGSDT. For u A*, q O, and
s E,, u M(q, s) if and only if there exists a computation tree ofM for (q, s) with
OUTPUT(t) u.

The above proposition is easily proved by induction on the depth of s.
Using computation trees, we define what it means for a node of a computation

tree to scan a node of a tree s or to produce output from a node of s.
DEFINITION. Let M (O, Y_,, A, R, Oo) be an NGSDT. Let p O and s E,, and

let u be a computation tree of M for (p, s). For a node ce of s, and a node 3’ of u, we say
that node 3’ of u scans node c of s if either a =3’ e or all of the following three
conditions hold"

1) for some k and/3 *, c k./3,
2) for some ] and r/ *, /= ].r/,
3) if (r) is the label of the root of u, then the/’th variable in r is x and node rt of

u/j scans node/3 of s/k.
If node /of u scans node a of s, the label of 3’ is (r), and r contains at least one symbol
of A, then node ,/of u generates output from node c of s.

These definitions are illustrated in the following example.
Example. Let M ({P0, P}, E, A, p, {P0}) be as in the previous example. In the

previous, example, it was shown that t= (f(pa, x2)(po, x2))[((po, xa))[(h)], (gh)] is a
computation tree for (p0, s)where s b[d, b[d, d]]. Observe that node e of scans
node e of s and generates output f from node e of s. Node 1 of scans node 2 of s (but
generates no output). Node 1.1 of scans node 2.1 of s and produces output h. Node
2 of scans node 2 of s and produces output gh. Observe that node 1 of s is not
scanned by any node of t.

If is a computation tree for (q, s), a is a leaf of s, and node 3’ of generates
output from c, then at least one symbol of A is contributed to OUTPUT(t) by 3’.
Furthermore, if nodes 3’ and 3’2 of generate output from nodes O and a2 of s,
respectively, and c ce, then )’1 ’:. Therefore, if output is produced in u from
every leaf of s, the number of leaves in s is at most the length of OUTPUT(t).
Furthermore, if s has m leaves, then s has at most m- 1 nodes of rank greater than 1.
Thus, if the number of nodes of rank 1 in s is at most IOUTPUT(t)], and every leaf of s
has output produced from it in t, then the number of nodes of s is at most three times
[OUTPUT(t)I.

Therefore, our strategy in proving Lemma 1 has two parts. Given So F and an
NGSDT Mo such that Mo(So) T, we first modify So and Mo to produce S e F and
NGSDT M1 such that MI(S1) T and for every t T, there exists s $1 and a
computation tree u for qo[s] such that output is produced in u from every leaf of s and
OUTPUT(u)= t. Next, we modify Sx by deleting certain nodes of rank 1 to obtain
S F and a top-down transducer M which satisfy Lemma 1.

LEMMA 2. Let F be a family of tree languages closed under linear top-down
transductions. Let So F, let Mo be an NGSDT (DGSDT), and let T Mo(So). There
exist S F and an NGSDT (DGSDT) M with starting state qo such that

1) M(S) T and
2) ]’or every T, there exist s S and a computation tree u ofMfor (qo, s) such

that OUTPUT(u)= and output is produced in u from every leaf of s.
Proof. Since Mo is either nondeterministic or is deterministic and has a single

starting state, we lose no generality by assuming that Mo has a single starting state qo.
The new set $ is obtained from So by means of a linear top-down transducer which
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nondeterministically deletes subtrees from each tree s of So. The result is that for each
computation tree of M for (q, s) Q x S, there is a tree s’ e S which is obtained by
deleting precisely those nodes of s which are not scanned in t.

For each m > 0, let

E,, {(b, il, i2 i,,)1 for some n>0, l <= m <= n, b Fn,
andl<-il<i2< <i,,<=n}

be a set of new symbols of rank m. Let Y-.o {(b)lb e F} be a set of new symbols of
rank 0. Thus, E CI i=oY_,/is a finite ranked alphabet.

Let N=({q}, F, EUI-I,Rr, {q}) be a nondeterministic linear top-down trans-
ducer, where

RN {(q, b)--> (b)lb Fn, n => 0}
CI {(q, b)-->(b, il i,,)[(q,x), (q,x.,)l[beF.,

n>O,l<-m<=n, and 1-<i<i2 < <i,,,<-n}.

As N reads a tree s e F,, it nondeterministically deletes subtrees. If N deletes all
but subtrees il, i2 i,, of a particular node labeled b Fn, then it encodes the
numbers of the undeleted subtrees in its output (b, il, i2 i,,) and continues to
process the undeleted subtrees. Similarly, if N deletes all the subtrees of a node
labeled b Fn, n >= 0, then N encodes the deletions in its output (b).

Now, we define another NGSDT M such that M(N(So))= T. Let M=
(Q, , A, R, {qo}), where

R ={(p, (b ))--> vlv e A, and (p,b)-->vee}

U{(p, (b, il,..., i,))

ul(pl, h(Xk))u2 u,(p,, h(x.))u,,+al
n >_-0, rn >0, (b, il i.)e Z,/’/1 Un+l eA*,

(p,b)Ul(Pl, Xk)U2. Un(Pn, Xk,,)Un+lP,

each Xkj is in the set {xil xi..},

and for 1 <= ] =< m, h (xj) xj}.

Note that if Mo is deterministic, then so is M.
Let S N(So). We assert that M and S satisfy the conditions of the lemma. That

M(S)_ T follows from the following claim.
CLAIM. Let p Q, s F,, 6 E,, and u A,. I N(s) and u M(p, t), then

u Mo(p, s).
The proof of the above claim is a straightforward induction on the depth of and

is left to the reader.
Next, we show that M and S satisfy condition 2) of Lemma 2. Since condition 2)

implies that T M(S), this will complete the proof of the lemma. Condition 2) follows
from the following claim by setting c 1.

CLAIM. Let c > O, Pl, P Q, and s F,. If Ul Uc are computation trees of
Mo for (p, s) (p, s), respectively, then there exist teE, and Vl v (R),
such that

1) e N(q, s),
2) for 1, 2 c, v is a computation tree ofMfor (p/, t) with OUTPUT(vg)=

OUTPUT(u/), and
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3) output is generated from every leaf of by at least one of l)l l)c.

Proof. The claim is proved by induction on the depth of s. If the depth of s (and
therefore of Ux,..., uc) is 1, the statement is easy once one notices that for every rule
(pi, b) z of M0, with b s F0 and z s A,, (pi, (b))- z is a rule of M, and (q, b) (b) is a
rule of N.

For some k > 0, assume that the claim holds for all trees s s F. of depth at most k.
Let s b [sl sn] be a tree of depth k + 1, where n > 0, b s Fn, and S s, s F,.
Suppose that u 1,..., u are computation trees for (px, s) (pc, s), respectively.

If the root of s is the only node of s which is scanned in U u, then
u u s (P0), and the construction is similar to that of the basis. Otherwise, for

1, 2 n, define

Di {(j, ce)11 --< j --< c, a , and for some p Q,

ui/a is a computation tree for (p, si)}.
For some m, 1 _-< m _<- n, and 1 _-< il < i2 i, <- n, D D,, are nonempty

but Di for j {i,..., i}. We obtain the desired and Vl,..., v by applying the
induction hypothesis to each D, deleting the subtrees s of s which are not scanned,
and modifying the roots of U Uc appropriately.

For l<_-j_-< m, s has depth at most k. By the induction hypothesis, there exist
tj Y_,, and a set of computation trees Ej= {w(a.)l(d, a)Di,} (R), such that

1)
2) if ui/a is a computation tree for p[sij], then w(, is a computation tree for

p[tj], and
3) output is generated from every leaf of ti by at least one computation tree in E)..
First, we produce t. Note that N has a rule

(q, b) (b, i,..., i,,,)[(q, xl),..., (q,

For (b, ix,..., im)[tx t,,,], is clearly in N(q, b[sx s,,]) N(q, s).
Now, we produce Vx v from the computation trees in EI Em and rules

of M. For 1, 2,..., c, if the root of ui is labeled (z) (P)r, f_-> 0, then M has a rule
(pi,(b, ix ,irn))hil im(Zi)"-Z. If f=0, then Vi"-(Z) is a computation tree
for (Pi, (b, il i,)[tl t,,])=(pi, t). If f>0, then vi =(z)[w(i,1), w(i,2) w(i,r)]
is a computation tree for (pi, t). In each case, OUTPUT(vi)= OUTPUT(ui).

Each tree in E), 1-</"-< m, is used in one of Vl,..., vc. Since output is generated
from every leaf of ti by some tree of Ei, for 1-</’_-< m, output is also generated from
every leaf of by at least one of Vl v. Therefore, and Vl,..., v satisfy the
conditions of the claim. I"1

Now, we use Lemma 2 to obtain our objective, a proof of Lemma 1. First, we
restate Lemma 1.

LEMMA 1. Let F be a family of tree languages which is closed under linear
top-down tree transductions. Let Sos F and let Mo (Q, E, A, R, Qo) be an NGSDT.
There exist S F and an NGSDTMsuch that

1) M(S)= Mo(So) and
2) For every M(S), there exists s S such that M(s) and Isl <= 6ltl.
Furthermore, ifMo is deterministic, so is M.
Proof. By Lemma 2, we may assume that Q0 contains a single state and that for

every T, there exist s S and a computation tree u of M0 for (qo, s) such that
OUTPUT(u) t and output is generated in u from every leaf of s.

The new set S is obtained from So by means of a linear transducer N. Given input
s, N nondeterministically shortens paths consisting of nodes of rank 1. For each
computation tree of M for (q, s), there is a tree s’ S such that s’ is obtained from s
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by deleting exactly those nodes of rank 1 from which no output is produced in t. The
transducer N encodes enough information about the deletions for a new transducer M
to be able to generate T from S by imitating M0.

The encoding is motivated by the following observation. Suppose that a tree s has
a sequence of nodes a,a. 1,...,a. 1 "+, all of rank 1 except possibly a. 1 "+.
Consider all computations of .M0 which produce no output from
For each p O, the finite state control of M0 determines a set Co such that if M scans
node a in state p and produces no output from a, a. 1 a. 1", then it can reach

i n+lnode a. in any state in C. The linear transducer N nondeterministically
computes A {(p, q)lP O, q Co} as it reads and deletes a, a. 1,..., a. 1 n, and it
writes A at the first undeleted node a. 1 "+a. From A, the new transducer M knows
that when it reaches this node in state p, it should apply a rule of M0 with some state q
such that (p, q) A.

For a set A, let (A) denote the power set of A. Let F x (O x O) be a new
ranked alphabet, where for n _-> 0, F,, Y-,n x (O x O).

The new linear transducer N is defined by N=((OxO),Z, FUH, PI,c, Ko),
where Ko {(p, P)IP Q}, and Pr is given as follows.

1) For Bc_OxO, n>0, and beE,,, the rule (B,b)-(b,B)[(Ko, Xl),...,
(Ko, x,)] is in Pu;

2) For B c_ Q x Q, and b o, the rule (B, b) - (b, B is in Pu;
3) For B

_
Q x Q, and b, the rule (B, b) (C, Xx) is in Pr, where C {(p, r)[

for some q Q, (p, q) B and there is a rule (q, b) (r, x i) in Mo}.
Now, we define a new NGSDT M (Q, F, A, P, {qo}) by setting P=

{(p,(b,B))-vl(b,B)F,pQ, and for some qQ, (p,q)B and (q,b)-v is a rule
of Mo}.

Let S N(So). We claim that S and M satisfy conditions 1) and 2) of lemma 1.
First, we prove that M(S)c_ T by proving the following claim.

CLAIM. Let s ., e F., w A*, B
_
Q x Q, and p Q. If

M(p, t), then ::lq O such that (p, q) B and w Mo(q, s).
Proof. We use induction on the depth of s. If s Y-.0 and N(B, s), then (s, B).

If w 6M(p, t), then M has a rule (p, (s, B))-* w. Therefore, for some q such that
(p, q) B, Mo has a rule (q, s)- w and w Mo(q, s).

For some k _-> 1, assume that the claim holds for all trees s of depth at most k. Let
s-b[sa s,] be a tree of depth k+l, where n->_ 1, b ,, and sa,..., s ..
Suppose that N(B, s) and w M(p, t). We consider two cases, according to how is
obtained from s.

Case 1. n 1 and N(C, Sx), where C {(p, r)[:lq 0 such that (p, q)B and
(q, b) (r, x i) is a rule of M0}.

In this case, we apply the induction hypothesis to Sl to obtain a state q O such
that (p, q) C and w Mo(q, s 1). By definition of C, there exists r6 O such that
(p, r) B and (r, b) - (q, x a) is a rule of Mo. Thus, w Mo(r, s).

Case 2. (b, B)[tx t,, and for 1 -< -<_ n, tg N(Ko, s).
In this case, there exist w,..., w,, A,, P Pm Q, i1 i, , and

Zl ,z,,,+l(Algl-I)* such that W=ZlWlZ2Wz...z,,w,,z,,+l, (p,(b,B))z=
zI(Pl, Xi)z2(P2, Xi2) Zm(Pm, Xi,.)Zm+l is a rule of M, and for 1 <=j <- m, wi M(pi, ti).
For some q such that (p, q)e B, M0 has a rule (q, b) z. By the induction hypothesis,
for 1 <-j <- m, wi6Mo(pi, si). Therefore, w 6M(q, b[s s,])= M(q, s).

Next, we prove that T c_ M(S) and that condition 2) of Lemma 1 holds. For any
tree s, if s has n nodes of rank greater than 1, m nodes of rank 1, and p leaves, then s has
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at least 2n + rn nodes which are sons of other nodes. Thus, 2n + rn _-< n + m +p, and
n =< p. Moreover, for each node of s there are at most two symbols of H. Therefore, if u
isa tree, and m +p --<]ul then Isl_-< 61ul. Now, for every tree te T, there are a tree s
and a computation tree u of Mo for qo[s] such that OUTPUT(u)= and output is
generated in u from every leaf of s. Thus, we obtain condition 2) by proving the
following claim and setting c 1.

CLAIM. Let c > O, s e E,, and B
_
Q Q. If ua,..., u are computation trees of

Mo [or (px, s) (p, s), respectively, output is generated from every leaf of s in at
least one o1: u i,..., u, and for 1 <-_i <- c, (qi, pi)e B, then there exists e N(B, s) such
that the number of nodes of rank 1 or 0 in is at most -’=1 IOUTPUT(ui)I and ]:or
1 <=f <-c, OUTPUT(ui)eM(qi, t).

Proof. We use induction on the depth of s. For seE0, the claim is easy,
since (s, B)eN(B, s) and for any rule (pi, s)-> zi of M0, M has a rule (qi, (s, B))-
Zi.

For some k _-> 1, assume that the claim holds for all trees s of depth at most k. Let
B
_
O x O and (q, px), (qc, pc)e B. Let s b[sx Sn] e E. be a tree of depth

k+l, where n >0, b e E, and Sl,..., s, e E.. Suppose that Ux Uc are compu-
tation trees of M0 for (PI, S) (p, s), respectively, and output is generated from
every leaf of s in at least one of u Uo We consider two cases, according to
whether or not n 1 and output is produced from the root of s in Ux Uc.

Case 1. n 1 andno output is produced from the root of s in Ux go
In this case, for i= 1, 2 c, there exist zie(R)x and u e(R). such that

ui (zi)[u]. Moreover, for some ri e Q, zi (r, xa), u is a computation tree of Mo for
ri[s], and OUTPUT(u’i)= OUTPUT(u).

Let C={(p,r)[:lqeO such that (p,q)eB and (q,b)-(r, xa) is a rule of Mo}.
Clearly, for 1-< <_-c, (qg, rg)e C. Since the depth of sg is k, we apply the induction
hypothesis to obtain a tree teN(C, Sx) such that the number of nodes of rank
1 or 0 in is at most Y=a ]OUTPUT(ul)I=]=a]OUTPUT(u)[ and for l<-i<-c,
OUTPUT(ui)eM(qi, t). Since N has a rule (B, b)-> (C, Xx), eN(B, s), and the claim
is satisfied.

Case 2. Either n > 1, or n 1 and output is produced from the root of s in at least
one of u l,..., Uo

For i= 1, 2 n, define Di ={(], a)[1 _-<]-<c, a e , and for some p e Q, ui/a is
a computation tree of Mo for (p, si)}, Since output is produced from every leaf of s in
at least one of u 1, u, Dg # for 1 -< _-<_ c.

For each i, 1 <_- c, consider Dg. By the induction hypothesis, there exists a tree
tgeN(Ko, s) such that the number of nodes of rank 1 or 0 in tg is at most

Y(i,D, IOUTPUT(ui/a)], and for p e O and (], a)eDi, if ui/a is a computation tree
for (p, s), then OUTPUT(ui/a)eM(p, tg).

Let t= (b, B)[tl t]. Since N has a rule (B, b) (b, B)[(Ko, Xl) (Ko, x)]
and each tie N(Ko, si), e N(B, b[Sl s,])= N(B, s).

For i= 1,2,...,c, if the root of ug is labeled (z), then Mo has a rule
(Pi, b) z and M has a rule (qi, (b, B))- z. Suppose that z
zl(rl, Xil)z2(r2, xi2).., z,,(r,, xi..)z,+, where rl,..., rm e Q, il,..., i,, e , and
za z,,+ e (A U II)*. For 1 _-<f _-< m, let wj OUTPUT(ui/j). Then OUTPUT(ui)
ZlWlZ2W2...z,w,,z,+ and for l<_-/’<_-m, wieMo(ri, sij). But, for l<_-jm,
and wi OUTPUT(ug/j)e M(ri, tg). Therefore, OUTPUT(ug) e M(qi, t).

For any tree y, let f(y) denote the number of nodes of rank 1 or 0 in y. If n 1,
then at least one output symbol is contributed by the root of ug to OUTPUT(u/), for
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some i. Thus

f(t)= 1+ f(t)
i=1

If n > 1, then

(i,a)Di
]OUTPUT(ui/)I -< ’. [OUTPUT(u,)J.

i=1

i=1

<= Y Y ]OUTPUT(ui/a )] <= IOUTPUT(u,)I.
i=1 (], o)Di i=1

We conclude by showing that if Mo is deterministic, then wc can omit unnecessary
rules of M to obtain a DGSDT M’ such that M’(S)= M(S)= Mo(So) and M’ satisfies
condition 2). If Mo is deterministic, then N never generates an output symbol (b, B)
which is not in the set F’= {(b, B)e FI for each p e Q, there exists at most one q e Q
such that (p, q)e B}. Therefore, if we obtain M’ from M by restricting the input
alphabet to F’ and omitting all rules containing input symbols in F-F’, we obtain a
DGSDT M’ such that M’(S)=M(S)=Mo(So) and M’ satisfies condition 2) of
Lemma 1. El

4. The class of bottom-up tree transductions. In this section, we define bottom-
up tree transducers and show that for any tree language T obtained from a recogniz-
able set by the application of n >-0 bottom-up transductions, both T and yield(T) are
context-sensitive.

DEFiNiTiON. A nondeterministic bottom-up tree transducer is a five-tuple M-
(Q, , z, R, F) where

1) O is a finite set of states,
2) ; and A are finite input and output ranked alphabets, respectively,
3) F c_ Q is a set of final or accepting states,
4) EH=AI-I=AfflX=, and
5) R is a finite set of transition rules such that every rule in R is either of the form

(b)--, (q, t), where b e o, q e Q, and e A.,
or of the form

(b,q q,)-.(q,t), where n>0, beE,, q, ql q, eQ, and teA.(X,,).

As in the case of top-down transducers, note that a variable may occur more than
once or not at all in the right side of a rule. The output produced by a bottom-up
transducer from an input tree is defined as follows.

DEFINITION. Let M (Q, , A, R, F) be a bottom-up transducer. For q e Q, and
e :Z., M(q, t) is the smallest set of trees in A. such that

1) if teE0, and (t)-> (q, u)eR, then u eM(q, t);
2) if t=b[h ,t.], where n>0, beY_.., and tl,...,t.e;,., and (i)

(b, q q.)- (q, zxilz2x.., zrx..z.,+a) is a rule of R, where ql q. e
Q, m _-> 0, and za z,.+l e (A U H)*, and (ii) for 1, 2,..., n, ui e M(qi, ti),
then zxuhzzui. z.,u..z.,+x e M(q, t).
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DEFINITION. Let M (Q, E, A, R, F) be a bottom-up tree transducer. For s e
X,, M(s)= U,FM(q, s). For S c_ X,, M(S)= UssM(s).

Finally, we define a hierarchy of families of tree languages analagous to the
top-down hierarchy studied earlier.

DEFINITION. Let Uo denote the family of recognizable sets. For n > 0, define

Un {M(T)I T Un-1 and M is a bottom-up tree transducer}.

Thus, for n -> 0, U is precisely the family of tree languages which can be obtained
from the recognizable sets by the application of n bottom-up tree transductions. Now,
in [8], it was shown that for every n, U,D and yield(Un)___ yield(D,,). Therefore,
from Theorem 2, we obtain the following corollary.

COROLLARY 2. For every n >--0, Un and yield(Un) are properly contained in the
family of deterministic context-sensitive languages.

Therefore, we have shown that if a set T is obtained from a recognizable set by
the application of n > 0 tree transductions, either top-down or bottom-up, then both T
and yield(T) are deterministic context-sensitive. Moreover, not every deterministic
context-sensitive language can be obtained from the recognizable sets in this manner.
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COMPLEXITY OF TASK SEQUENCING WITH DEADLINES, SET-UP
TIMES AND CHANGEOVER COSTS*
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Abstract. In this paper we consider the problem of sequencing classes of tasks with deadlines in which
there is a set-up time or a changeover cost associated with switching from tasks in one class to another. We
consider the case of a single machine and our results delineate the borderline between polynomial-solvable
and NP-complete versions of the problem. This is accomplished by giving polynomial time reductions,
pseudo-polynomial time algorithms and polynomial time algorithms for various restricted cases of these
problems.

Key words, set-up time, changeover cost, sequencing, scheduling, NP-complete, pseudo-polynomial,
polynomial time, algorithms

1. Introduction. Suppose that a computer is presented with a collection of tasks
(source code programs), each with a known processing time (compilation plus execu-
tion), and each with a fixed completion deadline. Each task requires the presence of a
particular compiler in memory. If the proper compiler for a task is resident, the task
may be instantly started; otherwise the contents of memory are abandoned and a
set-up time is suffered to bring the proper compiler to memory. This activity is called a
changeover. Only one compiler can be resident in memory at a time. Thus it may be
advisable to contiguously schedule several tasks requiring the same compiler’s
presence.

The question is: can the given collection of tasks, each demanding a compiler, a
processing time and a deadline, be sequenced so as to meet the given deadlines? We
examine the complexity of any algorithm which answers this question for arbitrary
collections of tasks. We will show that the problem of deciding feasibility on one
processor is NP-complete. It is NP-complete even for some very restricted special
cases.

We assume that the reader is familiar with NP-completeness; the reference [1]
gives a definition and examples, and [2] relates complexity to sequencing problems.

A closely related set of problems involves a single production line manufacturing
various sized lots of several different products. Each lot has a deadline for completion,
and there is a changeover cost associated with switching the line from the production
of one product to another, even though there is no time lost in the changeover. The
problem is to minimize the total changeover cost (feasibility is trivial to decide).

We demonstrate below that this problem, even for unit changeover costs, is
NP-complete.

Our results delineate the borderline between polynomial-solvable and NP-
,complete problems. We do this by giving polynomial time reductions, pseudo-poly-
nomial time algorithms and polynomial time algorithms for various restricted cases of
the above problems. Reductions are used to show NP-completeness and thus give
evidence that certain problems cannot be solved in polynomial time; pseudo-poly-
nomial time algorithms and polynomial time algorithms are provided to give evidence
that certain NP-completeness results cannot be strengthened. The results are sum-
marized in Fig. 5 and Table 1.
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was supported by the National Science Foundation under Grant MCS 75-22557.

t Department of Electrical Engineering and Computer Science and the Computer Systems Laboratory,
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2. The problems. Suppose we are given r pairwise disjoint classes of tasks
C1, , C. Each class Ci has associated with it a special set-up task Si with set-up time
r(Si) and set-up cost (changeover cost) c(Si). By convention Si is not itself an element
of Ci.

Every task T in C [_J Ci has a given integer processing time r(T) and a deadline
d(T). These tasks are to be scheduled on m identical processors, though only the case
m 1 will be dealt with here.

In this paper we shall assume that all schedules are nonpreemptive.
On any processor, every schedule must satisfy the following sequencing con-

straint: every task must immediately follow another task of its class or the set-up task
for its class. A set-up task may be scheduled at any time a processor is idle, and may be
scheduled as often as necessary.

We shall assume that "schedule" means "schedule satisfying the sequencing
constraints."

We now define the two problems whose complexity we wish to explore.
DEFINITION 1. The Feasibility Problem 2 is: given a collection of classes

(CI,..., C,), does there exist a schedule for all the tasks in C (and all the necessary
set-up tasks) such that all the non-set-up tasks finish before their deadlines?

DEFINITION 2. The Schedule Cost Problem is: given a collection of classes
(C1, , C,) and a nonnegative integer K, does there exist a schedule for all the tasks
in C such that all the non-set-up tasks finish before their deadlines and the total
changeover cost is less than or equal to K?

Example. Let r 2 where the tasks in each class are described as follows:

C1--{Tll, r12, T13}, "F(S1)--2, c(S1) 1,

d(Tll) 3, r(T1,) 1,

d(T,2) 15, (T,2) 2,

d(T13) 12, 7"(T13) 2,

C2 {T21, T22}, ’(S2) 1, c(S2) 1,

d(T21) 10, r(T21) 3,

We depict a feasible schedule in Fig. 1 (which is also minimum in cost, since only one
feasible schedule exists). Note that Class 1 tasks must be split into two segments in
order for T21 to meet its deadline.

Given a schedule S, we define a segment of S to be a maximal consecutive
sequence of tasks all from the same class beginning with a set-up task and followed by
non-set-up tasks. The schedule of Figure 1 has three segments.

In this paper we confine our attention to the above problems for a single
processor (m 1). For two processors (m 2) all these problems are hard; it is trivial
to reduce the Partition Problem [7] to even degenerate cases of these problems.

We shall not be simultaneously interested in set-up time and set-up cost; this formulation is given for
generality.

Closely related to this problem is the Schedule Length Problem: given a collection of classes
(C1,. , C,), and a nonnegative integer K, does there exist a schedule such that all non-set-up tasks make
their deadlines and the maximum finishing time is =<K? This problem is easily seen to be polynomially
equivalent to the Feasibility Problem, and so will not be discussed further.
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CLASS

’T’’ "I T’3’ /Z/"/"
CLASS 2 CLASS

Tz,

FIG. 1. A schedule.

We have also assumed that changeover costs and set-up times depend o..nly upon
the class scheduled after each changeover. If costs or times depend upon both the
classes processed before and after the changeover, the costs or times are called
sequence-dependent [5]. When sequence-dependent costs (times) are allowed, it is
trivial to reduce the Traveling Salesman Problem to even special cases of our pro-
blems.

In 4 below we adtress ourselves to the case of m 1 and non-sequence-
dependent costs and times. Depending upon the number of distinct deadlines
involved, these problems can be easy (polynomial) or hard (NP-complete).

3. History. Several authors have examined the case of changeover costs with
deadlines, attempting to design efficient algorithms for minimum cost schedules.
Glassey [8] considered the special case of unit changeover costs, i.e., the problem of
minimizing the number of changeovers within deadlines.

Mitsumori [10] improved upon Glassey’s branch-and-bound algorithm and
extended it to handle non-sequence-dependent changeover costs. Driscoll and
Emmons [5], [4] have given dynamic programming algorithms for the most general
case of sequence-dependent changeover costs with deadlines.

Turning to the problem of minimizing total set-up time within deadlines, this is
seen to be identical to the problem of minimizing schedule length within deadlines.
Driscoll [3] gives a branch-and-bound algorithm for the general case of sequence-
dependent set-up times. If all set-up times are identical and nonzero, this is the same
as the problem of minimizing the number of changeovers.

4. NP-Complete sequencing problems: Reductions. In this section we reduce the
Knapsack Problem to the Feasibility Problem, showing it to be NP-hard (that it is in
NP is trivial). For each instance of the Knapsack Problem, we construct a sequencing
problem instance with uniform set-up times, three tasks per class and three distinct
deadlines, and such that the instance is feasible if and only if the Knapsack instance
has a solution.

In this section we also consider the Schedule Cost Problem. Reductions are
provided showing various versions of these problems to be NP-complete. These
results are summarized in Table 1.

The following problem, called the Knapsack Problem, is known to be complete in
NP [7].

Knapsack Problem. Let ’1,"’, ,, b be positive integers. Does there exist a
subset I

___
{1, , n} such that

We denote an instance of the problem by Kn ({-1,, ., -,}, b).
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TABLE
NP-complete problems.

Number of

Set-up Changeover Processing Tasks per distinct

Problem times costs times class deadlines Results

Feasibility unit zero 3 3 Cor.
Schedule Cost zero unit 3 2" Cor. 2
Feasibility zero 2 2 Thm. 3
Schedule Cost zero 2 " Thm. 4

Number of noninfinite deadlines.

Next we exhibit a linear-time construction of an instance P of the Feasibility
Problem from an instance Kn of the Knapsack Problem.

Construction. Let Kn ({’1,""", ’,}, b) with -0 Y’,’=I zi > b be an instance of the
Knapsack Problem.

Construct an instance P of the sequencing problem with n+2 classes
Co, C1,"" ", Cn, C,,/1. Each class contains three tasks: TI with deadline dl, T2 with
deadline d2 and T3 with deadline d3.

class Ci (Si) a’(T/1) -(T/2) T(T/3)

Co 1 1 ’o H’o
C 1 1 ’1 HT"l

C,, 1 1 ’,, H-,
C,, + 1 1 ’o H’o

Let

dl 2(n + 2) + b, d2 3n + 5 + 3"to + 2H’ro- Hb and d3 3n + 5 + 3"to + 3H’ro

where H max (o, n + 2). Clearly d3
Call a task with a deadline di a d-task.
Consider any feasible schedule for P. It consists of a succession of segments. We

classify segments according to the tasks they contain. For example, a segment which
consists of a d1-task and a d3-task is called a dld3-segment.

LEMMA 1. Let S be a feasible schedule for P. Then no d3-task finishes at or before
deadline d in S. Moreover, neither of the tasks To2 or T+12 finishes at or before dl.

Proof. Assume that some da-task, say T, finishes on or before deadline dl. By the
choice of H we have -(T) _-> 70. Also appearing before deadline d we must have n + 2
dl-tasks and n + 2 corresponding set-up tasks. Thus the total processing requirement
before deadline dl is as great as 2(n+2)+-o>2(n+2)+b=dl (since ’o>b), a
contradiction.

Similarly, tasks To2 and T,+I 2 have processing times equal to ’o and cannot finish
before d by the same reasoning. 1-1

LEMMA 2. Let S be a feasible schedule for P. Then S cannot contain more than
2n + 3 segments.

Proof. Suppose S contains more than 2n / 3 segments and consequently at least
2n /4 set-up tasks appearing before d3. Also, before d3 we must find all dl-tasks,
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d2-tasks and d3-tasks. Thus the total processing requirement before d3 (including the
set-up tasks) is at least (2n + 4) + (n + 2) + 3’o + 3H’o d3 -t- 1, a contradiction. [-1

LEMMA 3. Let S be a feasible schedule for P. Then in S there is exactly one
dld2d3-segment; there are no dl d3-segments and no d2-segments.

Proof. It is easy to show, using Lemma 1, that there can be at most one dld3-
segment or dd.d3-segment in S. Assume there is a dld3-segment. There are n +2
segments containing d-tasks. There must be an additional n + 1 segments containing
d3-tasks. In addition, there must be a d2-segment which contains the d2-task missing
from the dd3-segment. This is a total of 2n + 4 segments, in contradiction to Lemma
2. Consequently, there are no dld3-segments in S.

A similar argument shows that the existence of a d2-segment contradicts Lemma
2 and therefore S cannot contain any d2-segments.

Assume there is no dd2d3-segment in S. As before, there must be n + 2 segments
containing dl-tasks and an additional n + 2 segments containing d3-tasks, a contradic-
tion. Accordingly, S contains exactly one dld2d3-segment.

LEMMA 4. Given a feasible schedule S, there exists a feasible schedule S’ such that
all d-segments appear before all dl d2-segments, all ddz-segments appear before the
dad2d3-segment, the dld2d3-segment appears before all the d2d3-segments and tll the
.d2d3-segments appear before all the d3-segments. (cf. Fig. 2.)

0 d d2 d3

FIG. 2. A normal schedule.

0 d

__.v.._> ,,__.v._ ,,..______L

dl dId:, dd:,d3
BLOCK BLOCK BLOCK

d d:

dd d
BLOCK BLOCK

FIG. 3. A feasible schedule.

Proof. Starting with the schedule S, we move all the d1-segments to the beginning
of the schedule. It is easy to see that this is possible. Then we move all the dd2-
segments to positions immediately following the d1-segments, etc. Each separate
interchange of segments leaves feasibility invariant.

When a schedule is in the normal form of Lemma 4, we will refer to the
contiguous group of dl-segments as the d-block, the contiguous group of dd2-
segments as the dld2-block, etc.

THEOREM 1. The sequencing problem instance P is ’easible i]" and only
Kn ({r, ., r,}, b), with ’o Y.’= ’i > b, has a solution.
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Proof. (=) Suppose Kn ({’1,"" ", ’n}, b) has a solution I_{1,..-, n}, that is,
]i; ’i- b. Define I={1,..., n}-I. Consider the schedule illustrated in Fig. 3. The
d2-tasks in the dld2-block are the T2’s with I. The dld2d3-segment contains Tol To2
and To3. The d3-tasks in the d2d3-block are the T3’s with I and Tn+13. The last
d2d3-segment in the d2d3-block consists of tasks T,+I 2 and T,+ 3. The tasks T3 for
iI are in the rear d3-block. This accounts for all the tasks. We consider each
deadline in turn showing feasibility of the schedule illustrated in Fig. 3.

Deadline dl. All the d-tasks, the d2-tasks in the dld2-block, and n +2 set-up
tasks must be processed before d. The total processing time is

n+2+ -i+n+2=dl.

Deadline d2. All the d-tasks, all the d2-tasks, no more than 2n + 3 set-up tasks
(cf. Lemma 2) and all d3-tasks T3 with i I and To3 must be processed before
deadline d2. The total processing time does not exceed (n + 2) + 3’o + 2n + 3 + 2/-/-o-
Hb d2.

Deadline d3. The total processing time to d3 consists of 2n + 3 set-up tasks and all
the other tasks. This total is exactly d.

It follows that the illustrated schedule is feasible.
() Suppose there is a feasible schedule S for P and that S is in normal form

(Lemma 4 and Fig. 2). Let us call the dz-tasks in the ddz-block the chosen tasks" I
enumerates their indices.

Consider the sum of the chosen task times Ya ’i L. If L b then the indices in I
provide a solution to Kn ({-1, , -,}. b) since, by Lemma 1, the indices 0 and n + 1
cannot be in L

It remains to show that L b is the only possibility. We treat two cases.
Case 1. L > b. Summing the total processing prior to d we get 2(n + 2) + L > da, a

contradiction. The first term on the left-hand side is the contribution from the set-up
tasks and the d-tasks, the second is due to the d2-tasks.

Case 2. L b-e where e is a positive integer. Summing the processing required
prior to d2 we get a lower bound D where

D (n + 2) + (n + 2) + 3-0 + H(3’0- b + e) H’o.

The first three terms correspond to set-up tasks, d-tasks and d2-tasks, respectively.
The last two terms correspond to d-tasks which appear in segments with a dz-task
less the maximum such d3-task which can extend beyond d2. Computing D d2 we get

D-d2 He -(n + 1) >0

since H max (’0, n + 2). Thus the deadline d2 is not met, a contradiction. Vl
COROLLARY 1. The Feasibility Problem with unit set-up times, three tasks per class

and three distinct deadlines is NP-complete.
Next we study the complexity of minimizing the number of changeovers when all

set-up times are zero. A construction similar to the one used above proves that the
Schedule Cost Problem for unit changeover costs, two noninfinite deadlines and zero
set-up times is NP-complete.

Construction. Let Kn ({-,..., -,}, b) with -0 ’= - > b be an instance of the
Knapsack Problem. Construct an instance of P of the sequencing problem with n + 2
classes Co, C,. , C,, C,+1. Each class contains three tasks: TI with deadline d, T/2
with deadline d2 and T3 without a deadline, i.e., d3 o.
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class C ’(Si) c(S,) T(Til) "/’(ri2) "/’(ri3)

Co 0 1 1 Zo H’o
C1 0 1 1 " Hz

Cn 0 1 1 Zn H’n
an+ 0 1 1 Zo H’o

Let

dl rt + 2 + b, de n + 2 + 3z0 + 2H-o- Hb and d3 o9

where H z0. K, the upper bound on the number of changeovers, is equal to 2n + 3.
THEOREM 2. The sequencing problem instance P has a feasible solution with total

changeover cost less than or equal to K if and only if Kn ({Zl,’", ’,}, b), with
’o Y’= ’i > b, has a solution.

We omit the proof of Theorem 2 since it follows the same pattern as Theorem 1
with the same series of supporting lemmas being true if the total changeover cost does
not exceed K. The role of d3 in the previous construction is now played by K.

COROLLARY 2. The Schedule Cost Problem for unit changeover costs, three tasks
per class, two noninfinite deadlines and zero set-up times is NP-complete.

Corollaries 1 and 2 account for the first two rows of Table 1. In the next two rows
of Table 1 we allow unrestricted set-up times and changeover costs, respectively. We
find that we can place more severe restrictions on the number of tasks and still show
that the Feasibility and Schedule Cost problems are NP-complete.

THEOREM 3. The Feasibility Problem for two tasks per class and two distinct
deadlines is NP-complete.

Proof. We reduce the Knapsack Problem to this sequencing problem. The tech-
nique is similar to the one used in the proof of Theorem 1.

Let Kn ({Zl,"’, z,},b) be an instance of the Knapsack Problem, with Zo
7= ’i > b. Construct a sequencing problem P with n + 1 classes Co, C1, , C,. Each
class contains two tasks: one with deadline d and the other with deadline d2.

Let

class C/ "r(Si) T(T/1) T(Z/2)

Co To 1 To
C ,7 1 T

dl=(n+l)+2"ro+b and d2=(n+l)+5"ro-b.

Clearly dl < d2.
We will merely sketch the remainder of the proof, leaving the details to the

reader. We need two easy lemmas.
LEMMA 5. If S is a feasible schedule, then there is a normalized feasible schedule S’

starting with a dl-block, followed by a dld2-block and concluding with a d2-block.
LEMMA 6. In any normalized feasible schedule S, To2 must be the last task

scheduled in the dld2-block.
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We now make the
CLAIM. The problem instance P is feasible if and only if Kn ({rl, ", r,}, b) has a

solution.
Proof of claim. If Kn has a solution /, then P has a feasible schedule with the

dz-tasks indexed by I I,,J {0} chosen for the dldz-block.
Conversely, suppose P has a normalized feasible schedule (Lemma 5). Let I be

the indices of the dz-tasks chosen for the dd2-block. Then 0 I by Lemma 6. We
reason that I’= I-{0} solves the Knapsack instance Kn. For if 1,ri > b then the
finishing time of the d-tasks is greater than dl, a contradiction. In the case that
i, ri < b, then the finishing time of all the dz-tasks is greater than d2, a contradic-
tion.

Finally, we turn to the Schedule Cost Problem with the restriction to unit
changeover costs removed.

THEOREM 4. The Schedule Cost Problem for two tasks per class, one noninfinite
deadline and zero set-up times is NP-complete.

We shall not include a proof of Theorem 4 as it bears the same relationship to
Theorem 3 as Corollary 2 bears to Corollary 1. However, we give the underlying
construction, viz.,

class C z(S) c(S) "r(Til) "r(T/z)
Co 0 ’o 1 q’0

C1 0 7"1 1 T1

Let d n + 1 +b, d2= and K, the upper bound on the changeover cost, equals
3-0- b.

5. Polynomial time algorithms. We have demonstrated that even very restrictive
cases of sequencing problems with deadlines and set-up times/costs are NP-complete.
If we restrict these problems in any way we can obtain polynomial time algorithms.

For example, the Feasibility Problem for equal set-up times and two deadlines
and the Schedule Cost Problem with equal changeover costs and one noninfinite
deadline can be solved efficiently. In these cases a greedy algorithm [9] will work. The
basic idea is to form as many dad:-segments as possible thereby causing the fewest
additional d2-segments.

The following theorem gives a class of problems which have polynomial time
algorithms. The theorem covers restricted versions of the problems in Table 1.

T/IEOREM 5. Let d be a given positive integer. Then the Feasibility Problem for
equal set-up times, no more than two tasks per class and d distinct deadlines and the
Schedule Cost Problem with equal changeover costs, no more than two tasks per class
and d noninfinite deadlines can be solved in polynomial time.

Proof. We can assume, without loss of generality, that each task within a class has
a distinct deadline. This follows from the observation that if in a feasible schedule the
d-tasks of a particular class (d is a deadline) appear in different segments, then they
may be moved to the latest segment containing one of these d-tasks and merged into
a single task without affecting feasibility and without increasing the schedule cost.

The observation behind our algorithm goes as follows. We call a class a didi-class
(where d <di) if it contains a d-task and a di-task. Order the ddi-classes in nonde-
creasing order of the processing times of the d-tasks. Let C1, C2,’", C be the
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ordered list of didj-classes. We claim that we need not consider schedules in which C
uses two set-ups (changeovers), C. uses one set-up (changeover) and > i. An inter-
change argument can be used to show this. Consequently, we need only determine the
index i* such that each C1,’", Ci. uses one setup (changeover) and each
C./1,..., Ck uses two set-ups (changeovers). Since there is a fixed number (d) of

we only have to consider a fixed number-(less than or equal to ())deadlines of

didj-classes. Once we have decided on the segments we can arrange to place all the
same type of sements into a single block (this is easy to show) and choose the sement
which goes last in each block. It remains to pick an order for the blocks and test
feasibility. This leads to a polynomial-time algorithm, because the number of distinct

d, the number of blocks bounded by d+()and the number of arrange-deadlines is

of these blocks is bounded by/+(3/,-The choices which depend on thements

number of classes are the choice of i* and the choice of the segment which goes last in
a block; but the number of these choices is bounded by a polynomial in r whose

degree is easily no larger than () + d.

By suitably arranging the i* choices this algorithm solves both the Feasibility and
the Schedule Cost Problems.

6. PseudO-lolynomial time algorithms. Let I be an instance of a problem and let
MAX[l] denote the magnitude of the largest number occurring in L Let LENGTH[I]
denote the length of the string which encodes L

The restriction we place on the encoding of problem instances requires that
numbers be represented in binary. A pseudo-polynomial time algorithm is an
algorithm that runs in time bounded by a polynomial in the two variables
LENGTH[l] and MAX[l].

Our aim in this section is to show that there exist pseudo-polynomial time
algorithms for the problems presented in Table 1 thereby giving evidence that none of
these problems are strongly NP-complete [6]. The existence of pseudo-polynomial
time algorithms means that if a polynomial time reduction exists in which processing
times, set-up times and changeover costs are encoded in unary then deterministic
polynomial time equals nondeterministic polynomial time, an unlikely situation! The
reader is referred to [6] for a thorough discussion of these issues.

THEOREM 6. Let d be a given positive integer. There exist pseudo-polynomial time
algorithms ]:or the Feasibility Problem and the Schedule Cost Problem with d deadlines.

Note that Theorem 6 covers a much wider class of problems than those presented
in Table 1.

Proof. For simplicity we restrict ourselves to the Feasibility Problem with three
distinct deadlines, dl< d2 < d3. It is conceptually easy to extend the proof to handle
any fixed number of deadlines. Without loss of generality, we assume that each task
within a class has a distinct deadline and that within a class the d task precedes the dz
task and the d2 task precedes the d3 task.

We specify an algorithm which has some nondeterministic steps. Our goal is to
show that if the size of the processing times and the set-up times is bounded above by
a polynomial in the number of classes then the algorithm need only consider the
feasibility of a number of cases bounded by a polynomial in the number of classes.
This conclusion relies on the fact that there is a fixed number of deadlines.
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Step 1. Pick the class C which forms the latest segment to contain a d1-task. In
addition, choose from the remaining tasks in C those which will accompany the
d1-task in this segment. Consider the remaining tasks (if any) to form a new class.

Step 2. Pick the class C’ which forms the latest segment to contain a dz-task. If C’
has a d3-task then it should accompany the dz-task in this segment. (It should be
recognized that one possible choice is to have class C form the single segment which
contains both the last da-task and the last d2-task!)

Comment. We refer to Fig. 4, which shows the structure of the partial schedule we
have up to this point. Interval ta may contain any type of segment, interval t2 contains
d2-, d3-, or dzd3-segments, and interval t3 contains d3-segments only. The rest of our
algorithm decides whether the remaining tasks can be added to the partial schedule,
determined by the choices in Steps 1 and 2, so as to construct a feasible schedule. Let
C,..., Cs denote the classes of tasks which remain after Steps 1 and 2. Note that
s =< r, the original number of classes.

Step 3. Lo -{(0, 0, 0)}; k 1.
Comment. Lk denotes a set of triples where each triple (tl, t2, t3) represents a

possible set of durations (see Fig. 4) using all the tasks in classes C,-.., Ck. We
require that ta+a<-dl; tl+a+b+t2+a’<-d2; and tl+a+b+t2+a’+b’+t3<-_d3.

The set Lk is constructed from set Lk-1 and class Ck. The information regarding
all possible segmentations of the tasks in classes Ca,’", Ck-a is contained in the
triples belonging to Lk-. This economy leads to a pseudo-polynomial time algorithm.

Step 4. Consider class Ck. For all divisions of Ck into segments and for all
(q, t2, t3) in Lk-a, add the duration of these new segments to tl, t2 and t3 in all possible
ways to form new triples (t], t, t) which belong to list Lk.

If k s then go to Step 5. Otherwise k k + 1 and repeat Step 4.
Step 5. If Lk # 4) then there is a feasible schedule. Stop.

b_>o bzo

THIS SEGMENT THIS SEGMENT
CONTAINS THE CONTAINS THE
LATEST d TASK LATEST de-TASK

OR

btz o; b=o; _>O

THIS SEGMENT CONTAINS
BOTH THE LATEST dI-TAsK
AND THE LATEST de-TASK

FIG. 4. Partial schedules.

d3
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To analyze the time complexity of the above algorithm we observe that the
nondeterminism in Steps 1 and 2 results in a multiplicative factor of O(r2). Step 4 is
repeated no more than r times. Let M be the sum of all the processing times and
set-up times. The list Lk can have no more than O(M3) entries and we can arrange (if
we do not allow duplicate entries) to construct list Lk from list L-I in O(M3) time.
This leads to a time complexity of O(r3M3). Thus we have shown the existence of a
pseudo-polynomial time algorithm for the Feasibility Problem with three deadlines.
Extension to any fixed number of deadlines is easy.

A similar construction works for the Schedule Cost Problem. I-l

7. Conclusions. We have demonstrated that even very restrictive cases of
sequencing problems with deadlines and set-up times/costs are NP-complete. The

b VARIABLE
d VARIABLE

d CONSTANT

[THEOREM 611
EQUAL

5 (,)
COROLLARIES 1,2]

b VARIABLE
C=2
d 2 (,)
THEOREMS 3, 4

b EQUAL

C=2
d =3(,)

[THEOREM 5]

b EQUAL

C=2
d 2 (,)

[THEOREM 5]

NP- COMPLETE

NP- COMPLETE,
SOLVABLE IN
PSEUDO
POLYNOMINAL
TIME

SOLVABLE IN
POLYNOMINAL
TIME

b- SET-UP TIMES (CHANGEOVER COSTS)
C- NUMBER OF TASKS PER CLASS
d- NUMBER OF DISTINCT DEADLINES
(,)- INCLUDING AN INFINITE DEADLINE IN THE CASE OF THE

SCHEDULE COST PROBLEM

ASSUMPTIONS:

PROCESSING TIMES ARE VARIABLE
C <_ d, WITHOUT LOSS OF GENERALITY

FIG. 5. Summary of results for feasibility (schedule cost) problem.
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various completeness results are summarized in Table 1. We have also shown that
pseudo-polynomial time algorithms exist for the problems in this table and some of
their generalizations, thereby giving evidence that stronger results are not possible.
Thus it is unlikely that any of these problems is NP-complete when task lengths are
constrained to be polynomially bounded in the number of tasks. Moreover the
problems listed in Table 1 are likely to be the most restricted cases of the general
problem which are NP-complete--in each case reducing either the number of
tasks per class or the number of distinct deadlines yields a problem which can be
solved in polynomial time. We summarize these results in Fig. 5.

One issue that we have not been able to resolve is whether the general problem is
NP-complete when the task lengths, set-up times and/or change-over costs are not
allowed to be exponentially large with respect to the number of tasks.

Acknowledgment. The results presented concern a fixed number d of deadlines
and a single release date (at time zero). We are indebted to Teofilo Gonzalez for the
observation that the same set of results goes through for one deadline and a fixed
number of release dates.
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POLYNOMIAL ALGORITHMS FOR
DETERMINISTIC PUSHDOWN AUTOMATA*

DANIEL J. ROSENKRANTZ? AND HARRY B. HUNT III:

Abstract. An algorithm is presented for converting a deterministic pushdown automaton (dpda) of size
n into an equivalent dpda that always halts. The dpda produced is of size O(n). The algorithm operates in
linear time on a random access machine (but may require the allocation of O(n 2) storage), and in time
O(n 2) on a multi-tape Turing machine. Related results on polynomial time algorithms for dpda equivalence
problems and for two-way pushdown automata language recognition problems are discussed.

Key words, pushdown automata, cycle removal, halting, two-way pushdown automata

1. Introduction. Deterministic pushdown automata (dpda) are of both practical
and theoretical interest. A dpda may have the defect that it cycles (does not halt) for
some input sequences. However an arbitrary dpda can be redesigned so that it never
cycles. The redesigned dpda can in turn easily be converted into a dpda that accepts
the complement of the lnguage accepted by the original dpda. Previous algorithms
for the redesign to eliminate cycles either emphasize the form of the redesigned
machine and are not specific enough to have an analyzable time bound ([14], [4]), or
take an amount of time that is exponential in the size of the machine description ([6],
[2], [12]). However, the redesign can be done in polynomial time, as is noted in [9] and
[16]. In this paper, we present a redesign algorithm that operates in linear time on a
unit-cost random access machine, and in time O(n 2) on a multi-tape Turing machine.
Our linear time redesign algorithm provides additional motivation for studying the
complexity of decision procedures for dpda’s in cycle-free normal form, as required by
the algorithms in [17].

We also discuss several results concerning polynomial time algorithms for related
equivalence problems, and show how our linear time redesign algorithm relates to
some other polynomial time problems. A new proof that each two-way dpda language
is recognizable in linear time on a unit-cost random access machine is presented.

2. Definitions and notation. We use e to denote the empty string and b to denote
the empty set. For a set 2‘, we let I1 denote the cardinality of 2‘, and for a string , we
let 1:1 denote the length of . For a set of symbols 2‘, we let 2‘ denote 2‘ LI {e}.

A deterministic pushdown automaton (dpda) is a seven-tuple M (O, 2‘, F, ;, q0,

Z0, F) where
1. t) is a finite set of states;
2. 2, is a finite set of input symbols;
3. F is a finite set of stack symbols;
4. q0 in O is the initial state;
5. Z0 in F is the initial stack symbol;
6. F

_
O is the set of accepting states; and

7. 6, the transition function, is a mapping of Q x2, x F into (Q x F*)U{}
subject to the constraint that if 6(q, e, A) (g then 6(q, a, A)= for each a
in 2,.
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We define a configuration as an element of O x 5;* x F*. We define the relation
on configurations by

(p, ax, A,y) (q, x, ’y)

if 8(p, a, A)= (q, :). If a e, we say that the second configuration is obtained from the
first by an e-move.

Let - be the reflective transitive close of t--, and let - be the transitive closure of. The language accepted by M is

L(M) {x[(qo, x, Zo) - (p, e, 3’) for some p in F and 3’ in r*}.

Thus to accept an input sequence, the dpda must read the entire input sequence
and then (perhaps during a series of e-moves) enter an accepting state. Two machines
are said to be equivalent if they accept the same language.

A dpda halts for input sequence x if there is a configuration a such that

(q0, x, Z0) - a

and there is no configuration fl such that a -ft. If a dpda does not halt for a
particular input sequence, we say that it cycles for that input sequence.

Define the symbol count of a pair (q, ), where q is in Q and sc is in F* as I1 + 1,
and the symbol count of as zero. We define the symbol count of 8, denoted 181, as
the sum over all q in Q, a in Y_,,, and Z in F, of the symbol count of 8(q, a, Z). Note
that if 8(q, a, Z) is null, then (q, a, Z) does not contribute to 181. We define the symbol
count of a dpda as IQI + IEI + ]FI + 181. If the symbol count is m, we define the size of the
dpda to be m log (IQI + ]El + IFI). The number of symbols used to describe the dpda is
proportional to the symbol count, and the number of bits required is proportional to
the size.

In analyzing the complexity of algorithms, we consider three computing devices"
a multi-tape Turing machine, a unit-cost random access machine (unit-cost RAM),
and a log-cost RAM. A unit-cost RAM is assumed capable of manipulating a symbol
or following a pointer in a single unit of time. A log-cost RAM is assumed to have to
separately process each bit in the binary encoding of a symbol, and thus for poly-
nomial space algorithms processes a symbol or follows a pointer in time bounded by
the logarithm of the dpda size. For practical computations on dpda’s, the unit-cost
RAM is the most realistic of the three models. Algorithms taking time O (symbol
count) on a unit-cost RAM take time O ((symbol count), log (size))on a log-cost
RAM. For the class of dpda’s that push at most one symbol at a time, log (size) is
O(log (IQ[ + [,El + IFI)), and so algorithms taking time O (symbol count) on a unit-cost
RAM take time O (size)on a log-cost RAM.

For a unit-cost RAM, a well-known technique for implementing sparse arrays
can be used to access array elements in unit time, without having to initialize the entire
array. For instance, suppose we want an array of size [QI" IF[, but with valid entries for
a designated subset of QF (say {(q,A)[8(q,e,A)(}). Given a (q,A)in the
designated subset, the corresponding entry in an array of size [Q[. [F[ can be found in
unit time by a unit-cost RAM. Given a list of members of the designated subset and an
array of size IQI" IF[, the array can be initialized by a unit-cost RAM in time bounded
by the cardinality of the designated subset. For each item in the list, the initialization
consists of storing a pointer to the list item in the corresponding array entry and
placing a pointer to the array entry in the list item. Any array entry can subsequently
be checked for validity by determining whether it points into the list and if so, whether
the list item also points back at the array entry.
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3. Eliminating cycles.
THEOREM 3.1. There is an algorithm ]:or converting an arbitrary dpda ofsize n into

an equivalent dpda of size 0 (n that always halts. The algorithm takes time 0 (symbol
count) on a unit-cost RAM and O(n 2) on a multi-tape Turing machine.

Proof. We describe an algorithm that takes time O (symbol count)on a unit-cost
RAM. It should be clear that each unit step of this algorithm can be done within time
n on a multi-tape Turing machine. The algorithm consists of a sequence of trans-
formations of the dpda. Each transformation maintains the time and size bounds of
the theorem. In fact, the symbol count of the dpda after each transformation is
bounded by twice the symbol count of the dpda before the transformation.

If a dpda enters a nonterminating loop of e-moves, then either the pushdown
stack oscillates in size, or no symbol pushed on the stack during the loop is
subsequently popped off. Our second transformation prevents stack oscillations by
assuring that no symbol placed on the stack during a series of e-moves is ever popped
off by a continuation of that series. Our third transformation cuts off loops that do not
involve popping. Our first transformation is necessary to preserve the language
accepted by the dpda when sequences of e-moves are bypassed by the second
transformation.

The first transformation changes the dpda so that if the machine is in an accepting
state, all subsequent configurations obtained solely by e-moves also have accepting
states. For each state p, we introduce a new accepting state/3. For each a in E and A
in F, we define 8(/3, a, A) as follows--

8(/3, a, A)= (r, 3")

(f,

if t(p, a, A) ,
if 6(p, a, A)= (r, 3")

if 6(p, a, A)= (r, 3")

and a e,

and a e.

Next, whenever 6(q, e, A)= (r, 3") for some accepting state q, 6 is changed so that

6(q, e, A)= (?, 3’).

For p in Q and A in F, we say that a pair (p, A) is reducible if 6(p, e, A)= (q, B)
where B is in F, : is in F*, and (q, e,B)- (r, e, e). If 6(q, e,B)=(r, e), we say that
(p, A) is directly reducible. The second transformation changes the dpda so that no pair
(p, A) is reducible. Thus when an e-move of the transformed dpda places a symbol on
the stack, that symbol is not popped off the stack by a sequence of moves consisting
only of e-moves. In particular if for the current dpda

then for the transformed dpda
(s, e, B)- (t, e, e),

6(s,e,B)=(t,e).

The transformation consists of repeatedly simplifying transitions for directly
reducible pairs, until there are no directly reducible pairs. Once there are no directly
reducible pairs, there are no reducible pairs. Therefore after the transformation, it is
impossible to pop a symbol stacked earlier during the same sequence of e-moves.

The transformation is an efficient implementation of the following loop.

while

do

8 contains a move of the form
g(p, e, A)= (q, B)with
8(q,e,B)=(r,e)
change 8(p, e, A) to (r, :)
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This loop must terminate after O(symbol count) iterations because each time around
the loop the value of 161 decreases.

The transformation makes use of the following data structures"
1. 6-table is a sparse array of size IQI" IFI with an entry for each (p, A) having

an e-move. The entry contains 6(p, e, A), where if 6(p, e, A)= (q, 3’), then 3’
is stored as a linked list.

2. predecessor-table is a sparse array of size IQI IFI with an entry for each (p, A)
having an e-move. The entry for (p, A) contains a linked list of pairs

{(s, C)]6(s, e, C)= (p, A3") for some 3" 6 F*}.

3. DR-list of pairs (p, A) in Q F. The DR-list is initialized to {(p, A)l(p, A) is
directly reducible}.

These data structures can be constructed or initialized in time O(symbol count)
by a unit-cost RAM.

The transformation consists of constructing or initializing the three data struc-
tures and then performing the loop until the DR-list is empty. Each time around the
loop, the following steps are taken:

1. Delete a member of the DR-list, say (p, A). Suppose 6(p, e, A)= (q, B3") and
6(q,e,B)=(r,e).

2. Change 6(p, e,A) to (r, 3"). This involves changing the 6-table entry for
(p, A).

3. If 3" e, then add to the DR-list each (s, C)on the linked list pointed to by
the predecessor-table entry for (p, A).

4. If 3" C:, add (p, A) to the predecessor-table entry for (r, C). Furthermore, if
(p,A) is directly reducible, i.e., if 6(r,e, C)=(s,e), then add (p,A) to the
DR-list.

Each time around the loop steps 1, 2, and 4 take a fixed amount of time on a unit-cost
RAM. Each item added to the DR-list during step 3 is subsequently deleted from the
DR-list during some execution of the loop. Since there are at most 161 iterations of the
loop, the number of additions to the DR-list occurring during all executions of step 3
is bounded by 161. Thus the entire second transformation takes time O(symbol count).

The third transformation involves the construction of a directed graph whose
nodes are a subset of Q F. Each node has at most one edge leaving it. The graph
contains an edge for each non-popping e-move. Specifically, suppose that 6(p, e, A)=
(q, B:). Then the graph contains an edge from (p, A) to (q, B).

Note that there is a path in the graph from (p, Z) to (r, Y) if and only if for some 3"
in F*

(p, e, Z) (r, e, Y3").

If a node is a sink of the graph, or the path leaving the node ends in a sink, we say that
the node is halting. All other nodes (i.e., the nodes that are part of a cycle or lead to a
cycle) we call nonhalting.

The transition function is now changed based on the graph. If (p, Z) is a nonhalt-
ing node and p is an accepting state, then 6(p, e, Z) is changed to . If (p, Z) is
nonhalting, p is not an accepting state, and there is no path in the graph from (p, Z)
to a node with an accepting state, then 6(p, e, Z) is also changed to . Otherwise, the
transition function is unchanged.

The computation required for the third transformation involves finding all nodes
having a path to a sink, and finding all nodes having a path to a node with an accepting
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state. Since the number of edges in the graph is bounded by the symbol count, the
third transformation can be done in the stated time.

The new machine never cycles. Any cycle in the previous machine must reach
some smallest stack and then pass through some configuration corresponding to a
node whose transition was changed to .

THEOREM 3.2. Determining whether an arbitrary dpda of size n accepts a string x
can be done in time O(symbol count. (Ixl+ 1)) on a unit-cost RAM and time
O(n (Ixl + 1)) on a multi-tape Turing machine.

Proof. Apply the algorithm of Theorem 3.1 to the given dpda. The converted
machine, presented with input string x, starts with an initial stack consisting of a single
symbol. Let 8 be the transition function of the converted machine. Let 18,1 be the
portion of I[ due to e-moves, and [[ be the portion of [81 due to non-e-moves. Each
of the [x[ possible non-e-moves can push at most 181 symbols on the stack. Each series
of e-moves consists of a popping phase, followed by a pushing phase in which no
symbols are popped off the stack. For each pushing phase, [81 is a bound on the
number of transitions a0d a bound on the number of symbols pushed. The total
number of symbols pushed while processing x is a bound on the number of symbols
popped. If the converted machine pops a symbol off the stack via e-moves, it does so
in a single transition. Therefore the number of transitions in all the popping phases is
bounded by (symbol count). (Ix I+ 1). The total sequence of moves in processing x can
thus be simulated within the time bounds of the theorem. I3

COROLLARY 3.3. Determining whether an arbitrary dpda of size n accepts e can be
done in time O(symbol count) on a unit-cost RAM.

4. Polynomial equivalence problems or deterministic languages. The fact that
cycles can be eliminated from dpda’s in polynomial time directly implies that several
equivalence and containment problems are decidable in polynomial time.

THEOREM 4.1. Given a dpda M accepting some language over E, a dpda M’ can
be obtained in polynomial time such that

L(M’) E* L(M).

Proof. First modify the dpda if necessary, so that the initial stack symbol serves
as a "bottommarker" that is never popped off the stack. Then use a method similar to
that in [4] to obtain M’, but using the method of Theorem 3.1 to eliminate cycles.

THEOREM 4.2. (1) The set {(M, R)IM is a dpda, R is a deterministic finite state
automaton, and L(M) L(R ) [L(M)

_
L(R ), or L(M)

_
L(R )]} is polynomial time

recognizable.
(2) The set {(M, R)IM in a dpda, R is a regular expression, and L(M)_ L(R)} is

polynomial time recognizable.
Proof. L(M)_L(R) if and only if L(M)L(R) is empty, and L(M)_ L(R) if

and only if L(M)f) is empty. In polynomial time a dpda and a finite state auto-
maton (or regular expression) can be converted into a nondeterministic pushdown
automaton recognizing the intersection of their languages, and this automaton canbe
tested for emptiness.
An immediate corollary of Theorem 4.2 is the following.
COROLLARY 4.3. For each regular set Ro, there is a polynomial time algorithm to

decide, for a dpda M, ifL(M)= R0, L(M)_ Ro, or L(M)_ Ro.
One approach that has been used to obtain lower bounds on the complexity of

equivalence and containment problems is to establish the lower bound for testing
equivalence to the language {0, 1}*([15],[7],[10]). Corollary 4.3 shows that a
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straightforward application of this approach cannot provide a nonpolynomial lower
time bound for the dpda equivalence problem. Furthermore, the dpda equivalence
results above also apply to classes of context-free grammars for which an equivalent
dpda can be constructed in polynomial time. These classes include the LL(1) gram-
mars, the strict deterministic grammars [18], the uniquely invertible weak precedence
grammars, the uniquely invertible operator precedence grammars, and the simple
mixed strategy precedence grammars. Thus a straightforward application of the tech-
niques used in [15], [7], and [10] cannot be used to derive a nonpolynomial lower time
bound for the equivalence problem for LL(1) grammars, etc.

Theorem 4.2 presents a subclass of the dpda equivalence problem that is prov-
ably decidable in polynomial time. A related equivalence problem, that is also decid-
able in polynomial time, is the equivalence problem for linear s-grammars [11].

The linear time unit-cost RAM algorithm of Corollary 3.3 implies the existence
of several other linear time unit-cost RAM algorithms as well. First, consider the
emptiness problem for dpda’s with a singleton input alphabet.

THEOREM 4.4. The emptiness problem for dpda’s with a singleton input alphabet is
decidable in linear time on a unit-cost RAM.

Proof. Let M=(Q, {a},F, 8, qo, Zo, F) be the given dpda. The algorithm for
emptiness first modifies M by replacing each transition of the form 8(p, a, A)= (q, 3’)
with the new transition 8(p, e,A)= (q, 3’). Note that the e-transitions of M are
retained. The new dpda, M’, has the property that L(M) if and only if e is
accepted by L(M’). From Corollary 3.3, this recognition problem is decidable in linear
time on a unit-cost RAM.

Corollary 3.3 also provides an alternate way of obtaining the result in [3] that
every two-way dpda language is recognizable in linear time on a unit-cost RAM.

THEOREM 4.5. Every two-way dpda language is recognizable in linear time by a
unit-cost RAM.

Proof. Let M be a two-way dpda, and let x ala2 an be an input string to M.
Using an encoding technique from [5] and [8], x can be transformed into a dpda Mx
such that x is in L(M) if and only if e is in L(Mx). A state of Mx is a pair consisting of a
state of M plus a position in x (i.e., an integer between 1 and n). Intuitively, M’
simulates the operation of M on input x. Let 8 and 8x be the transition functions of M
and Mx, respectively. If 8(p, ai, A) or 8(p, e, A) is nonnull (at most one is nonnull),
then 8x((p, i), e, A) is nonnull and encodes the corresponding move of M.

The number of states and nonnull transitions of M is proportional to n (with the
constant of proportionality depending on M). Therefore the symbol count of M is
proportional to n. From Collorary 3.3, a unit-cost RAM can test membership of e in
L(Mx) in time proportional to the symbol count of M.

Conversely, Theorem 4.5 implies Corollary 3.3 and Theorem 4.4 since the
languages ,1 {MIM is a dpda accepting e } and 2 {M[M is a dpda with a singleton
input alphabet and L(M) } are both 2-way dpda languages [8].

Testing dpda for equivalence to any fixed deterministic language is at least as
hard as the membership problem for two-way nondeterministic pushdown automata
(2npda), as indicated by the following.

PROPOSITION 4.6. For any fixed deterministic context-free language Lo, any 2npda
language L is reducible to {MIM is a dpda and L(M) L0} in linear time by a unit-cost
RAM and in time and space n (log n) by a multi-tape Turing machine.

Proof. The proof uses encoding techniques from [5] and [8]. Let N be a 2npda
recognizing L1 and M0 be a dpda that recognizes L0 and always halts. We assume
without loss of generality, that the transition function of N permits at most two
choices for each move.
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Let x a la2 an be a string to be tested for membership in L1. The reducibility
is based on transforming x into a dpda Mx such that x is in L1 if and only if
L(Mx # Lo.

Let E0 be the input set of M0 and {c, d} be two new symbols. The input alphabet
of M is E0 U {c, d}. Machine Mx simulates M0 until it encounters a c or d. It then
empties its stack and starts to simulate N. In the simulation of N, the state of Mx is a
pair consisting of a state of N and a position in x. Let 6 and 6N be the transition
function ofM and N, respectively. Then 6((p, i), c, A) and 8x ((p, i), d, A) correspond
to the choices allowed by 6N(p, ai, A). Once M starts simulating N, it enters an
accepting state if it reads an input sequence corresponding to a sequence of
nondeterministic choices of N leading to acceptance of x. Note that M accepts an
input string in Z* if and only if M0 does. Thus L(M)= L0 U L2 where L2 o*{C, d}/

and L2 is empty if and only if x is not in L1. 71
Again as shown in [8], the language 3 {MIM is a 2-way dpda (2npda) and

L(M) } is a 2npda language. Thus, the uniform "lower bound" of Proposition 4.6
is fairly tight.

The best known algorithm for the recognition of 2npda languages takes time
O(n 3) on a unit-cost RAM [1]. An alternate algorithm with the same time bound can
be obtained using Prop. 4.6 with L0 . The alternate algorithm, outlined in [8],
consists of converting x into M, converting M, into an equivalent context-free
grammar, and testing the grammar for emptiness. The grammar is nonempty if and
only if x is in Z l. The conversion of Mx into the grammar can be done in time O(n 3)
on a unit-cost RAM [6], and, as is well known, the grammar can be tested for
emptiness in linear time by a unit-cost RAM.
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FINDING A MINIMUM CIRCUIT IN A GRAPH*

ALON ITAI AND MICHAEL RODEH:

Abstract. Finding minimum circuits in graphs and digraphs is discussed. An almost minimum circuit is a
circuit which may have only one edge more than the minimum. To find an almost minimum circuit an O(n 2)
algorithm is presented. A direct algorithm for finding a minimum circuit has an O(ne) behavior. It is refined
to yield an O(n) average time algorithm. An alternative method is to reduce the problem of finding a
minimum circuit to that of finding a triangle in an auxiliary graph. Three methods for finding a triangle in a
graph are given. The first has an O(e3/2) worst case bound (O(n) for planar graphs); the second takes
O(n 5/3) time on the average; the third has an O(nlg7) worst case behavior. For digraphs, results of
Bloniarz, Fisher and Meyer are used to obtain an algorithm with O(n log n) average behavior.

Key words, graph, digraph, triangle, circuit, shortest path, matrix multiplication, analysis of an
algorithm, computational complexity, worst-case, average-case, random graph

1. Introduction. In this paper we discuss finding short circuits in graphs and
digraphs. The problem of digraphs arose when we tried to define the distance
between two perfect matchings in a bipartite graph [4]. We assume that the reader is
familiar with the standard definitions of graph theory [9]. Let G (V, E) be a graph
with n vertices and e edges. In this paper the edges of a path (circuit) are all distinct.
The length of a path (circuit) is the number of its edges. We assume that the vertices
are numbered and we shall not distinguish between a vertex and its number. A
minimum circuit is a circuit whose length is minimum. Harary [6] defines the girth of a
graph to be the length of its minimum circuit. Several theorems relate to this notion
[5], [7]. An almost minimum circuit is a circuit whose length is greater than that of a
minimum circuit by at most one. We present an O(n :z) algorithm for finding an almost
minimum circuit. To find a minimum circuit we develop an O(n :z) average time
algorithm. The straightforward algorithm for finding a minimum circuit has an O(ne)
behavior. We also show an O(n :) reduction from the problem of finding a minimum
circuit to that of finding a triangle (a circuit of length 3). Three methods for finding
triangles are presented"

(i) Using rooted trees. The algorithm takes O(e 3/2) time in the worst case and
O(n) for planar graphs.

(ii) Check directly whether an edge is contained in a triangle. O(ne) worst case
and 0(//5/3) average time.

(iii) By Boolean matrix multiplication, in O(n!g7) time [10] (all logarithms are
taken to base 2).

Algorithms for finding a shortest path in digraphs can be adapted to find-
ing a minimum directed circuit (dicircuit). In particular, Friedman’s
O(n3(log log n/log n)1/3) algorithm for weighted graphs [8] and directed breadth first
search. The latter requires O(ne) time in the worst case. However, it is proven, using
the methods of [2], that on the average O(n :z log n) time suffices. Using Boolean
matrix multiplication we show how to find a shortest dicircuit in at most O(//lg7 log n)
time.

We use three representations of labeled graphs:
(i) The adjacency lists: A (v) is the set of vertices adjacent to v. In this paper it is

assumed that all graphs are given in this representation.

* Received by the editors November 24, 1976, and in revised form on October 18, 1977.

" Computer Science Department, Technion, Israel Institute of Technology, Haifa, Israel.
t IBM, Israel Scientific Center, Haifa, Israel.
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(ii) The upper adjacency vectors: UA(v) is a sorted vector which contains those
vertices w >v adjacent to v. This representation depends on the labeling of the
vertices. Each edge is represented in exactly one vector. The vectors may be obtained
from the adjacency lists in O(e) time (using bucket sort).

(iii) The adjacency matrix: (M)u.v 1 if and only if u and v are connected by an
edge. The adjacency matrix may be constructed from the adjacency lists in O(e) time
[1, p. 71, Ex. 2.12], even though this representation requires O(n 2) space. Hence n 2 is
a lower bound to the space requirements of all algorithms which use this represen-
tation.

2. Finding an almost minimum circuit. Let G (V, E) be an undirected graph
with n vertices and e edges which has neither parallel edges nor self loops. Let Imc
denote the length of a minimum circuit (if none exists then Imc ). A circuit is an
almost minimum circuit if its length is less than or equal to lmc + 1. We present an
O(n) algorithm for finding an almost minimum circuit.

First we present the algorithm FRONT. Given a vertex v V this algorithm finds
a lower bound for the length of the shortest circuit through v. The algorithm assigns
values to two global variables: the vector / of length n and the n n matrix level.
These values are used in the sequel. FRONT(v)conducts a partial breadth first search
(BFS) from v. When defined the value of level(v, u) is the level of u in the search. If
the connected component which contains v is circuit-free then the algorithm
terminates with k(v)=. Otherwise, it stops when the first circuit is closed; this
circuit does not necessarily pass through v; k(v) is defined to be the last level from
which the search was conducted; 2/(v)+ 1 is a lower bound for the length of the
minimum circuit through v.

The algorithm FRONT uses a first-in, first-out queue which is initially empty.
The queue operations are enqueue(u) which inserts u at the rear of the queue, and
dequeue which removes and takes the value of the first element of the queue.

procedure FRONT(v );
begin for u s V do level(v, u):= nil;

enqueue(v); level(v, v):= 0;
while the queue is not empty do
begin comment if the graph contains a circuit in the connected component of v

then the queue is never empty at this point;
u := dequeue;
for w s A(u) do

begin if level(v, w) nil
then begin level(v, w) := level(v, u)+ 1;

enqueue w ) end
1. else if level(v, u)<= level(v, w)

then begin k(v):= level(v, u);
return end

end
end;
comment the connected component of v is circuit-free;

2. k(v) := oe
end

FRONT builds a partial BFS tree. When a nontree edge is encountered (line 1)
the algorithm terminates. Otherwise k(v)=eo (line 2). Each tree edge is scanned at
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most twice. Thus the algorithm takes O(n) time. In the queue each vertex may appear
at most once. Therefore, the algorithm requires O(n) space for local variables, the
vector level of length n, and the queue, in which each vertex can appear at most once.
Hence, the algorithm requires O(n) space in addition to the input. Observe that a
minimum circuit through v could be found by scanning all the edges. In the worst case
this takes O(e) time. In the next section we present a method of scanning which takes
O(n) time on the average.

Let us apply FRONT to every vertex v V, and let kmin be the minimum value
of k(v).

LEMMA 1. Let x be a vertex for which k (x )= kmin < c, then x is contained in an
almost minimum circuit.

(a) (c)

FIG.

Proof. Let v be a vertex which belongs to a minimum circuit C. If lmc is even,
FRONT(v) stops when encountering a vertex w as in Fig. la; k(v)= lmc/2-1. If
Imc is odd the algorithm stops as in Fig. lb or Fig. lc; k(v)= (Imc 1)/2.

2k(v)+ 1 _<- Imc <= 2k(v)+ 2.

Since k(v) >- kmin, 2kmin + 1 <= lmc. The circuit found when applying FRONT to x is
not longer than 2kmin + 2. Therefore, it is not longer than lmc + 1 and is an almost
minimum circuit. This circuit contains x, since otherwise its length would have been at
most 2(kmin 1)+ 2 2kmin < lmc, a contradiction. Q.E.D.

Note that if lmc is even then for a vertex x on a minimum circuit the algorithm
stops as in Fig. l a and finds a minimum circuit. In particular, in bipartite graphs the
length of all circuits is even and the algorithm finds a minimum circuit.

Since FRONT is applied n times at most O(n z) time is required to find an almost
minimum circuit. If the algorithm is applied to the full bipartite graph to which we add
zero or more edges the algorithm might find only circuits of length four, even though
the graph may contain triangles. In this case the algorithm requires O(n 2) time, hence
the bound is tight for the algorithm.

The space requirements can be lowered to O(n). As noted, the queue requires
only O(n) space. The matrix level can be replaced by a vector in which for all v
level(v, u) share the same location. The algorithm for finding an almost minimum
circuit can be optimized by keeping the value of kmin and terminating FRONT(v)
whenever level(v, w) kmin.

3. Finding a minimum circuit. We have shown how to find a minimum circuit for
the special case in which the length is known a priori to be even. In this section we use
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by-products of FRONT to develop an O(n 2) average time algorithm to find a
minimum circuit for the general case.

Assume that FRONT has been applied to a vertex v for which k is minimum and
let us look at the values of level. If the connected component of v is circuit-free then
the entire graph is circuit-free. Otherwise, a circuit is detected. Using the notation of
FRONT, this circuit passes through u and w. If level(v, u)= level(v, w) then the circuit
is odd and thus minimum. Otherwise, the circuit is even and may not be minimum. It
remains to check for the existence of an edge (x, y) such that level(v, x)= level(v, y)=
level(v, u). The vertex x must be either a vertex still in the queue or u itself. Thus,
when FRONT(v) terminates, define

F(v)={u}t.J{xlx V, x is in the queue, level(v,x)= level(v, u)}.

In O(n) time we may sort F(v) (bucket sort) and prepare a bit vector representing
F(v) and a linked list of its nonzero elements. The procedure EDGE below, when
applied to F(v) searches for an edge (x, y) in F(v).

Let S be an ordered list of distinct vertices with the additional property that
membership can be determined in constant time. (Observe that F(v) satisfies these
requirements.) (x, y) E is an S-edge if x, y S. EDGE(S) searches for vertices u < w
such that (u, w) is an S-edge. First it searches (lines 1-4) for (u, w) such that u is not
among the last n x/3 vertices of S. If unsuccessful, it searches exhaustively for an edge,
the endpoints of which belong to the last n 1/3 portion of S (lines 5-6). If both searches
fail then there exists no S-edge.

EDGE uses UA in a destructive mode. Since needed later, it can either be copied
before use or reconstructed using a stack to undo all destructive operations. The latter
solution is preferred since it enables a sublinear algorithm (o(n)). However, the details
are omitted.

procedure EDGE(S);
1. begin for := 1 step 1 until ]SI n x/3 do

begin u := S(i);
while UA(u) is not empty do

2. begin choose at random a vertex w in UA(u);
3. if w $ then return ((u, w));

delete w from UA(u)
end

4. end;
5. for := max(l, IS]- n 1/3 -t- l) step 1 until ]SI do

begin u := S(i);
for/" := + 1 step 1 until SI do
begin w := S(]);

if (u, w)E then return ((u, w))
end

end;
6. return(nil)

end

EDGE may require O(n 2) time. However, its average behavior is better.
Let ud be the upper degree vector (ud(v)= UA(v)I) and Gua be the class of all

labeled graphs with a given ud vector. Observe that the class of all labeled graphs is a
disjoint union of all the Gua classes.
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Let P be a probability measure on labeled graphs, such that any two graphs in
are equiprobable. The following probability measures are special cases of P [3]:

(i) The existence of each edge is an independent random variable with equal
probabilities.

(ii) All graphs with a given number of edges are equiprobable.
For S

___
V, let Es be a subset of $ x (V- S) and es the cardinality of Es.

LZMM, 2. Let GEs {G (V, E)IE Es}. Then the average behavior of EDGE
on GEs is bounded by O(es + n2/3).

Proof. If (u, w) belongs to Es then the check w e $ (line 3) necessarily fails.
EDGE might waste at most O(es) time on such edges. Therefore, it suffices to prove
that the other edges require O(n /3) time on the average.

Using the linked list representation of S and the adjacency matrix, lines 5-6
require at most O(n/3) time. Thus, it remains to show that lines 1-4 require O(n 2/3)
average time.

Under P, all graphs in Gs Gua are equiprobable. We now wish to estimate the
probability that an edge (u, w) chosen at random in line 2 is an S-edge. By assumption
(u, w) does not belong to Es. Let there be 11 edges in UA(u)fqEs. Denote by 12 the
number of edges in UA(u)-Es checked before (u, w). The vertex w may be any of
n u -(11 + l) remaining vertices, with equal probabilities. Since w > u, if w e $ then
it can be any one of the vertices of $ {u + 1,..., n}. The probability that w S is
therefore:

1/3ISf3{u+l,..., n}l>n
n u -(/1 -t- l) n

By decreasing the probability of success, the average number of trials until the first
success increases. Hence, the average execution time of lines 1-4 is bounded by

O = i(1-n-Z/3)i-ln -2/3 0(n2/3). Q.E.D.

The following procedure MINmCIRCUIT finds a minimum circuit of length
lmc. If lmc is finite the circuit passes through v. If Imc is odd then the circuit also
passes through the edge a.

procedure MIN__CIRCUlT(Imc, v, a );
1. begin for v V do FRONT(v);
2. find kmin;

if kmin then begin Imc := o
return end;

3. for v V and k (v) kmin do
4. begin find F(v);

prepare a representation of F(v) as a sorted linked list;
5. prepare a bit vector representation of F(v);
6. a := EDGE(F(v));

if a nil then begin lmc := 2krnin + l
return end

7. end;
Imc := 2kmin + 2;
v := any vertex for which k is minimum

end
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THEOREM 1. The average execution time of MIN__CIRCUIT is bounded by
O(n).

Proof. Line 1 requires at most O(n 2) time; line 2, O(n) time. In each iteration,
lines 4-5 require O(n) time. In line 6 EDGE is called with S F(v) and Es is the set
of edges incident with S which were scanned by FRONT(v). Hence, es <= n and each
iteration of line 6 costs O(es + n2/3)- O(n) time on the average. Since the loop (lines
4-7) may be executed at most n times, MIN__CIRCUIT requires O(n 2) time on the
average. (The average of a sum is equal to the sum of the averages.) Q.E.D.

Steps 1 and 2 of MIN__CIRCUIT can be done in one pass as explained in the
end of the previous section. The space requirements can be lowered to O(n) since we
can keep a vector instead of the matrix level. In step 4, the values of level(v,. are
required to find F(v), however FRONT(v) can be called again to obtain these values.
This optimization increases the running time by at most a constant factor, while
decreasing the space by a factor of n.

4. A reduction to finding triangles. Now we turn to show a reduction of the
problem of finding a minimum circuit to that of finding a triangle in an auxiliary graph.
A disadvantage of this method is that the number of edges might grow considerably.
However, the number of vertices may only be doubled. Thereby, an upper bound for
the complexity of the problem is found.

To this end we construct the graph G’= (V’ V, E’). V’ consists of a copy of
those vertices of G for which k is minimum. A vertex v’ (v’ denotes the vertex
corresponding to v) is connected by an edge to all the vertices in F(v). Fig. 2 contains
an example of an auxiliary graph G’. The original graph G appears in boldface.

FIG. 2

v F(v) k(v)

w, u 2
x t,w,u
w x, y, u
y w,v
u x, w, v
v y, u, z
z y,u 2

LEMMA 3. G’ contains a triangle through v’ if and only if v is contained in a
minimum circuit in G and Imc is odd (i.e. Imc 2kmin + 1).

Proof. Let G’ contain a triangle (v’, x, y). By the construction, v’ is connected
only to vertices of F(v). Therefore, x, yF(v)c_ V. The vertices x and y are at
distance kmin from v. FRONT traces minimum length paths v-x, v-y. The length of
these paths is kmin and they are vertex disjoint (i.e. they intersect only at v), because
an additional intersection would entail a shorter circuit. (v’, x, y) is a triangle in G’ and
x, y V. Thus, (x, y) belongs to E. This edge and the two paths form a circuit of length
2kmin + 1. Since Imc >= 2kmin + 1 the circuit is minimum.
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In the other direction, assume Imc is odd and a minimum circuit passes through v.
Therefore, lmc- 2kmin + 1, k(v)= krnin and v’e V’. Let C be a minimum circuit
through v. There are exactly two vertices x, y in C whose distance from v is kmin
[Imc/2]. Thus, x,yF(v) and (x,y)E’. Therefore, (v’,x,y) is a triangle in
G’. Q.E.D.

COROLLARY. If a triangle in G’ passes through a vertex x V then there exists a
minimum circuit of G through x.

Proof. If the triangle consists solely of vertices of V then the triangle is contained
in G and is a minimum circuit (because parallel edges and self loops have been
excluded). If the triangle contains a vertex of V’ then this follows from the proof of
Lemma 3. Q.E.D.

Finding a triangle in G’ provides us with an edge (x, y) E which is contained in a
minimum circuit of G. The circuit itself may be found in O(n) time by an algorithm
similar to FRONT.

5. Algorithms for finding triangles. We study several algorithms for finding
triangles.

5.1. Search by rooted spanning trees. Let T be a rooted spanning tree of a
connected graph. Using the following lemma we may construct an algorithm to check
whether the graph contains a triangle.

LEMMA 4. There exists a triangle which contains a tree edge if and only if there
exists a nontree edge (x, y) for which (father(x), y) E. (Every edge is checked in both
directions.)

Proof. If (father(x), y) E then obviously (x, y, father(x)) is a triangle.
In the other direction, assume that (x, y, z) is a triangle and (x, z) is a tree edge

(without loss of generality x =father(z)). Two cases arise: If (z, y)-T then the
condition is met for this edge since (father(z), y)= (x, y) E. Otherwise, (z, y) T. In
this case z father(y) (each vertex has at most one father). The condition is met for
the nontree edge (y, z) since (father(y), x) (z, x) E. Q.E.D.

For each nontree edge (x, y) we can check whether (father(x), y) E in constant
time using the adjacency matrix. Consequently, in time O(e) we may check whether
there exists a tree edge which belongs to a triangle.

Let us call a connected component trivial if it is an isolated vertex. We may now
describe the procedure TREE"

procedure TREE;
1. Find a rooted spanning tree for each nontrivial connected component of G;
2. If any tree edge is contained in a triangle the algorithm terminates;
3. Delete the tree edges from G.
Each iteration of TREE requires at most O(e) time.

procedure TRIANGLE;
Repeat TREE until all edges of G are deleted.

THEOREM 2. For planar graphs TRIANGLE requires at most O(n ) time.

Proof. TRIANGLE deletes edges from the graph. We first show that each
iteration of TREE deletes at least a third of the remaining edges. At first e _-< 3n-6
and we delete n 1 edges; (n 1)>_-e/3. At subsequent iterations a third of the edges
of each connected component are deleted. Therefore, a third of the remaining edges
are deleted. Consequently, the number of edges at the ith iteration is at most ()i-Xe.
The work in the ith stage is proportional to the number of remaining edges. There-
fore, the total work is proportional to ,i=1 e(32-)i-1 3e O(n). Q.E.D.
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THEOREM 3. For any graph TRIANGLE requires at most O(e 3/2) time.

Proof. Let c denote the number of connected components. During the execution
of TRIANGLE the value of c increases. Initially c 1. At first we estimate the time
required by TRIANGLE while c _-<n-e 1/2. Then we estimate the time while c >

1/2.

(a) c -< n e 1/2.

Each iteration of TREE causes the deletion of n-c->_n-(n--el/2) e 1/2 edges.
Since there are e edges there may be at most e/e /2= e 1/ such iterations.

(b) c >/1 -e 1/2.

The degree of each vertex is at most n-c<=n-(n-el/2)=e 1/2. Since each
iteration of TREE decreases the degree of each nonisolated vertex, there may be at
most e 1/2 such iterations.

Therefore, we have at most 2e 1/2 iterations in the entire process. Each iteration
takes O(e) time. Thus, TRIANGLE takes O(el/2)O(e) O(e 3/2) time. Q.E.D.

For K,,,, (the full bipartite graph with 2n vertices) the algorithm may take O(e 3/2)
time while c -< n e 1/2. For the graph obtained by adding m vertices all connected to a
single vertex of K,,m O(e 3/2) time is required while c > n -e a/2.

5.2. Search by vertices. G contains a triangle if there exists a vertex v and an
edge a between two vertices u, w(u < w) of UA (v).

procedure VERTEX;
for v V do

begin a := EDGE(UA(v));
if a nil then return(v)

end

EDGE requires that UA(v) be represented by an ordered linked list; moreover,
membership in UA(v) can be determined in constant time using the adjacency matrix.

THEOREM 4. VERTEXfinds a triangle in O(n 5/3) on the average.
Proof. The proof is based on Lemma 2. When calling EDGE(UA(v)), Es is

empty. Therefore, EDGE UA(v )) requires at most O(n 2/3) time on the average. The
result follows since EDGE is called at most n times. Q.E.D.

Note, that if the upper adjacency vectors or the adjacency matrix has to be
prepared then by the note in the Introduction, the algorithm requires additional O(e)
time. In any case, O(n 2) space is required.

5.3. Matrix multiplication. Let M be the adjacency matrix (i.e. (M)u, 1 if and
only if (u, v)s E). Let M2 be the Boolean multiplication of M with itself. (M2)u, 1 if
and only if there exists a vertex w such that (M),,w (M)w, 1 (i.e. (u, w), (w, v)s
E). If also (M),o 1, then (u, v, w) forms a triangle. Let B M2 and M (and denotes
element-by-element logical and). (B), 1 if and only if a triangle passes through the
edge (u, v). Using Strassen’s algorithm [10] we may multiply Boolean matrices in
O(n1g7) time, thus obtaining an O(nlgT) algorithm.

Combining this algorithm with the reduction of 4 we obtain an algorithm for
finding a minimum circuit that takes at most O(n1g7) time.

6. Finding a minimum dicircuit. In the sequel digraphs, dicircuits and dipaths
denote directed graphs, circuits and paths respectively.

The techniques for (undirected) graphs described in the previous sections are not
applicable to the problem of finding minimum dicircuits in digraphs. Dicircuits may be
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found by n applications of the procedure DICIRCUIT described below. This method
has worst case behavior O(ne) but O(n" log n) on the average. Another method using
Boolean matrix multiplication requires O(nlg7 log n) time.

6.1. The procedure DICIRCUIT. DICIRCUIT(v) finds a shortest dicircuit
through v. We conduct a directed BFS from v. The queue has the same role as in
FRONT; level(v, u)denotes the length of the shortest dipath from v to u if one exists
and nil otherwise; scan denotes the number of scanned vertices.

procedure DICIRCUlT v )
begin for u V do level(v, u):= nil;

enqueue(v); level(v, v):= 0; scan := 1;
while scan < n do
begin if queue is empty then begin

k(v) := nil;
return end;

u := dequeue;
for w A(u) do

if w v then begin k (v) := level(v, U)+ 1;
return end

else if level(v, w)= nil then
begin level(v, w):= level(v, u)+ 1;

enqueue(w);
scan := scan + 1 end

end;
enqueue(u);

4. while queue is not empty do
begin u := dequeue;

if (u, v)E then begin k(v) := level(v, u)+ 1;
5. return end

end;
6. k(v) := nil

end

The procedure may terminate at four points in the program:
(a) Line 1. The queue has become empty. In this case there is no dicircuit

through v, so we return with k(v)= nil.
(b) Line 2. We have returned to vertex v. In this case we have closed a shortest

dicircuit through v whose length is k(v).
(c) Line 5. We have reached all the vertices. In this case we look for the first

vertex in the queue which closes a dicircuit. This is done via the adjacency matrix. The
vertices of the queue are ordered by nondecreasing value of level. Therefore, a
dicircuit closed in this stage is indeed a shortest dicircuit through v.

(d) Line 6. There is no edge from the scanned vertices to v. Therefore, there is no
dicircuit through v, so we return with k(v)= nil.

Even though DICIRCUIT may require O(e + n) time, the average performance
is somewhat better.

THeOReM 5. Suppose P is a probability measure on labeled digraphs with n vertices
such that digraphs with the same outdegrees are equiprobable. Then DICIRCUIT takes
O(n log n) time on the average.

Proof. DICIRCUIT takes most time if it scans all vertices. We may consider only
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the time needed to reach all vertices since the additional time (lines 4-5) is O(n).
Procedure R of [2] also scans a digraph until all vertices have been reached. The main
difference is that R uses a stack while DICIRCUIT uses a queue. However, R does
not take advantage of any property of the stack not shared by a queue. R is proven to
take O(n log n) time on the average. Thus DICIRCUIT has an O(n log n) average
behavior too. O.E.D.

A shortest dicircuit through v can be found by inserting father(w):= u after
line 3. The dicircuit is found by backtracking from the vertex u which closed the
dicircuit (lines 2 and 5).

By applying DICIRCUIT to all vertices of the digraph a shortest dicircuit may be
found in O(n: log n) average time.

6.2. Binary search using matrix multiplication. Let Imdc be the length of the
minimum dicircuit in G; M the adjacency matrix; D. the matrix of dipaths of length
less than or equal to/. ((Dr)u,v 1 if and only if there exists a dipath of length 1 -< <-/"
from u to v.) The matrix Dr has a nonzero element on the main diagonal if and only if
Imdc <-. (i.e. lmdc is the smallest for which D contains a nonzero element on its
main diagonal.)

Let j + k then Dr (DiDk) or M where DiDk is Boolean matrix multiplica-
tion and or is an element-by-element logical or, since (OiOk)u,v 1 if and only if
there exists a dipath of length l, 2_-< l_-< + k. The or operation adds the dipaths of
length 1.

We compute D by the following method:

DI=M
D2t D or M.

We compute D2, until there is a nonzero element on the main diagonal. This
happens when i= flog lrndc]. The value of Imdc is found by a binary search on ] in
the region 2-1 </" <-2" First we compute D:,-1+2,)/: D2,-2+:,-1 D:,-2D2,-1 or M.
If the diagonal is all zeros we continue the search in the region 2-1+ 2-:</’-< 2i.
Otherwise, we continue in 2-a </" <- 2- + 2-:.

The process requires 2 log lmdc matrix multiplications (i.e. O(n lg7 log lmdc)=
O(nlg7 log n) time).

The space requirements are O(n: log Imdc)= O(n 2 log n) since we store log lmdc
matrices.

The minimum dicircuit itself may be found in additional O(e) time by a directed
BFS from a vertex v for which (D,,,ac),,.v 1.

7. Conclusions. Using FRONT we have an O(n 2) reduction from the problem
of finding a minimum circuit to that of finding a triangle. We have shown a method to
find a triangle in O(n 5/3) average time. However, this itself does not yield an O(n:)
average time algorithm to find a minimum circuit since the graphs obtained by the
reduction might have a special structure and do not necessarily satisfy the probabilistic
assumptions which led to the O(n 5/3) average time bound. Fortunately, we can solve
the problem directly in O(n 2) time on the average. However, any algorithm which
finds a triangle in time greater or equal to O(n 2) implies an algorithm to find a
minimum circuit within the same time bound. Consequently, finding triangles by
Boolean matrix multiplication leads to an O(nlg7) worst case algorithm to find a
minimum circuit.

We have seen several algorithms for finding a triangle. TRIANGLE is efficient
for sparse graphs (especially for planar graphs). VERTEX appears better on the
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average but has O(n 3) worst case behavior. Better worst case performance can be
achieved by using Boolean matrix multiplication.

A related problem is finding a minimum weighted circuit in a weighted graph. It is
unclear to us whether our methods can be modified to answer this problem too.

Acknowledgment. The authors wish to thank Shmuel Katz for making valuable
suggestions.
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GENERATING t-ARY TREES LEXICOGRAPHICALLY*

FRANK RUSKEYS"

Abstract. This paper extends the results of Ruskey and Hu (1977) from binary trees to t-ary trees. A
t-ary tree on N leaves is represented by the sequence of N level numbers of the leaves of that tree. An
algorithm is presented for generating these sequences lexicographically as a list. This algorithm is shown to
have an average running time of O(t) per sequence generated. O(N) algorithms are developed for
determining the position (ranking) of a sequence in the list, and for producing the sequence corresponding
to a given place in the list (unranking). Also, a one-to-one correspondence between t-ary trees and walks on
a certain lattice is demonstrated; as well as a close relationship between these walks and the lexicographic
ranking.

Key words, t-ary trees, lexicographic order, ranking algorithms, lattice walks

1. Introduction. Recently there has appeared a number of papers dealing with
the ordering and ranking of binary trees. Typically, the ordering involves showing the
existence of a one-to-one correspondence between binary trees and some other
combinatorial object. In [2] G. D. Knott shows a correspondence between binary
trees and "tree permutations." The ordering he defines on binary trees corresponds to
a lexicographic ordering of tree permutations. He then produces algorithms for the
ranking and unranking of tree permutations. A. E. Trojanowski in [7] extends the
ordering of [2] from binary trees to k-ary trees and then develops another different
ordering of binary and k-ary trees. His second ordering involves a correspondence
between binary trees and what may be called "stack permutations" (in the sense of
exercises 2.2.1-5 and 2.3.1-6 of [3]). The ordering is the lexicographic ordering of
stack permutations. Another correspondence, this time between binary trees and
"2-permutations," is demonstrated by D. Rotem in [5]. Reportedly, D. Rotem has
also developed ranking and unranking algorithms for binary trees in his Ph.D. thesis.

The purpose of this paper is to extend the result of Ruskey and Hu [6] from
binary trees to t-ary trees. The correspondence in [6] is between binary trees and
"feasible sequences." A feasible sequence is just the sequence of level numbers of the
leaves of a binary tree when read from left to right. In the earlier paper [6] we
developed algorithms for generating all feasible sequences lexicographically as a list,
gave algorithms for ranking and unranking of feasible sequences, and proved that the
average running time of the generating algorithm was O(1) per sequence generated.
Here we generalize these results to t-ary trees and in addition, analyze the running
time of the ranking and unranking algorithms and demonstrate a one-to-one cor-
respondence between t-ary trees and walks on a certain lattice. In [5] a cor-
respondence is given between binary trees and this same lattice. Note that all of the
orderings considered so far are essentially lexicographic.

We begin by introducing the relevant terminology. A t-ary tree, J, can be defined
recursively as being either a leaf node, L, or an internal node, L together with a
sequence J1, J2,""", Jt of t-ary trees. Ji is referred to as the ith subtree of L In the
literature t-ary trees are also known as extended t-ary trees [3] or (t+ 1)-valent
planted plane trees [1]. Hereafter, tree will mean a t-ary tree as defined above. From
the definition it is clear that if a t-ary tree has N leaves (leaf nodes) then N
n(t-1)+ 1 where n is the number of internal nodes. In the computer a t-ary tree is
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represented by regarding each node as a record containing ordered links; if the node
is a leaf then all links are set to nil, and if the node is an internal node then the ith link
points to the ith subtree. A special pointer, root, points to the first internal node
created when applying the recursive part of the t-ary tree definition (this node is the
root node). We draw t-ary trees in the usual way. For example, Fig. 1 shows the 12
trinary (3-ary) trees on 7 leaves.

FIG. 1. The trinary trees with 3 internal nodes.

The number of internal nodes on the path from the root to a leaf is the level
number of that leaf. If we traverse a t-ary tree from left to right and record the level
numbers of the leaves, then we get a sequence of integers a l, a2,’", aN. This
sequence characterizes the tree it came from. There exist O(N) algorithms for going
from the level number sequence to the computer representation of the tree and vice

versa. These are easy modifications of the algorithms ComputeDepths and MakeTree
for the case 2 of the earlier paper [6].

The number of t-ary trees on N n(t- 1)+ 1 leaves is well-known [1], [3]. It is

1 (tn) 1 (tn+l) y rbl,Tn (t- 1)n + 1 n in+ 1 n bl, l+/2+...+t=l-x
ti

This paper develops an algorithm for generating all of the T, t-ary trees on N leaves.
We represent a t-ary tree by its sequence of level numbers, and generate the
sequences lexicographically. The trees in Fig. 1 are listed lexicographically. The
algorithm is easily modified to generate not only the sequences but also the computer
representations of the trees. This algorithm has an average running time of O(t) per
sequence generated. Also, O(N) algorithms are presented for the ranking and
unranking of t-ary trees. The running time of Trojanowski’s [7] ranking and unranking
algorithms is O(N2). In 4 we show the close relation between our algorithms and
walks on a certain lattice.

2. The algorithm. Many of the results of this section are simple modifications of
the corresponding results for 2 contained in [6]. The ideas behind their proofs are
essentially identical and the proofs will therefore be omitted.

Not every sequence of N n(t-1)+ 1 positive integers represents the level
numbers of a t-ary tree with N leaves. Those which do are called feasible sequences.
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We also refer to a l, a2,’’’, aM as a feasible initial sequence )or N if there exist
integers aM/l,’’’, aN such that al, a2,’’’, aN is a feasible sequence. Now suppose
there is a smallest integer k (k-<N)such that ak-t/l ak-t+2 a =q. The
process of replacing a-t+l,a-t/2,"’,a by q-1 to get a new sequence
al, a2," ak-t, q- 1, ak+l, ", aN is called a reduction from the left. On a t-ary tree
what this process amounts to is finding the leftmost internal node whose sons are all
leaves, deleting those leaves and replacing that internal node by a leaf. Continuing
this reducing process until no further reductions from the left are possible, we get a
final sequence called the lej:t reduced sequence for al, a2, aN. Reduction from the
right and right reduced sequence are defined analogously, except that we take the
largest integer k such that a_,+l ak-t+2 a.

LEMMA O. A necessary condition for a sequence a 1, a2, , aN to be feasible is that

N
-a’ 1.

i=1

LZMMA 1. A sequence a 1, a2, , aN is feasible if and only if N reductions from
the right or left (in any order) reduce the original sequence to the single integer O.

Let a l, as,’", aN be a feasible sequence. If rl, r2,’", rL is the left reduced
sequence for a l, a2," ", at-1 then the procedure REDUCE given below returns the
left reduced sequence for a l, a2,’’ ", aM (again as a sequence r, re,’’’, rL). The
variables L and are global to REDUCE and will be used in later procedures which
call REDUCE as a subroutine. Initially, if M m(t- 1)+/" (1 <-/" <= t- 1) then L
l(t- 1)+f- 1 for some integer <- m where m is the number of reductions used to
get from al, a2," aM to rl, re," , re.

procedure REDUCE (rl, r2, rL, aM)
begin
LL+ 1; raM;
while r.-t+l =r do

begin
L-L-t+I
1-l-1;
rL <--- rL --1;
end;

end of REDUCE

This procedure will be used later in the ranking and unranking algorithms. Let
al, as," , aN be a sequence of integers; we then define E(b)=
In other words, E(b) is the number of integers in the sequence that are equal to b. We
say that a sequence of positive integers a 1, as, , a is t-increasing if a -< as =<" =<
a and (i)<t for all i_->1, t-Decreasing is defined similarly. For example,
1, 1, 3, 3, 3, 6, 6 is 4-increasing but is not 3-increasing.

LEMMA 2. Let al, as,’’’, aN be a sequence o] positive integers and suppose that
there is a k such that al, as, , ak-1 is a t-increasing sequence and a, a/l, , aN is
a t-decreasing sequence; then a 1, as, , aN is a feasible sequence if and only if

(i) E(n)= and
(ii) E(1)= E(2) U(n 1)= t- 1.
Proo] See [6].
Note that the tree represented by the feasible sequence of the above lemma is one

of maximum height (n) among all t-ary trees with N leaves. In the next lemma we are
replacing the rightmost leaf by an internal node, all of whose sons are leaves.
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LEMMA 3. If a 1, a2, aN is a feasible sequence then so is

al, a2, , aN-l, aN+l, aN+l, , aN+ 1.

The following tells us how many nodes we need to complete a t-ary tree, given the
level number of the first M nodes.

THEOREM 1. A sequence a 1, a2, , aM (M < N) is a feasible initial sequence for
N if and only if its left reduced sequence rl, r2," , rL satisfies the following conditions
(where rn -l is the number of reductions used to get the left reduced sequence):

(i) 1 <-rl and rl, r2, ", rL is t-increasing
(ii) rL <-- n m + l.
Proof. See [6].
COROLLARY. Let a 1, a2, , aM-1 be a feasible initial sequence for N (M < N)

with left reduced sequence rl, r2," ", rL; then al, a2,’’’, aM-l, aM is a feasible initial
sequence for N if and only if

Case 1. rL=l: l+l<-au<--n-m+l.
Case 2. rL > rL <-- aM <-- n m + l.

(Again, whereM=m(t-1)+jandL=l(t-1)+j-1 (1 <_-j_-<t- 1)).
Proof. If the upper bound is not satisfied then the condition (ii) of Theorem 1 is

violated. If the lower bound is not satisfied then condition (i) of Theorem 1 is violated.
If the aM lies in the indicated ranges then both conditions of Theorem 1 are
satisfied. Q.E.D.

Note that if M N in the above corollary then aM aN rL.
Given a feasible sequence a l, a2,’’’,aN we will develop a procedure for

determining the next feasible sequence in our lexicographic listing. The first sequence
is

1,1,...,1,2,...,2,...,n-1,...,n-l,n,...,n,n

t-1 t-1 t-1

and the last is the first written in reverse. We can test for the last sequence by noting
that it is the only feasible sequence such that al n.

Suppose that we had a t:ary tree and wanted to produce the next one in our
lexicographic order. Intuitively, we would wish to leave as much of the left part of the
tree as possible unchanged, increase the level number of some leaf by replacing it with
an internal node, and finally to readjust the remaining nodes in the right part of the
tree to make their sequence of level numbers as lexicographically small as possible
while maintaining feasibility. What actually happens is described next.

If we had a t-ary tree and had chosen a leaf to be replaced by an internal node,
then to make the tree as lexicographically small as possible the sons of the internal
node would all be leaves, as shown in Fig. 2. We call the tree shown in Fig. 2 a
one-tree. A replacement of the kind mentioned above could only happen if there was a
subtree that was a one-tree to the right of the leaf that the one-tree is replacing. To do
this replacement in a lexicographically minimal way, we could scan our sequence of
level numbers a l, a2,’", au from the right to left until equal level numbers
ak-+l a-t+2 a =q were found. We would then do the replacement of the
leaf with level number r ak-, tO get a sequence of level numbers that started off

al, a2, ak-t-1, r + 1, r + 1, , r + 1.
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Now we have to decide if it is possible to rearrange the remaining leaves and, if so, to
do the rearrangement in a lexicographically minimal way. Rearrangement is possible
only if ak+l=ak+2 ak+(t_l)=q-1 and k +(t-1)N. For example, consider
the 3-ary tree with level numbers 1, 1, 3, 3, 6, 6, 6, 5, 5, 4, 4, 2, 2 shown in Fig. 3(a).
The rightmost one-tree has leaves at level as- a6- a7 6. We move these leaves to
become sons of a4 to get a tree like that shown in Fig. 3(b). The encircled subtree can
be rearranged; the lexicographically minimal way is shown in Fig. 3(c). In general let r
be the largest integer such at a+a, a+2,"’, ak+r(t-1) are the leaves of a lexico-
graphically maximal subtree. We then turn the leaves around to make a lexico-
graphically minimal subtree and attach it to the leaf ar (hence the requirement
k +r(t-1)N). We now present an ALGOL-like procedure NEXTTREE which,
from a feasible sequence a l, a2,’’’, aN, produces the next feasible sequence in the
lexicographic ordering. It follows the ideas laid out above.

FIG. 2. A one-tree.

(o) (b) (c)

FG. 3

procedure NEXTTREE (a l, a2,’’’, arv" sequence);
begin
k N; R 0; r0; I <-- 0;
while ak-,+l 7 ak do k k- 1;
comment Now ak_t+=ak+,_2 ak are the rightmost equal level

numbers;
while ak+R+t-1 =ak--r--1 and k+R +t-1 :N do

begin
RR+t-1;
r-r+l;
end;

comment R r(t-1) is now as defined earlier, next we rearrange the level
numbers;

for - 1 to do ak-i ’- ak-t h- 1;
ak ak--r--1;
for <- k + 1 to N R 1 do a - a+R
for <--0 to r- 1 do
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begin
for j<-0 to t-2 do aN-n++aN+i+l;
II+t-1;
end;

aN aN + r;
end of NEXTTREE.

This algorithm will be analyzed in 6. Note that NEXTTREE uses only additions
(no multiplications), a property it shares with the later ranking and unranking
algorithms.

3. The ranking algorithm. In this section we will develop an algorithm for
determining the rank of any feasible sequence. To do this, a class of numbers will be
defined and some of its properties discussed.

In general, a ranking function, f, for an algorithm generating the elements of
some set, S, is a bijection f: S--> {0, 1,. , Isl- 1} such that f(s)= if and only if the
ith element (counting from 0) generated by the algorithm is s. We refer to s as the
rank element of S. We wish to find an efficient algorithm for computing f.

If S is a subset of N-tuples of positive integers and the N-tuples are generated in
lexicographic order, then one method of determining the rank of an element,
al, a2, , aN, is as follows. Determine for each k 1, 2, , N the number, A,, of
elements of $ whose first k-1 components are a l, a2,"’, ak-1 and whose kth
component is one of 1, 2, , ak- 1. The rank of al, a2, aN is then A +A2 +

+ AN. This is the strategy employed below.
The above considerations lead us to ask" How many t-ary trees on N

n(t- 1)+ 1 leaves are there whose first M rn(t- 1)+] (1 <=] < t) level numbers are
al, a2,..., aM? Suppose that al, a2,’", aM, after s reductions from the left, left
reduces to rl, r2,’’’, r where L= l(t-1)+j=(rn-s)(t-1)+j. The number of t-ary
trees on N leaves whose first M level numbers are a l, a2,’", aM is equal to the
number of t-ary trees on (n-s)(t-1)+ 1 leaves whose first L level numbers are
rl, r2, , r. Now consider a general t-ary trees on (n -s)(t- 1)+ 1 leaves whose first
L leaves have level numbers rl, r2," , r. Such a tree is shown in Fig. 4. The squares
represent the first L leaves; the circles are the internal nodes along the path from the
root to the Lth leaf; and the triangles represent subtrees whose exact structure is
unspecified. There are r(t-1)-L+ 1 of these subtrees. They must account for
(n -s)(t- 1)-L + 1 leaves and n -r-s internal nodes. Thus, there are

TI1TI,, TVrL(t_I)_L+I

t-ary trees on N leaves whose first M level numbers are a l, a2,’", aM. We can
rewrite (1) as

E
Vl+ v2+"" + U(rL--t),--1)--i+1 =(n--m )--(rL--l)

vi _-->0

T1) rv rV(rL_l)(t_l)_i+

Note that (1) and thus (2) depends only on rL, L and s and not otherwise on the
sequence al, a2," , aM. Introduce the notation

(3) T(n,k,p)=
Vl+2+’"+lk(_ 1)_

vi >--_0

Tl,1Tl,, Tl,k(t_l)_p
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L

leaves

rL

rL(t-l)--L+l

subtrees

FIG. 4

our earlier sum (2) becomes T(n-m, rL-l,j-1). We can restrict p so that 0=<p-<
t-1. T(n, k, p) can then be interpreted as the number of t-ary trees on N leaves
whose first p + 1 level numbers are k. Using this interpretation we can easily establish
the following boundary conditions and recurrence relation (n >_-1, 0 =< k-< n, 0 =< p =<
t-l):

(4)

(5)

(6)

(7)

T(n,O,p)=O,

T(n,n,p)=l,

T(n, k, t- 1)= T(n- 1, k- 1, O) (n > 1, k>0),

T(n,k,p)=T(n,k+l,p)+T(n,k,p+l) (p<t-l,k<n).

The equations (4) and (5) are trivial. To prove (6) consider a t-ary tree with N
leaves whose first leaves are at level k. We can left reduce once to get a t-ary tree

(i)
(ii)

FIG. 5
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with n- 1 internal nodes and first leaf at level k- 1. Hence, (6) is true. To prove (7)
consider a t-ary tree on N leaves whose first p + 1 leaves are at level k. The closest
brother to the right of the (p + 1)st leaf is either (i) a leaf, or (ii) is the root of
nonempty subtrees. These cases are illustrated in Fig. 5. There are T(n, k, p + 1) trees
satisfying (i) and T(n, k + 1, p) trees satisfying (ii). Thus (7) is established. Note that
T(n, 1, t-2)= T,,-1.

Using (4), (5), (6) and (7) we can easily make tables of the T(n, k, p) using
1/2n(n 1)(t- 1) additions (for a table up to size n). Tables 1 and 2 give T(n, k, p) for

3 and n-<_5.

TABLE TABLE 2
p=0. p=l.

4

2
7 4

30 18 6 4

143 88 33 8

3 3
12 12 5
55 55 25 7

There is a simple expression for the T(n, k, p). This expression has been studied
before and is presented in Riordan’s book [4, p. 49]. The reader is referred there for
further references.

THEOREM 2.

Pro@ First note that

(8)
tk-k-p (tn k -p

We must show that the

T(n,k,p)=
tk k -p (tn k -p)tn-k-p \ n-k

tn-k-P)=(tn-k-P)_t(n-k n-k

tk k -p (tn k -p)tn -k-p n -k

satisfy (4), (5), (6) and (7). Equations (4) and (5) are immediate. Since

tk-k-(t-l)(tn-k-(t-1))=t(k-l)-k+l(t(n-l)-k+l)tn-k-(t-1) n-k t(n-1)-k+l n-k

(6) is also true. With the use of (8), verification of (7) becomes a simple application of
the basic binomial identity:

(tn-k-p-1)n k -t(tn-k-p-2)+(tn-k-p-l)-t(tn-k-p-2)n-k-1 n-k-1 n-k-2

( ) (tn-k-p-1)tn k P Q.E.D.
n- n-k-1

We can now give a formula for the AM where 1 -<_ M -< N. Note that AN 0 since
aN is uniquely determined by the previous level numbers, a l, a2,’", aN-. Let
M re(t- 1)+j (1 _-<j_-< t- 1) and suppose that rl, r2," , rz. is the left reduced
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sequence for al, a2,"’’, aM-1. Note that L l(t-1)+/’-1 for some l_<-m. Let/x
/xM be the smallest integer such that a l, a2,’", aM-I,xM is a feasible initial
sequence for N. By the corollary to Theorem 1 we have that

/+1 if rL =/,
/x

rL otherwise.

It is now clear that

aM--la,--1
(9) AM T(n m, tx + i, ]- l ).

0

Example 1. What is the rank of 2, 2, 3, 4, 4, 4, 3, 1, 2, 2, 2? (See Table 3.)

rl, r2," rL

TABLE 3

tM aM aM P,M j-1

2 0 0 0 0
2 2 2 0 0

2,2 2 3 0 0
2,2,3 3 4 0

2,2,3,4 4 4 2 2 0
2,2,3,4,4 4 4 2 2
2,2,3,3 3 3 2 3 0

0 3
1,1 2 2 4 0

1,1,2 2 2 4

Thus

A1 +A2+. +Alo=A1 +A3+A4

T(5, 1, 0) + T(4, 1, 0) + T(4, 2, 1)= 143 + 30 + 12 185

is the rank.
The following ALGOL-like procedure, RANK, takes as input a feasible sequence

al, a2,- , as and returns the rank of that sequence in the integer rank.

procedure RANK (a l, a2,""", aN" sequence);
begin
m - 1; L -0; -0; ro - 0;
for m <-0 to n- 1 do

begin
for/" - 1 to t- 1 do

begin
/x <-if rL then + 1 else r;
for <- 0 to aM -/x 1 do rank - rank + T(n m, + i, ] 1);
REDUCE (rl, re,’", r, aM);
M<-M+ 1;
end;

l<-1+1;
end;

end of RANK;
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Since the while loop of REDUCE will be executed at most n times, the only
unknown affecting the running time of RANK is the number of times the assignment
rank rank + T(n m,/x + i, f- 1) is executed. In the next section we will show
that it can be executed at most n times, and therefore that the running time of RANK
is O(n(t- 1))= O(N). Note that we assume a table of the T(n, k, p) has already been
computed. To compute a table of the T(n, k, p) requires time O(nN); however, given
0!, 1!,. N! (which can be computed theoretically in time O(N)) and with the use of
Theorem 2, a particular value of T(n,k,p) can be computed in time O(1). But
because of the explosive nature of N! and the fact that making a table requires only
additions, it will be generally preferable to use the first approach (especially if RANK
is to be executed repeatedly).

4. A one-to-one correspondence. Let Lt be the set of lattice points defined by

Lt {(x, y): x, y ->_ 0 integers, (t- 1)y _<-x}.

We will consider walks on this lattice where one is confined to move only to the right
or upwards, i.e. (x, y) (x + 1, y) or (x, y) (x, y + 1). L3 is shown in Fig. 6. Define

FIG. 6

L(M, k)= L(m, k, f) to be the number of walks from (0, 0) to (M, k) where M
m (t 1) +/" (0 _<- j < 1). Then we clearly have

L(m, O, j)= 1, L(m,m,O)=L(m,m-l,O),

L(m, k, j)= L(m, k 1, ])+ L(m, k, ]- 1).

These are essentially the relations describing the T(n, k, p). Indeed, L(m, k,])=
T(m + 1, m -k + 1, t-f-2). In particular, L(n, n, 0)= T(n + 1, 1, t-2)= T,. Thus
there is a one-to-one correspondence between t-ary trees on N leaves and walks on Lt
starting at (0, 0) and ending at (n (t- 1), n). We will now make explicit this one-to-one
correspondence by showing how it relates to our ranking scheme. First, note that

(10) Y L(M, k)= L(M + 1, k’)
k k

because any walk to (M+I, k’) must pass through one of the points
(M, 0), (M, 1),. , (M, k’), and after passing through that point has only one way of
continuing to (M + 1, k’). Using (10) we can. prove the following

LEMMA. Given any integer K such that 0 <-_ K L(M, k) there exist unique integers
0 ko - k <-_" <- k k such that

M-1 ki+
(11) K= L(i, r).

i=0 r=ki+
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Proof (by induction on M). If M 1 then we must have k ko k K 0, and
the lemma is true by the empty sum convention. Otherwise assume that the lemma is
true up to M- 1. Let kM-1 be the smallest nonnegative integer such that

k

Z L(M-I,r) <-K.
r=kM-l+l

k,, L(M- 1, r). Then 0 <= a < L(M- 1, kM-1), so by the inductiveLet
assumption there exist unique integers 0 ko <-_ kl <-_" <-kM-1 such that

M-2 ki+
E E L(i, r).
i=0 r--ki+

Now we need only show that the choice of kM-1 was unique. Certainly we could not
have chosen kM- any smaller. If we had chosen kM-x larger than

M-2wk’+l L(M-1 r) could be is L(M-1 kM-1)--But by (10), the largest i=o z-r=k,+l

L(M- I, O)= L(M- I, kM_I)-I; so there is no way to choose the remaining
ki. Q.E.D.

The integers ko, I1,’", kM define a unique walk on Lt passing through the
points (0, k0), (1, ko), (1, kl), (2, kl)," ’, (M, kM). Note that ki <- [i/(t- 1)]. The
converse of the lemma also holds; i.e., given integers 0 ko < k <-"" <----kM k such
that kin [i/(t-1)] (O <- <-_ M), then (11)satisfies O<-K<L(M,k). To find the walk
corresponding to a t-ary tree we could first find its rank by using the procedure
RANK, and then determine the ko, kl," ", kM-1 n for K rank and thus produce
a walk. Surprisingly, however, the ko, kl," ". kr-x are determined already in RANK
by the relation kN- n and

(12) aN-M- [d,N-M -- 1
k

aN--M IJ,N--M

if M --0 (mod t- 1) and kM m,
otherwise.

Example 2. What walk corresponds to the tree of Example 1? We find there that
ko, k1,’", ko= 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 5 and the walk therefore looks like Fig. 7.

If we label the edge from (M + 1, k 1) to (M + 1, k) with L(M, k) and then sum
the labels on any walk from (0, 0) to (N-l, n) then we get the rank of the tree
corresponding to that walk. The labels are shown in Fig. 7; the above walk has rank

FG. 7
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L(9,5)+L(9,4)+L(7,3)+L(6,2)+L(1,1)=0+143+30+12+0=185. These are
just the T(n, k, p) that were added in RANK. This shows that the number of times
the assignment rank rank + T(n- m, Ix-l + i, ]-1)can be executed is at most n
(i.e. the number of vertical edges used in a walk from (0, 0) to (N-1, n)). We now
present an algorithm for producing the t-ary tree having a given rank.

5. The unranking algorithm. To find the uth tree on N leaves we could proceed
as follows. First, find the walk from (0, 0) to (N- 1, n) corresponding to u; then from
the ko, kl," kN-1 determined by that walk try to find the aM and /XM for 1 <=M _--<
N.

Suppose we try to find the 200th trinary tree on 11 leaves. We easily find the path
in Fig. 6 by starting at (10, 5) and proceeding down as far as possible (to (10, 3))

FIG. 8

without exceeding 200. Now go one step to the left and repeat the process. (See Fig.
8.) Thus, k0, kl,. , kao 0, 0, 0, 0, 2, 2, 2, 2, 2, 3, 5. Rewriting (12) we have

kM- kM-1- 1
aN-M I.(,N--M

kM kM-1
if M-= 0 (mod t- 1) and kM m,
otherwise.

Since/-1 1 we have al 1 + klo- k9- 1 2. Thus/.1,2 2; so a2 2 + k9-ks 3. This
can be continued until we get the sequence of level numbers 2, 3, 3, 3, 2, 1, 3, 3, 3, 2.

However, we do not have to find the walk and the k to unrank u. The following
AGOL-like procedure UNRANK takes as input the rank of the desired tree and n
the number of internal nodes of the tree (0=< rank < T,,), and returns the feasible
sequence al, aa,. , au having that rank. It essentially reverses the steps used in the
RANK procedure. UNRANK also has running time O(N), for the same reasons that
RANK had running time O(N).

procedure UNRANK (n, rank:integer);
begin
M- 1; L0; ro-0: l-0;
for m 0 to n- 1 do

begin
for j - 1 to t- 1 do
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begin
x ,-if rE then + 1 else rE;

,-0; tsum ,-0;
repeat

tsum tsum + T(n m,/z + i, j- 1);
ii+1;

until rank < tsum
rank rank tsum + T(n m,/x + 1, j- 1);
aM(--tX +i-1;
REDUCE (r, r,..., rE, aM);
MM+I;
end;

/,-l+1;
end;

end of UNRANK.

6. Analysis of the tree generating algorithm. The time required for one iteration
of NEXTTREE is proportional to the number, p of leaves from the right until leaves
at the same level are encountered. In the worst case this may be O(N), but on the
average it is on the order of

1 (n-1)(t- 1)

E (p + 1)I(n, p),(13)
T, =o

where I(n, p) is the number of t-ary trees on N leaves whose first p level numbers
form a t-increasing sequence and such that ap+l= ap+2 a+t and a

P

leaves

(k-I)(t-I)-p

subtrees

level

FIG. 9
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Referring to Fig. 9, we see that I(n, p) can be written as. 2 E TT T,_x,,,_a,_
k=l bl, l+/.l,2+’"+/.l,k_l=p Vl+V2+...+v(k_l)(t_l)_p=n--k

O<=txi t--1 ui>=O
(14)

Y. , T(n-l,k-l,p)
k=l k -b bt,2 q-- q--/d,k p

O<_----<_t--1

where/x is the number of the first p leaves that are at level and ao+ ao+2
ao+t k.

The I(n, p) satisfy the following boundary conditions and recursion

(15) I(n, (n- 1)(t- 1))= 1,

(16) r(n, 0)= (n, 1) r(n, t- 1)= T._,

(17) I(n, p)= I(n 1, p-t + 1)+ I(n, p + 1).

These relations will all be given combinatorial proofs. The one tree indicated by
(15) is the lexicographically smallest tree with N leaves. To prove (16) we will exhibit
a one-to-one correspondence between T_ and I(n,p)where O<=p<t. Consider a
tree in I(n, p); if we perform one reduction from the left then we get a tree in T,,-1.
Conversely, given a tree in T,_ we can replace the (p + 1)st leaf from the left with a
one-tree, yielding a tree in I(n, p) (if p -> then we cannot be assured that the tree is in
I(n, p)). Combining (14) and (16) results in the identity (if 0=<p < t)

T,, t, (k +p-1) T(n, k, p).
p

FIG. 10

To prove (17) consider a tree in I(n, p). One of two cases occurs: either the father
of the (p + 1)st leaf (i) is the tth son of his father or (ii) is not the tth son of his father.
These cases are illustrated in Fig. 10. If we reduce ap+l,’", a,+t in case (i) then we
get a tree in I(n 1, p + 1); and vice versa. Case (ii) is only slightly more difficult to
visualize. Here we reduce ap+l," ", a,+t but then replace the leaf with level number
ap+t+l by a one-tree. This yields a tree counted by I(n, p + 1). This procedure can be
reversed to get a tree satisfying case (ii). The I(n, p) also count the number of walks on
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a set of lattice points that might be described as the "dual" of L,. It is the lattice

L’, {(x, y): x, y _->0 integers, y_-< (t- 1)x}

which is shown in Fig. 11 for 3. The number at a lattice point counts the number of
walks from (0, 0) to that point. The dotted lines and vertical lines shows how the

2 ?3

2?3
/

/

55---2 73

////

/ iiI
12 55------163

p =0

P=I /- 43-----108’

P=2 ////

etc. 3 12 31 65

//! /

/ /
9 19 34

/
/ //

3 6 I0’ 15

/I/ // //

I/I il//-2 : 5

n 2 3 4 5 6

FIG. 11

number of walks relates to the I(n, p). Iterating (17) results in

(n--1)(t-1)

I (n, ])= I(n + 1, p + t- 1).

Thus

E (P + 1)I(n,p)= Y. I(n,])+ E I(n,])+... + E I(n,])
p>=O jO j>=l j--(n--1)(t--1)

I(n + 1, t- 1)+I(n + 1, t- 1+1) +... +I(n + 1, n(t- 1))

Y I(n + 1, ])= I(n + 2, 2(t- 1)).
j>=t-1
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However,

Thus we have

I(n + 2, 2(t- 1))= I(n + 2, 2(t- 1)- 1)- I(n + 1, t- 2)

=I(n+2,2(t-1)-l)-T,

=I(n+2,2(t-1)-2)-2T,

I(n + 2, t- 1)- (t- 1)T, T,,+I- (t- 1)T,.

E (P + 1)I(n, p)= T,+I-(t- 1)T,.
p0

Thus the average running time of NEXTTREE is O(T,+I/T,, t). To get a better idea
of what this is we estimate T,,/rn-1.

1 {tn\ 1 (tn)!
T,

(t -1)n + l n (t -1)n + l n (tn n )!

(t- 1)(n 1)+ 1 1 (tn)(tn 1)... (tn -(t- 1))
T?I_

(t 1)n + 1 n (tn n)(tn n 1). (tn n (t 2))

tn (tn)’-1

n (tn n + 2)’-a T.-1

((r+ 1)(r + 1))"_<-t T._I wherer=t-landr=n-1

--<t 1+-- T-I
rr/

(r+r/+ 1) 3-<texp T,-l <-te T,-1 if n >-_t.

Hence NEXTTREE has a running time on the average of O(t). Also note that
because NEXTTREE contains the loop

for 1 to do ak-i ak-t + 1;

then the average running time must be at least O(t). Because the T(n, k, p) had such
a simple expression, it is plausible that the I(np) also have a simple expression.
However, the author was unable to find one. The reason that it was possible in the

2 case [6] is that L2 L;.
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POLYNOMIAL TIME ENUMERATION REDUCIBILITY*

ALAN L. SELMAN

Abstract. A viable polynomial time enumeration reducibility is defined and studied. Let ---<pc denote
this reducibility. -<p is intrinsic to certain tradeoffs between nondeterministic oracle recognition of sets and
deterministic oracle computations between functions. A set belongs to f if and only if the set is, in some
natural sense, polynomial enumerable. _-<p is defined so that A-<pB just in case for every set C, every
polynomial enumeration of B relative to C yields some polynomial enumeration of A relative to C. Various
properties of -<p are shown. In particular, -<pc is a maximal transitive subrelation of =T Also, =<p is equal
to --<ff on low level complexity classes, but the equality does not hold over all recursive sets.

Key words, relative computability, enumeration reducibility, nondeterministic, polynomial time,
complexity classes, oracle Turing machines, polynomial enumerable

Introduction. This paper contributes to the growing body of research on compu-
tation bounded reducibilities. Let (aVP) be the class of sets recognized by deter-
ministic (nondeterministic) Turing machines which run in polynmial time. The class 5
encodes the collection of problems that are "practically computable." There are
known connections between the important =/’? question, the question of closure
under complements of ave, and the behavior of various polynomial time bounded
reducibilities [8]. Thus we are especially interested in questions about relative
computability that arise at the level of polynomial time bounded complexity.

Our intent here is to demonstrate the existence of a viable polynomial time
enumeration reducibility. One motivation to this research is that a satisfactory
definition of polynomial time reducibility between functions, rather than sets, remains
elusive. (Work in this direction can be found in [4] and [9]). In recursive function
theory, enumeration reducibility contributes to the understanding and "making pre-
cise" of relative computability [11], [12]. We introduce the most conservative
meaningful notion of polynomial time relative computability between functions. Our
work demonstrates in the current context (polynomial time complexity) that relative
nondeterministic reducibility between sets can be replaced by relative deterministic
computability between functions. In addition, our work on polynomial time enumera-
tion reducibility enables us to focus our attention on a proper definition for
nondeterministic relative computability between functions.

The relation "nondeterministic polynomial time in" (_-<wx, in the notation of [8])
has proved useful in the work of Meyer and Stockmeyer [10] and Baker, Gill and
Solovay [1]. This relation, however, is not transitive [8]. The greater importance of the
deterministic reducibilities, _-<, and _-<, of Cook [2] and Karp [5] is, in part, due to
their nice properties of reflexivity and transitivity. Thus, (--<m)f’) (__--<m)-1 and (_--<)
(__<)-1 are equivalence relations. It will be easy to show that polynomial time
enumeration reducibility (denoted, ----<pc) is a subrelation of __<c which shares these
properties. In addition, we will show that ----<pc possesses the following two desirable
properties: Af is the 0 degree for the degree structure of ----<pc, and --<pe is as "large" in
__<e, as possible, i.e., ----<pc is a maximal transitive subrelation of ---.

Let A and B be two recursive sets of strings. Suppose A _-< B via a nondeter-
ministic oracle Turing machine M. Then, of course, given an input string x, the length
of each oracle query x about membership in B is bounded by the running time of M

* Received by the editors January 17, 1977, and in revised form September 27, 1977.
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on x. In addition, if for some set C, B _-< C, an attempt to recognize A relative to C
may require exponential time--thereby making _-< nontransitive--because if the
length of z is of order a polynomial of the length of x, then the time required to
deterministically determine, relative to C, that a query z does not belong to B may be
exponential. The definition of -<-pe will be based on very different fundamental con-
siderations. However, in contrast to the situation just described, in terms of oracle
Turing machines it will turn out that A ----<pe B just in the case that the length of oracle
queries that receive "no" answers about membership in B can be made "arbitrarily
small." More precisely, for each integer m there is an oracle Turing machine M that
witnesses A =T B and for every x in A there is an accepting computation of M in
which every oracle query about membership in B that receives a "no" answer has
length at most O((log Ixl)l/"). The reader may observe at this point that the property
just described is a weakening of the machine that witnesses A _-<c B. In the latter
case, for each input x there is an accepting computation in which no queries receive a
"no" answer.

In the following section it is shown that a set A belongs to if and only if A is,
in some natural sense, polynomial-enumerable. Moreover, this concept is easily
relativized. Relative computability between functions is also discussed in this section.
Section 2, then, presents alternative fundamental motivations and definitions of -<pe,
based on the ability to enumerate precisely the sets in. In 3, a principal technical
result proves that the alternative definitions of _-<p given in 2 are equivalent--
thereby giving evidence to the claim that our definition is correct. Section 4 compares
< and other maximal transitive subrelations of _-<, with the reducibilities studied--’pe

in Ladner, Lynch and Selman [8]. It is proved that "negative questions" are unneces-
sary on the interesting low level complexity classes, but that this simplification is not
true in general.

Given a function f, let denote the graph of f, and let CA denote the characteristic
function of the set A. It is proved in the concluding 5 that -<p satisfies properties
akin to the well-known relationships f-<T g<--f pe and A <-xB<-CA pe CB
satisfied by ordinary enumeration reducibility.

We further establish the notation to be used. All sets are intended to be recursive
languages over the alphabet {0, 1}. Numbers are identified with their binary represen-
tations. As was used above, the length of a string is denoted Ix I. Therefore, Ix[ log x,
the binary logarithm of x. We will let 0.-(.,.) be a fixed pairing function with
inverses O" and 02 so that 0., o-1, and 0-2 are each computable in. polynomial time.
Furthermore, we assume that there is a polynomial s so that, for each x and y,
[0-(x, y)[ s(lx[,

Reducibilities will be denoted as in [8]. To summarize"

polynomial time Turing reducibility

polynomial time truth-table reducibility

polynomial time conjunctive reducibility

polynomial time many-one reducibility

To each such reducibility _-<f, there is the corresponding nondeterministic polynomial
time reducibility

1. Polynomial enumerability.
1.1. Enumerations. Let be the set of polynomial time bounded computable

functions [3], and let o(A) be the set of functions computable in polynomial time by
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an oracle Turing machine with oracle A. Given a function f and a polynomial p, we
will say that f is p-bounded if, for every x, If(x)l <--P(IXl). Clearly, if there is a set A
such that f (A), then, for some polynomial p, f is p-bounded. By the following
theorem the converse is also true.

THEOREM 1. There exists a set A such that f L(A) if and only if there is a
polynomial p such that If(x)l <-_ p(Ixl), for each x.

Proof. Suppose that p is a polynomial and that If(x)l_-<p(]xl). We define a set A
that encodes the bitwise computation of f. A consists of encoded triples (a, x, k),
where a 6 {0, 1}, x 6 {0, 1}*, and k {0, 1}* is the binary representation of an integer k,
defined according to the following rules:

(0, x, k) A if and only if f(x) has a kth bit;

(1, x, k) A if and only if the kth bit of f(x) is 1.

It should be clear that f is computable from A. In fact, to show that f is
computable from A in polynomial time, observe that in a computation of f(x),
(0, x, If(x)l+ 1)is the Mngest query made, and O(]f(x)l)queries are made altogether.
Since If(x)l<=p(Ixl), it follows that

We next define some concepts that have obvious analogies with recursive enu-
merability.

DEFINITION l. A function f is a polynomial-enumerating (polynomial-enu-
merating in A) function if

(1) f is in (f is in (A)), and
(2) there is a polynomial q so that

Vy[y range f- ::lx[]x[ <- q(lYl) & Y f(x)]].

A set B is polynomial-enumerable (polynomial-enumerable in A) if B or there is a
polynomial-enumerating (in A) function such that B range f. In this case, f is called
a polynomial-enumeration (relative to A)of B.

Let us agree that to each many-one function f there is a possible multitude of
inverse functions f-1 (defined on range f), each of which is determined by the
condition that f-l(y) is one of the strings x for which f(x)=y. Then, clause (2) of
Definition 1 states that f has a q-bounded inverse.

Theorem 1 makes it possible to specify the class of all polynomial-enumerating
functions without reference to oracles.

DEFINITION 2. Define the class 0-// to be the collection of all functions f for
which there exist polynomials p and q such that

(1) f is p-bounded, and
(2) f has a q-bounded inverse.
COROLLARY 1. f is polynomial-enumerating in A, for some set A, if and only if f

belongs to
In discourse we will frequently use the phrase "polynomial-enumeration"

generically. For example, given a nonempty set B, the collection of all polynomial-
enumerations of B will refer to the set of all functions f in dV’//At satisfying range

If f is nondecreasing, then the second clause of Definition 2 is automatically
satisfied. Observe that not every function can be a polynomial-enumeration, even
relative to a set A. For example, the function f(x)=2 is not p-bounded, for any
polynomial p, and the function f(x)-log x has no q-bounded inverse. Thus 2 and
logx are not polynomial-enumerations of their ranges relative to any set A. In
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contrast, every enumeration of a set B is a recursive enumeration relative to some set
A.

Every nonempty set B possesses the trivial polynomial-enumeration g (relative
to itself)defined by

g(x) if x B then x else b,

where b belongs to B.
Let (A)= {BIB <= A} and let ag(A) {BIB <-- A}.
We will make use of the following known characterization of W(A) ([2] and [5])

in terms of polynomial time-bounded quantifiers. Namely, B belongs to W(A) if and
only if there is a polynomial q and a binary relation R in (A) so that

Vx[x Bly[lylq(lxl) e(x, y)]].

A simple padding trick makes it possible to replace the "=<" sign with equality.
We will always assume the equality sign. In this case we refer to q as the size o[ the
computation of B (relative to A).

Recall that application of the pairing function o- to x and y has length
THEOREM 2. I B belongs to N(A) via a computation of size q, then B has a

polynomial enumeration f relative to A such that f has a O-bounded inverse, where
O(" )= s(., q(. )).

Proof. Assume B Q, and let b B. Suppose

Vx[x B- ::ly[ly q(Ixl) & n(x, y)]],

where R 6 (A).
Define ’(i)= if ]r2(i)l- q(lr(i)l) & R (r(i), r2(i)) the rl(i) else b. (Intuitively,

(x, y) encodes an input value x and a computation y. f(i)= x, if y is a computation
of B of size q that accepts x.)

We show that f is a polynomial-enumeration of B relative to A. It is clear that f
belongs to (A), and that range f___B. If x e B, then there exists y such that lyl-
q(Ixl)& R(x, y). Let i=(x, y). Then, f(i)= oh(i) x. So, range f= B. Moreover, lil
Ir(x, Y)I s(Ixl, lYl)- s(Ixl, q(Ixl)) O(Ixl). So,

x B- Bi[lil O(Ix]) & f(i)= xl.
Thus, we have shown that f has a O-bounded inverse, and the proof is complete.

The converse of Theorem 2 is also true.
THEOREM 3. If B has a polynomial-enumeration f relative to A such that f has a

q-bounded inverse, then B W(A via a computation of size q.
The proof is straightforward so we just give a sketch. If the hypothesis holds, then

Vy[yB--:Ix[lxl<-_q(lyl) & f(x)=y]].

Define R(x, y) to be [f(x)=y]. Clearly R belongs to (A). Now, pad to obtain a
computation of size q.

The following corollary is obvious, but had best not go unnoticed.
COROLLARY 2. B belongs to if and only if B is polynomial-enumerable. B

belongs to W(A) if and only if B is polynomial-enumerable in A.
There is one additional interesting feature about the proofs of Theorems 2 and 3,

taken together, that we need to observe. If B has a polynomial-enumeration f relative
to A, for some set A, then application of Theorem 3 followed by Theorem 2 yields



444 ALAN L. SELMAN

another polynomial-enumeration g relative to A having a Q-bounded inverse. But
this time we have "equality." That is,

VxBEii([il=Q(lxl) &g(i) xl.
Henceforth, whenever we say that f is a polynomial enumeration of a set B having a
q-bounded inverse, we will assume that to each xB there is some y so that f(y)=x

1.2. Computations. We have just shown that B belongs to (A) if and only if
B is polynomial-enumerable in A. Thus, the nondeterministic recognition of B rela-
tive to A is equivalent to the deterministic computation of a function f relative to A.
Under what conditions is B recognizable from a polynomial-enumeration of A?
Under what conditions is a polynomial-enumeration of B relative to A computable
from a given polynomial enumeration of A? In the next section we will respond to
these questions, but first we will specify how Turing machines with oracles that
compute functions are to be used.

An oracle Turing machine M is either designed to recognize a set A, a set
acceptor, or to compute a function f, a transducer. We assume that M contains a
read-only input tape, and, in the case of a transducer, a write-only output tape. In
either case, it is always assumed in complexity theory that M costs, and that our
resources are limited to some resource complexity function TM (in this paper, the
running time.) We conceive of an oracle as auxiliary hardware with only negligible
cost that M may access freely during a computation. If this auxiliary hardware is an
oracle for some function g, then these considerations lead us to the following stipula-
tions.
M contains a write-only input oracle tape, a separate read-only output tape, and

a special oracle call state q. When M enters state q the result of applying the oracle to
the string currently on the oracle input tape appears on the oracle output tape. Thus,
given an input x to the oracle, the oracle, if called, must return a value g(x). The
oracle may not provide its own input, so that any change to the oracle input must be
made by M and at the expense of M. Because M is charged for using the oracle,
it is possible that M may read only a portion of the oracle’s output if the oracle output
is too long to read within the resource TM.

Based on this model, the following definition of a strict polynomial time bounded
reducibility between functions will be useful for our purposes.

DEFINITION 3. Define f _--< g if there is an oracle Turing machine tranducer M
(as above) with oracle g and a polynomial p such that, for each x {0, 1}*, M
computes [(x) in time p (Ix 1).

This definition is equivalent to the usual definition of _-< for sets, via charac-
teristic functions. It can be proved that _-<-reducibility between functions is transitive,
but not in general reflexive. However the restriction of -< to the class of p-bounded
functions is clearly reflexive. In this paper our application will always be to poly-
nomial-enumerations (members of g’q/M). Further, since it is the class of "feasibly
computable" functions whose "polynomial time complexity" we wish to compare, it is
entirely reasonable to restrict our attention only to those recursive functions which
can, at least, be "written down" within polynomial time. For these reasons, the
functions we wish to compute and the oracles we use will be p-bounded.

In the final section we will obtain some results about relative nondeter-
ministic computability between functions. The following definition again takes the
conservative view.
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DEFINITION 4. Define f _--<xx g if there is a nondeterministic oracle Turing
machine transducer M with oracle g and a polynomial p such that

(1) for each input string x to M there is a computation of M that computes f(x)
in time p(]x]), and

(2) if M on input x halts with a word y on its output tape, then y -f(x).
The ideas developed in this subsection 1.2 were developed jointly with T. P.

Baker and will be expanded on in a forthcoming paper.
THEOREM 4. B <=A if and only if there is a polynomial-enumeration f of B

relative to A such that f <= g, where g is the trivial polynomial-enumeration of A.
Proof. By Corollary 2, it is only necessary to show that f =a A is equivalent to

f =T g. This is clearly so; a set oracle for A can be replaced by a function oracle for the
trivial polynomial-enumeration g, and vice versa.

2. Polynomial time enumeration reducibility.
2.1. Nonconstructive approach. The fundamental motivation of enumeration

reducibility is that A is to be enumeration reducible to B just in the case that an
enumeration of A is computable from any enumeration of B. Thus, we want A o be
polynomial time enumeration reducible to B just in the case that every polynomial-
enumeration of B (relative to any set X) yields some polynomial-enumeration of A
(relative to X). We set down the following definition.

DEFINITION 5. A is polynomial time enumeration reducible to B (A pe B) if and
only if, for every set X, if B has a polynomial-enumeration relative to X, then A has a
polynomial-enumeration relative to X.

By use of Corollary 2, this may be equivalently stated:

A pe BtX[B <-X-.A <-X].

A similar characteristization is proved for (ordinary)enumeration reducibility in
[13]. Observe that no mechanism is presented that, given a machine to recognize B
relative to X, tells us how to recognize A from X. We have adopted this nonstandard
nonconstructive approach because it expresses the intrinsic motivation most trans-
parently, and because, surprisingly, several of the interesting properties of _-__p can be
proved from this definition.

THEOREM 5. pe is reflexive and transitive. A pe B implies A <-- B. The class
a’ is the O-degree for the <-pe-degree structure.

The proof of each of these statements is trivial. For example, if A-< B, then
A __--<Tx B follows, because B --<Tx B. The third statement follows from the fact that a
set A belongs to W if and only if for every set X, A belongs to (X).

THEOREM 6. --pe is a maximal transitive subrelation of <-. That is, if is any
binary relation such that pe = --- Tc, then is not transitive.

Proof. Let be a binary relation such that pe
_

C: __r. Then there exists sets
A and B such that A :p B, but AB. So, :IX[B <--_X&A -X]. Because
B --< X, there is a relation R (X) and a polynomial q so that

’v/x[x 6 B <-->=iy[ly[ q([x]) & R(x, y)]].

it is easy to see that, for any set C, if R _<c C, then B _-< C. (Given an input x, just
guess a string y such that ]y[ q(Ix]), and then apply the acceptor for R with oracle C
on the input (x, y).) Thus, B -<p R. So, BR. If is transitive, then AR follows
from our assumption that AB and from BIR. Hence, if is transitive, then
A =< R. But, A _-< R and R (X) implies A =<CX. X was chosen so that
A wxX. Thus we have a contradiction; is therefore not transitive.
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Consider two sets A and B for which A -<pe B. If B -<vx X, for some set X, let us
consider how a machine that witnesses A _-<X might be obtained. From A pe B
we haveA--T B, but, A-T B andB--T X do not, n general, lmplyA--T X.
We may expect that A _-<pe B insures the existence of a "nice" machine for which
A _-< B so that, using the "nice" machine and a machine that witnesses B --<Tx X, we
can derive a machine that witnesses A _-<vx X. Since there may be distinct sets X1 and
X2 such that B <-xxX via a computation of size q and B <fX2 via a computa-
tion of size q2, where ql differs from q2, let us anticipate that the machine from which
we can derive A <_c X1 will be different than the machine from which we can derive
A =<xx X2. We are led to the following definition.

DEFINITION 6. Define A _--<, B if and only if, for every set X, if B _--<X by a
computation of size q, then A -<xx X.

Observe that, for A-<,B and B-<X via a computation of size q, no
conclusion can be inferred about the size of a resultant computation of A from
XA <q B just guarantees that there is one.---pe

< Thus, A <--p B if and only if, for each polynomial q,LEMMA 1. --<p= [")q---
a <q B.--pe

Given a polymomial q, let Q be the polynomial in Theorem 2. from Theorems 2
and 3, we have the following:

A (q B implies that, for every set X, if B has a polynomial enumeration relative--pe
to X with a q-bounded inverse, then A has a polynomial enumeration relative to X.

If

VX[B has a polynomial-enumeration relative to X with a Q-bounded inverse- A
has a polynomial enumeration relative to X],

then A -< B.

2.2. Constructive approach. We next adopt the point of view that A is poly-
nomial time enumeration reducible to B just in the case that there are processes
which operate in polynomial time and which, whenever they are given polynomial
enumerations of B, compute polynomial-enumerations of A. From this stance, we

rewrite Definition 5 as follows (and we will prove the alternative definitions equivalent
in the next section.)

DEFINITION 5’ For each polynomial q, define A <zq B if and only if there exists--pe’

an oracle Turing machine transducer M with function oracle g that operates in
polynomial time such that, for any set X, if g is any polynomial-enumeration of
B relative to X with a q-bounded inverse, then M computes some polynomial-
enumeration f of A relative to X.

Define A pe’ B if and only if, for each polynomial q, A ---ge’ B.
Definition 5’ is written so as to parallel Definitions 5 and 6 as closely as possible.

However, recalling (Corollary 1) that the collection of all polynomial-enumerations
can be classified without reference to oracles, we see that Definition 5’ is actually
somewhat more complicated than necessary.

THOgM 7. A <--_, B if and only if there is an oracle Turing machine transducer
M with function oracle g and polynomial running time that has the following property: if
range g B, g belongs to RI, and g has a q-bounded inverse, then M computes a

function f such that range f A and f belongs to
The proof from left to right follows from Corollary 1. The proof in the other

direction follows from the transitivity of _-<; i.e., if, for some set X, f = g and
g _-< X, then f _-< X.
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---pe’ can also be characterized in terms of nondeterministic set acceptors rather
than machines that compute functions. Lemma 2 to follow presents this charac-
terization.

LEMMA 2. Let q be a polynomial. For any two sets A and B the following are
equivalent:

(1) there is a nondeterministic oracle Turing machine that witnesses A <-B and
a constant k such that, for each input string x in A, there is an accepting computation in
which every query z about membership in B that receives a "no" answer satisfies
q(lzl)<= k log Ixl.

(2) there is a set W in (over the alphabet {0, 1, c}), a polynomial p, and a
constant k such that

Vx[x A <---> ::ia [la _-< P(IXl) & xc W

Ol Cy cynccz

& Yl,’" ", Y., Zl,’" ", Zm {0, 1}*

& =< m, < k log

& {Yl, yn} --- B & {Zl,... Zm}_. B]I.

The proof technique can be found in [8]. We will show that A pe’ B if and only
if, for each polynomial q, there is an oracle Turing machine M that satisfies the
property (1)of Lemma 2. M is the "nice" machine alluded to in the previous
subsection. The following theorem gives the proof in one direction; the other direction
will appear as a consequence of results in the next section.

THEOREM 8. Let q be a polynomial. For any two sets A and B, if there exists an
cl jooracle Turing machine M that satisfies property (1) ofLemma 2 then a =pe’

Proof. Given A and B, suppose the hypothesis is satisfied. Using Lemma 2, let W
in ave, polynomial p, and constant k, satisfy property (2). Consider then the following
nondeterministic oracle Turing machine M designed to satisfy property (1).

On input x, M makes the sequence of steps:
1. M guesses a string a such that lal_-<p(Ixl);
2. checks whether xca belongs to W;
3. checks whether a cyl CynCCZl CZm’,
4. for each zj, M checks whether q(Izl)_-< k log Ixl;
5. in sequence, M places each yi on the oracle tape and enters the query state; if

the answer is "yes", then M continues;
6. in sequence, M places each zj on the oracle tape and enters the query state; if

the answer is "no", then M continues.
M accepts the input string x only if each test is successful. Clearly, M satisfies

property (1). We now define a nondeterministic Turing acceptor M1 with function
oracle g. On input x, steps 1-4 of M1 are the same as M. Steps 5 and 6 are the
following:

5. In sequence, for each yi, M guesses a string sc such that ]sol q(lYl) and checks
whether g(sc) y; i.e., M write on the oracle input tape, goes into the oracle
call state, anc[ then checks whether y is on the oracle output tape.

6. In sequence, for each zi, M generates each string such that Iscl q(Izl), writes
on the oracle input tape, goes into the oracle call state, and checks whether z

is not returned.
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M1 accepts x only if each test is successful. We claim than whenever g is a
polynomial-enumeration of B (g gg’Rd// and range g B) having a q-bounded
inverse, then M1 recognizes A in polynomial time. M1 recognizes A because M1
simulates M. We need to show that M1 operates in polynomial time. Steps 1-4 can
clearly be executed in polynomial time. Since g is pl-bounded, for some polynomial
pl, step 5 can be executed in polynomial time. To see that step 6 can be executed in
polynomial time, observe first that

z e B :::l[g(:)= zi &

There are 2q(l’l) distinct strings such that Il-q(Izl). Since q(Izl)<-k log lx I, it
follows that at most Ixl values g() need to be obtained. That is, M, can check
whether z. does not belong to B by making no more than Ix oracle calls, and
checking for each such call that zi is not the value returned. Thus step 6 can also be
executed in polynomial time, so our claim is proved.

Next, to complete the proof of Theorem 8, we construct a deterministic Turing
machine transducer M with oracle g so that whenever g is a polynomial-enumeration
of B having a q-bounded inverse, then M computes some polynomial-enumeration
of A. Let a belong to A. On input sc (x, y>, M2 is to check whether y is an accepting
computation of M1 on input x. If so, then m2 outputs x; otherwise M outputs a. It is
evident that M2 has the required property (see the proof of Theorem 2). Thus, the
proof is complete.

COROLLARY 3. Given sets A and B, if ]’or every polynomial q there exists a
nondeterministic oracle Turing machine that witnesses A <=B and a constant k such
that, for each input string x in A there is an accepting computation in which every query z
about membership in B that receives a "no" answer satisfies q(Izl) <- k log Ixl, then
A =<pe’ B.

3. Main results.
THEOREM 9. A pe’ B implies A pe B.
The proof follows directly from the definitions. The following theorem is central

to the converse.
THEOREM 10. For each polynomial q, if A <zq B, then there is a set W in ag, a---pc

polynomial p, and a constant k for which property (2) in lemma 2 is satisfied.
Before turning to the proof of Theorem 10, let us note that, as a consequence, our

various characterizations of polynomial time enumeration reducibility are all
equivalent. In particular pe is identical to --<pe’- Therefore, beyond this section the
notation -<pc, will no longer be useful. The important conclusions are summarized in
the following corollary.

COROLLARY 4. The following are all equivalent.
(1) VX[B has a polynomial-enumeration relative to X-A has a polynomial-

enumeration relative to X].
(2) VX[B <-’X-A <-_ X].
(3) For every polynomial q there is an oracle Turing machine transducer M with

function oracle g and polynomial running time such that M computes a polynomial-
enumeration ofA (relative to X) whenever g is a polynomial-enumeration ofB (relative
to X) having a q-bounded inverse.

(4) For every polynomial q there is a nondeterministic oracle Turing machine
acceptorM that witnesses A <-B and a constant k such that, for each input string x in
A them is an accepting computation in which every query z about membership in B that
receives a "no" answer satisfies q(Izl)<-_ k log
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(5) For every polynomial q, there is a set W in /’, a polynomial p, and a constant
k such that

Proof. Part (1) (2) is clear; part (2) (5)is Theorem 10; part (5) (4) by lemma
2; part (4)-(3)is Corollary 3; and, part (3)(!) is Theorem 9. Thus, all the
equivalences are proved.

Note that (3)(4) is the converse of Corollary 3, thereby completing the
argument begun in the previous section that -<pe’ can be characterized either by
nondeterministic set acceptors or by deterministic oracle machines that compute
functions.

The proof of Theorem 10 will take up the remainder of this section. This is the
difficult direction, for we want to show that if, for every set X, B _--<X implies
A -< X, then there is a machine that constructively effects the implication. It should
be clear that no straightforward design of such a machine can be accomplished. In fact,
given a fixed polynomial q, we show, unless there is an appropriate set W in ,
polynomial p, and constant k, that there exists a set C such that B _-< C and
A C. C is obtained by a construction that combines a diagonalization so that
A:C with an encoding so that B _-< C.

In order to effect A: C, we make use of the result [8] that A <- C--A
--tt C. For the convenience of the reader, we repeat here the definition of -<kt.

Let A be a fixed alphabet for encoding Boolean functions, and let c A 1,3 {0, 1).
A tt-condition is a member of A*c(c{0, 1}*)*.
A tt-condition evaluator e is a recursive mapping of A’c{0, 1}* into {0, 1}.
A tt-condition accylcy.c’’’Cyk is e-satisfied by B_{0, 1} if and only if

e(otCCB(Yl)’’" CB(yk))-- 1.
A --tt B if and only if there is a nondeterministic Turing machine transducer g

that runs in polynomial time and a polynomial time computable evaluator e such that
x A just in case on input x, g computes a tt-condition y which is e-satisfied by B.

The nondeterministic transducer g, we will call a nondeterministic tt-condition
generator.

Next, we assume an effective enumeration (g, e)i of all pairs of nondeterministic
tt-condition generators and tt-condition evaluators with associated polynomial run
times, so that g and e are both time bounded by the polynomial pi.

Proof of Theorem 10. Let q be a fixed polynomial, and let A and B be given so
that Lemma 2, property (2) is not satisfied. C will be constructed in stages. C may be
thought of as a subset of {0, 1}* {0, 1}*, via the pairing function (., ). We will effect
B __<e, C by constructing C so that

x B-ly[lyl- q(lx[) & (x, y) C].

At stage 0, C is empty. At stage i, let us suppose that C has been determined on some
finite domain U; let Ci C VI U.
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For a set S, define FIRST(S)= {xl(x, y)e S}. We will assume as an induction
hypothesis that

Vx FIRST(U)[x B<--,ty[lyl=q(Ixl)& (x, y) C]].

We next extend the domain of definition of C to some U/ U U V; C/1 will
then be some set C/1 C U D, where D _c V. To insure that values are not redefined,
we only consider extensions that satisfy the predicate EXTEND(U, C, V, D), defined
by

EXTEND(U, C, V, D)-- [D V & D ("} (Ui-Ci)= Q & C (’I (V-D)= ].

Also, to insure that the induction hypothesis can be met at the next stage, we only
consider extensions that satisfy the predicate COMPATIBLE(V, D) defined by

COMPATIBLE(V, D)---[lyl q(lx[) & (x, y)O x e B, and

Vy[lyl=q(lxl)-->(x, y) V & (x, y)C:D]--->xC:B].

Finally, let (g, e) be given, g and e are time bounded by the polynomial p p.
There are three logical cases which we consider.
Case 1. :lx[xA &::IV, D[EXTEND(U, C, V, D)& COMPATIBLE(V, D)

& on input x, g computes a tt-condition accy...cy, & V={y,...,y} &
accy.., cy is e-satisfied by Dl].

Case 2. ::lx[x A & V, D[EXTEND(U, C, V, D) & COMPATIBLE(V, D) &
on input x, g computes a tt-condition accy...cy, & V={y,...,y}->
ozccy...cy is not e-satisfied by D]].

Case 3. Vx[x A-->=IV, D[EXTEND(U, C, V, D) & COMPATIBLE(V, D) &
on input x, g computes a tt-condition ceCCyl"’’Cyk & V={ya,-’’, Yk} &
aCCyl Cyk is e-satisfied by D]].

We will prove, in fact, that, for each stage i, Case 3 cannot occur; that is, Case 3
leads to a contradiction. The details of this argument are rather complex, so the proof
will be postponed until the end of the construction as a separate lemma. It follows that
either Case 1 holds or Case 2 holds. We proceed now on this assumption.

Case 1. Choose a A, V, and D, D _c V, accordingly. Extend C and U to C+1
and U+I by the following procedure.

1. Ci+I<’-C/UD; Ui+<-UiUV;
2. lot x e B & x 6 FIRST(U+a) & x FIRST(U)

do
i ]z [z[ q (Ix [) & (x, z V

then begin
c,+, -c,+, U{(x, z)};
u,+, - u,+, U {(x, z}}
end;

3. Let c be the smallest string not in FIRST(Ui/1);
tor b such that Ibl q(lal)
do begin

U,., <-- U,+, U {(c, b)};
if aeB then C,+, <---C,+, U{(o, b)}
end

We will show now that the induction hypothesis is satisfied at + 1.
We show first that

(I) lYl q(lxl) & (x, y)e C,+, - x e B.
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If (X, y) Ci, then x B, by the induction hypothesis at i. If (x, y) D, then y B,
by COMPATIBLE(V, D). Thus (I) is true for Ci/l after execution of step 1 of the
procedure. Both steps 2 and 3 insert a pair (x, y) into Ci/l only if x B. Thus (I) is
true.

We must next show that

(II) xFIRST(U+l)andxB implies ::iy[lyl=q(Ixl)& (x, y)C+l].

If x FIRST(U), the conclusion follows by the induction hypothesis at i.
Suppose x e FIRST(Ui). By COMPATIBLE( V, D),

ly[ly]=q(Ixl)-->(x, y) v & (x, y)eD].

Thus, there exists y so that either (lY]-- q(Ix]) & (x, y)e V)or (lyl q(Ixl) & (x, y) D).
In the latter case the conclusion follows, since D

___
C/1. In the former case we have,

after execution of step 1,

x 6 B & x 6 FIRST(Ui/ 1) & x e FIRST(U).
Therefore, step 2 inserts (x, y) into C+1.

Finally, for the string ce considered in step 3, if a B, then step 3 inserts each pair
(a, b) into Ci+l, where Ib] q(]l). Thus (II)is true, and the proof is complete.

Case 2. Extend C and U by the following procedure.
1. G+I <’-" Ci; Ui+l <---

2. This step is identical to step 3 of the previous procedure.
It is readily shown that, in this case too, the induction hypothesis is satisfied at

i+1.
We are now ready to show that

x B <-- ::ly []y] q(lx]) & (x, y)6 El.
Since each extension is nontrivial, FIRST(C)= {0, 1}*. If x B, then, for some i,

x FIRST(Ui). Thus, by the induction hypothesis y[lyl-q(lxl)& (x, y) c]. Con-
versely, if lyl q(Ixl) & (x, y) c, then, for some i, (x, y) Ci. Therefore, x B again
follows from the induction hypothesis.

We show next that A -"-tt C. If A =tt C, then for some i, (g, e) is a witness to
the reduction.

We are assuming that either Case 1 or Case 2 holds at stage i. Suppose Case 1
holds. Then,

=ix x A and =! V, D[EXTEND(U, C, V, D)

& COMPATIBLE(V, D) & on input x, g computes

a tt-condition accy...cy, & V={y,...,

& accy ...cy, is e-satisfied by D].

The construction at Case 1 makes D
_
C+1 - C and V-D

___
U+a Ci+l -- C. Thus,

accya cy, is e-satisfied by C. So, if Case 1 holds at stage i, then A Ntt C via (g, e).
On the other hand, suppose Case 2 holds. Choose x e A according to Case 2. It is

necessary to show that if g computes a tt-condition accy...cy, on input x, then
accya...cy, is not e-satisfied by C. Let V {y,..., y}, and let D V (-/C. Then,
accy...cy, is e-satisfied by C if and only if accyl...cy, is e-satisfied by D.
EXTEND(U, C, V, D), because D

_
V, U -C

___
C, whereas D

_
C, and C

_
C,

whereas V-De_ C. To show COMPATIBLE(V, D), lyl q(Ixl) & (x, y)D-,x eB,
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since D_C. If Vy[ly[=q(lxl)(x, y) v & (x, y)e!D], then, since V-D_(2, we
have Vy[]y]=q(Ix[)(x, y) C]. Therefore, xB. Therefore, by the Case 2 hypo-
thesis, aCCyl... Cyk is not e-satisfied by D. Hence, A :tt C.

We make one final remark concerning the construction of C. Namely, the con-
struction of C is effective relative to the sets A and B. Thus, since A and B are
recursive, so is C. Given x and a pair (g, e)i, to determine whether Case 1 or Case 2
holds is essentially no more difficult than checking whether x e A, testing all compu-
tations of g on input x, and checking whether COMPATIBLE(V, D), the latter
condition being recursive in B. Moreover, since at each either Case 1 holds or Case 2
holds, a loop through all strings will halt at either Case 1 or Case 2.

With the exception of showing, for each stage i, that Case 3 cannot hold, the
proof of Theorem 10 is now complete.

LEMMA 3. For each stage i, the Case 3 hypothesis implies the existence of a set W
in W, a polynomial r, and a constant k such that

Vx[x A Elc[]a =< r(lxl) xca W

O cy CynCCZ CZ & Yl, Yn, Z1, Zm G_. {0, 1}*

& Vj <-- m q(lzil) <- k log Ix
& {Yl, , Y,,}- B & {Z.1,"", Zm}-. S]].

Therefore, at each stage i, Case 3 does not hold.
Proof. Let us assume at stage that Case 3 holds. Thus,

Vx[x A <---> ::t V, D[EXTEND(Ui, C, V, D)

& COMPATIBLE(V, D)& on input x, g computes a

tt-condition accyl’’’cyk & V {Y l, Yk}

& accy cy is e-satisfied by D]].

Encode a pair of finite sets (V, D), D
_

V, by the string

cxlc i CX2C 1 "CXkC 1 cz lCOCz2CO "CZlCO

where D {Xl,. ", Xk}, and V {xl,. ", Xk, Zl," ", z1}.
If g computes a tt-condition aCCyl"’’Cyk on input x, then Icy""" Cykl

Thus, if V {y 1,"" ", Yk}, D is any subset of V, and 6 is an encoding of (V, D), it
follows that 161 =< 2.

We design a nondeterministic Turing machine T as follows:
T performs the following sequence of processes. After each step except the last,

T either goes to the next step or halts without accepting.
1. On input fl to T, T checks whether fl =xccu...cu,ccvc.-.cv,, where

v1 e {0, 1}*, i<-n, j<-m. If so,
2. T guesses a string 6 such that 161 <= 2. p(Ixl). T then checks whether 6 is an

encoding of finite sets (V, D) and checks whether EXTEND(Ui, Ci, V, D). (Observe
that (U, Ci) can be stored in the finite-control of T.) If so,

3. T checks whether

and

{u, u,,}={ul=:lv [vl=q(lul)& (u, v)D}

{v,,’’’, v,,} {ulVv([v q(lul) ((u, v)6 V & (u, v): D))}.
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If so,
4. T next behaves like the transducer g on input x. If g generates a tt-condition

accyl cys, then
5. T checks whether {yl, , ys} V. If so,
6. T writes aca...as on one of its work tapes, where ai 1, if yiD, and

ai 0, if Yi V- D.
7. T behaves like e on input aca...G. T accepts fl if and only if

e(acal’’’ as) 1.
Let W be the set of strings accepted by T. It follows that W is in V’ over

{0, 1, c}*. Moreover,

W ,(---) XCCU CUnCC CVm

& ::! V, D[EXTEND(U, C, V, D)

& g computes a tt-condition accyl cys

on input x & accyl cys is e-satisfied by D

{Ul,""", Un}--{U]IU(Iv]-’q([IA[)IL <U, V) 6 D)}

{v,..., Vm}--{U[VV([U[--JV[(KU, V) W (u, v) D))}].
So after guessing an encoding of a pair (V, D), T checks all the conditions of the
Case 3 hypothesis, except COMPATIBLE. The pair (V,D), then, satisfies
COMPATIBLE(V, D)if and only if {Ul,’’’, u,,}B and {Vl, , v,,}_B.

Since x A if and only if there is a pair (V, D) that satisfies the Case 3 hypo-
thesis, and since the encoding of such a pair has polynomial length, it follows
that there is a polynomial r such that x A if and only if there is an appropriate
string --XCUl"’’CUnCCVl"’’CUrn that is accepted by T and such that

Further, suppose

Vv(Iv q([ul)-> (u, v> 6 V & (u, v> D).

Considering step 2 in the definition of T, 161 =< 2-p(Ixl). There are 2q(lul) strings v such
that Ivl=q(lul). For each of these <u, v) occurs in 6. Thus, 2q(1"1)-<2 "p(lxl). Thus,
q(lu[) -< 1 + log p(Ixl). It follows that there is a constant k such that, for each member
/)j {/31, /)m}, q(lul)--< k log lxl.

To summarize, Case 3 implies the existence of a set W in W’, a polynomial r, and
a constant k such that

x A :::Ice []a I_-< r(]x l) & xca W

Ol. CU CUnC1) Cl.)m

& {Ul,""", Un} C’B & {)1, Vm} C’B

& Vj <- m q(Ivjl) <- k log

Our proof is complete; Case 3 of the Theorem 10 does not hold.

4. pe and other reducibilities.
4.1. Comparison with nondeterministic conjunctive and Turing reducibilities.

We turn to relating polynomial time enumeration reducibility with the other
nondeterministic polynomial time reducibilities studied in [8]. First, the following
provides a useful example.
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LEMMA 4. Suppose, ]’or two sets A and B, that x A <-log log x B. Then, A
pe B.

Proof. log log x log Ixl. Thus, Ilog log x] log log Ixl. For every polynomial q
there is a constant k such that

q(log log Ix I)--< k log Ix I.
The conclusion follows from Corollary 4, part (4)or (5).

Referring to Corollary 4 part (5) it is proved in [81 that -< is the result of
eliminating all appearances of the z."

A -<f B if and only if there is a set W in N (over {0, 1, c}) and a polynomial p
such that x belongs to A just in case there is a string a so that
xca6 W, a=cy...cy, with y,..., y, {0, 1}* and {ya,-.., y,,}_ B.

Moreover it is not difficult to prove that --a- results if the restriction to the length of
the zi is eliminated"

A=a- B if and only if there is a set W in 3c (over {0,1, c}) and a
polynomial p such that x belongs to A just in case there is a string a so that

la <- p(Ixl), xca ,W, a cya CynCCZI CZm with yl,. Yn, Z

{0, 1}*, {ya,.-., y,} c__ B, and {Zl,""’, Zm}C_B.
In fact, we have the following theorem.

THEOREM 1 1 .=c ---"pe =T</’1.
Proof. The inclusions are clear. ----pe : =T follows, since is not transitive.
We prove that _-<cx’ pe by a diagonalization. We construct sets A and B so

that x A log log x / and A ;x B. The result then follows, by use of Lemma 4
Only numbers (strings)of the form 22" are placed into A. We use the charac-

terization of _-<f written above.
At stage of the construction there are numbers ni and mi so that membership in

A has been determined on the domain {0,..., ni} and membership in B has been
determined on the domain {0, , mi}. let A(i) and B(i) be the sets of numbers thus
far placed into A and B, respectively.

Let x be the first number so that, for some m, x 22", x > n, and rn > mi. Let W
and p be the ag set and polynomial, respectively, to be diagonalized over at stage i.
We treat two cases.

Case 1. There is a string a and an extension B’(i)of B(i)so that Icl _-< p(Ixl), x,c
belongs to W, c cycy2"’’Cyk, and {Yl, ", Yk}-----B’(i).

In this case, let m+ =max (m, y,. ., Yk). Take B(i+l)=B(i)U{m+l,
, m+}. Let n+ xi, and take A(i + 1)= A(i).
Case 2. For every a so that I1--< p(Ixl), o=cyacy2"’’Cyk, and xco in W, and for

all extensions B’(i)of B(i), {y, , Yk}g; B’(i).
Then, let m+ m. Take B(i+ 1)=B(i)U{m+ 1,..., m- 1}. Let n+ =x, and

take A(i + 1)= A(i)U{x}.
It is a straightforward task to see that the construction is correct.
let TIME(2) be the class of sets recognized by deterministic Turing machines

which run in time 2p(n), for p(n) a polynomial. In contrast to Theorem 11, we have the
following result.

THEOaEM 12. A =pe B and B e TIME(2) imply A <-__ B.
Proof. Let M be a deterministic Turing machine that recognizes B in time 2q(n), q

a polynomial. Given the polynomial q, let W, p, and k be the ag’ set, polynomial, and
constant, respectively, whose existence is guaranteed by Corollary 4 part (5).

It is suggested in [7] that _-< is a polynomial time enumeration reducibility, and the author claims in

[8] that <c is a maximal transitive subrelation of =a- This theorem corrects those remarks.
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Design a nondeterministic acceptor T as follows" Input to T is a string xca
xCCyl Cym where yl, , yn are in {0, 1}*. T guesses strings Zx, , z,, {0, 1}*
such that [cCCZlC CZm <-- P (Ix l) and, for each i<=m, Izil<=q(lx]). T then behaves like
an V-acceptor for W on input xcacczlc CZm. If this string belongs to W, then, for
each zi, T next behaves like M on input zi and determines whether zi B. T accepts its
input if each test is successful.
M determines whether z B in time

2q(lz,I) < 2k og Ixl_<

Therefore, T operates in polynomial time. Thus, the set W’ accepted by T belongs to
g. We conclude that A __<o/3 via the aV set W’ and the polynomial p.

Thus, --< and pe are identical on all of the low level complexity classes. In
particular, _-< and pe are identical on PSPACE (the class of sets recognized by
deterministic Turing machines which run in polynomial space) and the polynomial
hierarchy [10]. This latter fact suggests that the techniques of Leggett [6], which use
c to determine the classification of certain interesting sets in the polynomial
hierarchy, are the best possible.

We hasten to add, however, that it is not known whether _-<cxv (=---<pe) is a
maximal transitive subrelation of =T on TIME(2"). Indeed, it is not known whether
V is properly included in TIME(2).

Let cg denote any of the classes TIME(2), PSPACE, or the collection of sets in
the polynomial hierarchy. We conjecture that N c implies =<cx is a maximal
transitive subrelation of _--<Tx on cg. (For the case of the polynomial hierarchy, we note
that it is easily proved that <=Tx is transitive on the polynomial hierarchy if and only if
the hierarchy collapses to

As a final remark, observe that the set B constructed in the proof of Theorem 11
does not belong to TIME(2).

4.2. Other reducibilities. The development in this paper exploits the analogy
between the relations __<c and "recursively enumerable in." By the results of [1],
however, this analogy should not be drawn too far, because A =T /3 &- =<T B does
not imply A --<T B.

DEFINITION 7. A ----<s BA -<B & -<B.
T.F.OaZ 13. A <--s B if and only if for every set C, C <-A - C =T B.
Proof. From C _-<vx A, A _-< B, and ft.-< B, it is easy to construct the

computation that makes C =< B. To prove the "if" part, simply take C to be A and
then take C to be A.

Compare this characterization of --<s with the original nonconstructive definition
of ----<pe (Definition 5).

Let co-3C={Al in g}.
COROLLARY 5. --<s is reflexive and transitive. The class

degree for the <-s degree structure.
The question of whether =N ffl co-g is open. The characterization of -<s in

Theorem 13 can be strengthened to the following.
T.ZORFM 14. A <=s B if and only if for every set C,

C <=A & WTA --> C <=WTB.
Thus, A <=s B -->VC[C <=s A --> C <- B].

From this we derive the following corollary.
COROLLARY 6. =<s is a maximal transitive subrelation of <=TX.
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Proof. Let Yt be a relation so that --<s Yt = __<c. Choose A and B so that
A Ks B and AYtB. Then, there is a set C so that C =<s A and C;B. CA and
AYtB, but not C _--<Tx B. Therefore, t is not transitive.

To summarize, pe is a maximal transitive subrelation of __--<Tx that contains the
< < and _-<. On the other hand, -<s ishierarchy of positive reducibilities such as =m, =m

a maximal transitive subrelation of <- that contains the hierarchy of deterministic
reducibilities such as <--tt and =<.

5. Functions and characteristic functions. Given a function/, let f {(x, y)lf(x)=
y}. As mentioned in the Introduction, an important feature of enumeration reduci-
bility is the relationship f--<T g*--f ---e g- Theorem 15, to follow, is the analogue for
< Once again we point out that all functions considered are p-bounded, for some----pe

polynomial p.
We proceed by a sequence of lemmas. Also, we assume that the reader under-

stands "mixed" reducibilities, for example, Z =< g, f _-< A, and [ _-<cx A.
LEMMA 5. (1) f --<T f,

(2) f _--<f.
The constructions required are straightforward.
LEMMA 6. (1) Z[ f --> A -cav’ f.

0) A A f.

Proof. We indicate the proof of statement (1); the others are similar. Let M be an
oracle acceptor with function oracle f that witnesses A -<f. Design M’ with a set
oracle to simulate M such that if M enters the oracle call state with a word x written
on the oracle input tape, then M’ guesses a word y with lyl-<p(Ixl) (the p-bound of f),
writes (x, y} on its query tape, and enters the query state. If the M oracle returns y,
then M’ continues to simulate M. Otherwise, M halts without accepting. Therefore,
only positive questions are asked of the f oracle. So, A -< f.

In the following Lemma 7, the objects computed are changed. The constructions
are again straightforward.

LeMMA 7. (1) f <= g implies f <-- g.
(2) f <-- A implies <- A.

LeMMA 8. A <--p B if and only if, for eery function g, B -< g implies A <- g.
Proof. Suppose A-<p B and B _-< g. By Lemma 6(1), B =T g- Therefore,

A _<cg. Lemma 6(3) gives A __<c g- The proof in the other direction follows
immediately from Lemma 6(4) and the definition of --<p.

THeOReM 15. f <= g if and only if f <--p g.
Proof. Suppose f-<p g. By Lemma 5(1), g--<T g. Therefore, by use of Lemma 8,

t <_-- g. f <_-- g follows rom Lemma 7(1).
Conversely, suppose f _<c g. Then, by Lemma 6(2), f =<g, and, by Lemma

7(2), f <- g. Therefore, f _-<p g, using Theorem 11.
As a consequence of Theorem 15 --T is a transitive relation over the class of

p-bounded functions, very unlike the situation for sets.
Specializing to characteristic functions, we have the following.

< sLeMMA 9 CA=T BoA B.
THEOREM 16. Ca --<pe {7 A =<s B.
Recalling (Definition 7) that A --<s B if and only if A _<c B and __<c B, we see

that the construction needed to prove the lemma is clear. Theorem 16 follows from
the previous theorem and Lemma 9.
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Theorems 15 and 16 give credence to the correctness of the definitions involved.
We conclude this paper with the following open problem.

Open problem. Define A is strong polynomial time enumeration reducible to B
(A --<spe B) if and only if there is a nondeterministic oracle Turing machine acceptor M
that witnesses A _-<xxB and for every polynomial q there is a constant k such that, for
each input string x to M, every query z about membership in B that receives a "no"
answer satisfies q([z[)_-< k log Ixl.

Lemma 4, as an example, gives sets A and B so that A-<spe B. Show that
<
"--spe --pe"
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SOME POLYNOMIAL AND INTEGER DIVISIBILITY
PROBLEMS ARE NP-HARD*
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Abstract. Most known NP-complete problems are stated in terms of one of an exponential number of
possibilities being true. In this paper we exhibit some NP-hard and NP-complete problems which are not of
this form. In addition, we exhibit some new NP-complete problems of a more conventional nature. Many of
these problems involve divisibility properties of integers or of sparse polynomials with coefficients of + 1.
This paper extends and refines earlier results of the author.

Key words, greatest common divisor, integer divisibility, integration, least common multiple, NP-
complete, NP-hard, polynomial divisibility, sparse polynomials

In an earlier paper [3], the author showed that certain problems involving sparse
polynomials and integers are NP-hard. In this paper we show that many related
problems are also NP-hard. In addition, we exhibit some new NP-complete problems.
Most of the new results concern problems in which the nondeterminism is "hidden."
That is, the problems are not explicitly stated in terms of one of a number of
possibilities being true. Furthermore, most of these problems are in the areas of
number theory or the theory of functions of a complex variable. Thus there is a rich
mathematical theory that can be brought to bear. These results, together with the
earlier results, therefore introduce a class of NP-hard and NP-complete problems
different from those known previously.

This paper is organized as follows: First, we summarize the results of the earlier
paper. Then we present some implications of these results for determining polynomial
divisibility. Next, we present some new NP-complete problems related to the given
NP-hard problems. Then we present some extensions of the earlier results. In par-
ticular, we show that all the problems are still NP-hard if the nonzero coefficients of
the polynomials are restricted to be + 1 or -1. Some new NP-hard integer divisibility
problems are discussed next. Finally, an NP-hard problem involving contour integrals
and an NP-complete problem involving ordinary integrals are presented. Suggestions
for further research are given.

We say that a problem A, considered as a set of input strings which should be
accepted, is polynomial transformable (or reducible) to a problem B if there is a
function f such that f(x) is computable from x in time polynomial in the length of x,
and such that f(x) B iff x A. We say that a problem is NP-hard if every problem in
NP is polynomial transformable to it. This definition of NP-hard differs from that
used in [3]. Note that if any NP-hard problem has a polynomial time solution, then
P NP. We say that a problem is NP-complete if it is in NP and is NP-hard. We
describe problems informally. For example, we refer to {(x, y):x > y and x, y 7/} as
the problem of determining whether x is greater than y, given integers x and y.

Summary of previous results. The following problems have recently been shown
to be NP-hard [3]. (Assume all polynomials are sparse polynomials with integer
coefficients.)
P1. Given a finite set {pl(x),’’’, p,(x)} of polynomials and an integer N, to deter-

mine
a) Whether the least common multiple of the set of polynomials is not xN- 1.

* Received by the editors October 26, 1976, and in final revised form February 20, 1978.
t Department of Computer Science, University of Illinois, Urbana, Illinois 61801.
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b) Whether the degree of the least common multiple of the set of polynomials is
not N.

c) Whether the degree of the greatest common divisor of the set of polynomials
is not zero.

P2. Given an integer N and a finite set of polynomials, to determine whether xN- 1
is not a factor of the product of the polynomials in the set.

P3. Given a finite set of polynomials and an integer N, to determine whether the
product of the polynomials in the set has fewer than N distinct (complex) zeros.

P4. To determine whether an exponential expression of integers is not a factor of
another such expression. An exponential expression of integers is an expression
formed from integers and the operations of addition, subtraction, multiplication,
and exponentiation. (This problem was called P6 in [3].)
Note that P2 may well be in NP and may therefore be NP-complete. For

example, if for some small integers b and q we have bN-I-O (modq) but

I-I p(b) 0 (mod q), then xN- 1 is not a factor of l-L p(x).
A remark. We now observe a consequence for polynomial divisibility algorithms

of the fact that P2 is NP-hard. Suppose we are given a set {pl(x),’’ ", pk(x)} of
polynomials. If we are also given small integers b and q, we can determine ([L. pi(b))
(mod q) in polynomial time. This implies certain restrictions on algorithms for deter-
mining if a polynomial tl(x) is a factor of a polynomial t2(x), as follows: Suppose such
an algorithm existed that made use of tl(X) explicitly but used t2(x) only indirectly.
Suppose it only used the degree of t2(x) and the remainder t2(b) (mod q) for small
integers b and q. Then this same algorithm could be applied to P2. Hence if P # NP
then no such algorithm exists that evaluates t2(b) (mod q) a small number of times on
small integers b and q. To be precise, if L is the length of the representation of t2(x),
then no such algorithm can exist that uses a number of evaluations of t2(b) (mod q)
that is polynomial in the log of L, involving only integers b and q whose logarithm is
polynomial in log (L). (We are assuming that essentially all of the work in the
algorithm involves evaluating tl(b) (mod q) and t2(b) (mod q) for various b and q.)

Some NP-complete problems. We now show that the following problems are
NP-complete’
Q1. Given sequences al," , akl and ill," , fl2 of positive integers, to determine

whether the polynomial 1-L.a x’- 1) is not a factor of the polynomial
k2

Hi= XI3] 1).
O2. Given sequences al," , al and fl,. , fl of positive integers, to determine

whether there exists a positive integer b such that {]" b divides a.} has more
elements than {/’" b divides fl.}.

Q3. Given sequences R1,..., R and $1,’", Sk of subsets of some (finite)set S,
to determine whether there exists a subset T of S such that {/’" T c R.} has more
elements than {]" T S.}.

Q4. Given sequences Y,..., gkl and Z,..., Z2 of m-tuples of nonnegative
integers, to determine whether there exists an m-tuple V of nonnegative
integers such that {/’" V _-< Y.} has more elements than {/’: V _-< Zi}, where V _-< Z
iff V_-<Z for 1,..., m.

(We use sequences rather than sets to allow the same element to occur more than
once.) The fact that Q4, Q3, and Q2 are NP-complete follows easily from the
NP-completeness of Q1. Therefore we first show that Q1 is NP-complete.

The problem Q1 is in NP since it suffices to test the polynomials at appropriate
k ajroots of unity. More precisely, let Pa(z) be l-[i=l (z 1) and let Ps(z) be H/k.=21 (z t3i-
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1). Now, PA(z) is a factor of PB (z) iff for all roots o of PA(z), o is also a root of PB (z)
and the multiplicity of the zero of P (z) at o is greater than or equal to the multiplicity
of the zero of PA(Z) at to. But the zeroes of PA(Z) are just roots of unity of the form
e 2i’m/’i for integers a, 1 <- a <- a] and for 1 _-< ] -< k 1. Thus we only need to test roots of
unity of the form e2i’ml/’2 where rn 1 and m2 are relatively prime, 1 _-< rn 1 <- m2, and
m 2 divides at least one of the a], 1 _-< ] _<- k 1. Then PA(Z) is a factor of P(z) iff for all
such roots of unity to, the number of ] such that o"- 1 0 is less than or equal to the
number of ] such that oe-1 =0. But (e2i’1/"2)a-1 =0 iff m2 divides a, with ml
and m 2 as above, and we can determine this in polynomial time. Hence PA(Z) is not a
factor of P(z) iff there exists an integer b such that {]" (b]a])} has more elements than
{I"" (b[flj)}. Thus Q1 is in NP.

Furthermore, Q1 is NP-complete. This follows from results in [3]. For con-
venience, we now summarize the relevant earlier results"

Given a set S ={C1,..., Ck} of 3-literal clauses over the predicate symbols
{P1, , Pn}, we showed how to construct sparse polynomials
Poly (C1),. , Poly (C’k) and Poly (-nC1),. ., Poly (-Ck) having the following
properties:

1. The Poly (C]) and Poly (-Cj) are computable in polynomial time and have
integer coefficients.

2. For all j, 1 _-< ] -< k, Poly (Cj) Poly (-Cj) xN 1 where N is the product of
the first n primes.

3. xiv- 1 is a factor of 1-U.l Poly (-cj)(x) iff s is inconsistent.
4. For all ], 1-<]<_-k, Poly (C])can be expressed as Num (C])/Denom (C])

where Num (Cj) and Dehorn (C]) are products of four or less polynomials of
the form xb- 1 and b is a product of distinct primes.

(Actually, Poly is a function mapping from arbitrary propositional calculus formulae
over the predicate symbols {P1,""", Pn} onto integer-coefficient divisors of the poly-
nomial xN- 1.)

From the above results, it follows that S is consistent iff

k

(xm 1) 1-I (Num (Cj)(x)) does not divide
j=l

k

1-I ((x N 1) *Denom (C])(x)).

But this last problem is an instance of Q1. Hence Q1 is NP-hard, since determining
whether such a set $ is consistent is NP-hard. Hence O1 is NP-complete.

Now, Q2 is clearly in NP. Also, we essentially showed above that Q1 is reducible
to Q2. Hence Q2 is NP-complete.

Furthermore, Q3 is clearly in NP. In addition, the integers in the sequences
O1," akl and BI," k2 of Q2 are all products of distinct primes from among the
first n primes, in all instances of Q2 obtained from Poly (C1),..., Poly (Ck) as
indicated above. Hence these integers may be represented as sets of prime numbers,
and divisibility may be represented by the subset relation. Thus Q 1 is reducible to 03,
and so 03 is NP-hard. Hence 03 is NP-complete.

Finally, Q4 is clearly in NP and is also clearly NP-hard since it is a generalization
of Q3. In particular, we represent a subset R of some universal set {ax, ", ak} by a
vector V in which V 1 if a R, and V 0 otherwise. Thus Q4 is NP-complete.
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Refinements of P1-P4. Now we refine the problems P1 through P4 in several
ways to obtain more NP-hard problems. First we show that P1, P2, and P3 are all still
NP-hard if the nonzero coefficients of the polynomials are restricted to be +1 or -1.
In order to do this, it is necessary to refer back to the polynomials Poly (Cj) and
Poly (-nCj) (with notation as before). We showed in [3] that a set S {Cl,. , Ck} of
clauses is inconsistent iff any of the following (equivalent)conditions are true:

1. lcm {Poly (-nC 1),..., Poly (-riCk)}- xr- 1;
2. degree (lcm {Poly (-nC 1),..., Poly (-riCk)})= N;
3. degree (gcd {Poly (C 1),. , Poly (Ck)}) 0;
4. xN- 1 divides F[lik Poly (-nCj);
5. l-[lik Poly (-nCj) has N distinct complex zeros.

(Here N is the product of the first n primes, as before.) Also, we remarked in the
previous paper that for a 3-literal clause C, Poly(C) and Poly(-nC) have all
coefficients either 0, +1, or -1 except in one case, namely, when C is all-positive.
However, an all-positive clause P, VPbVPc can easily be replaced by P,, VPbVPd and

PaVPc without affecting the consistency of S, where P is a new predicate symbol.
Furthermore, Poly (PalVP) and Poly (-n(Pd VP)) will only have + 1, 0, and 1 as
coefficients, it turns out. Therefore, if S is a set of 3-literal clauses, the all-positive
3-literal clauses of S may all be eliminated as above to obtain a new set S1 of clauses.
Also, for all clauses C of S1, Poly (C) and Poly (-nC) will all have coefficients of + 1, 0,
and -1. Furthermore, S1 is consistent iff S is. Thus P1, P2, and P3 are still NPohard
when all nonzero coefficients are restricted to be +1 or -1.

In addition, instead of choosing the first n primes to work with, we could have
chosen any n relatively prime integers. For example, we could have chosen the ruth
powers of the first n primes, for fixed integer m. This implies that Q1 is still NP-
complete when we restrict all exponents to be ruth powers of distinct primes, for fixed
m. Many more such restrictions on the exponents could be made.

The problem P3 can also be modified in the following way:
P3.1 Given a set {pl(x),’’’, pk(X)} of polynomials and an integer m, to determine

the number of distinct complex zeros of I-Ii= pi(x) having multiplicity exactly
m.

This modified problem, although not strictly NP-hard, has the property that if it is in P
then P NP. The reason is that all the complex zeros of the polynomials Poly (Cj) and
Poly (-nCj) have multiplicity exactly one. Therefore the number of distinct complex
zeros of [Ii Poly (-nCj)can be determined by summing the number of zeros of
multiplicity m, for 1 <_-m-<_ k. (The multiplicity of a zero essentially represents the
number of clauses contradicting some interpretation.) Also, P3.1 is still NP-hard in
the extended sense if we restrict all nonzero coefficients to be + 1.

Integer divisibility results. We now refine P4 in two ways. In [3] we showed that
for any integer b with b>----4kp 4kn S is inconsistent iff br-1 is a factor of
F[il Poly (-nCj)(b). (Here p,, is the nth prime.) Let us choose a small integer m such
that 2 ,k 4k----> ’* P Such an m will be O(k log n). Let Poly, I.Cj) be Poly (Cj) with all

mNexponents multiplied by m. Then 2 -1 divides 1-I]=lPOlym (-nCj)(2) iff S is
inconsistent. Similar results can be obtained for any integer (or Gaussian integer)
whose absolute value is greater than one. (A Gaussian integer is a complex number
whose real and imaginary parts are integers.) Hence for all integers (and Gaussian
integers) b with Ibl > 1, the following problem is NP-hard:
P4.1 Given an integer N and a set {p(x),..., p(x)} of sparse polynomials with

integer coefficients; to determine whether bn- 1 does not divide 1-[i pi(b).
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This is still NP-hard if we restrict the nonzero coefficients of the pi(x) to be +/-1 as
before. Note that P4.1 may be in NP since we can test divisibility by a small prime
easily.

The second refinement of P4 is similar to the first. We know from above that
2raN- 1 divides [-[ik=l Poly (-nC])(2m) iff S is inconsistent. But recall that

Poly (Cj)=
(xN- 1) Denom (Cj)

Num (Cj)

This implies that S is inconsistent iff 2raN- 1 divides

li (2raN- 1) Denom (Cj)(2")
j=l Num (Cj)(2

The same construction clearly works for all integers (and Gaussian integers) having
absolute value greatm’ than one. Therefore the following problem is NP-hard for all
integers (and Gaussian integers) q with ]ql > 1:
P4.2 Given sequences a l, a2,"’, akl and b, b2,’", bk2 of positive integers, to

kl k2
determine whether VL= (q ai 1) is not a factor of 1-L.= (qbi_ 1).

(We use sequences rather than sets to allow the same integer to occur more than
once.) Note that P4.2 is NP-hard for each integer q with Iq[> 1. Therefore it is
NP-hard to determine whether

kl k2

F[ (2ai 1) is not a factor of F[ 2b’ 1), for example.
/’=1 j=l

The problem P4.2 seems to be the most elegant of the problems considered here. This
problem is still NP-hard if we restrict the ai and bi to be products of distinct primes,
products of squares of distinct primes, et cetera, it is not known whether P4.2 is in NP.

Contour integrals. We now show that certain problems involving the evaluation
of contour integrals are NP-hard. Specifically, the following problem is NP-hard:
P5. Given integers b and N and a set {pl(Z), , pk(Z)} of sparse polynomials with

integer coefficients, to determine whether the following contour integral is
nonzero:

H/’---1 Pj(Z 1 b
dZ.2-i 1-

Z b

Here C is any contour including the origin in its interior.

Proof. We show that 3-consistency is reducible to P5. Suppose S {C 1,. , Ck}
is a set of 3-literal clauses. Let Ps(x) be [Lk=l Poly (-nCj), with notation as before. Let
qs(x) and rs(x) be defined by the equation Ps(x)=q(x)(xN- 1)+rs(x), where rs(x)is
of degree less than N and N is the product of the first n primes. We showed in [3] that
rs(x)=-0 iff S is inconsistent. Furthermore, if an integer b satisfies [b[ >=4kp 4k. then
rs(b) 0 iff rs(X)=--O.

N-Suppose rs(x)= Yq=o nix. We can show that

1 Ic P(Z)(I_&)zN_i_ dZ,ai - Z I
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where C is as above. We show this as follows: Ps(Z)- qs(Z)(Z r’r 1)+ rs(Z), so

Vs(Z) (1- 1 ) N-I-1 kN

(Z

_
]) Z ZN-i- q(Z)ZN-i- q(Z)Z /Z

r(Z) ( 1 ) z__,+ (ZN_1 1--ZkN
Now, the degree of P(Z) is less than or equal to k(N-1), so the degree of q(Z) is
less than or equal to k(N-1)-N or (k-1)N-k. Since qs(Z)ZN-j-1 is analytic, it
will not contribute to the above contour integral. Also, qs(Z)ZN-j-X/zkN will not
contribute because the degree of q(Z) is less than or equal to (k-1)N-k. In
particular, the largest power of Z in qs(Z)ZN-j-I/z kN will never be larger than
[(k- 1)N-k]+N- 1- kN, which is equal to -k- 1. Since k _-> 1, this exponent is less
than or equal to -2 and therefore the coefficient of Z-1 will be zero.

The only term that will contribute to the contour integral is

which equals

2 rri (ZN 1 ZN
dZ,

2rri
rs(Z)[Z-N + Z-2N -[’" "[- z-kN]zN-i-1 dZ.

Since the degree of r,(Z) is less than N, and since 0-<_/" < N, the only term that will
contribute to the integral is

2rri
rs(Z)Z-NZN-i-1 dZ

which equals 1/(2rri)Scr,(Z)Z -i-1 dZ. We now see that the coefficient of Z-1 in
rs(Z)Z-i-1 is a.. It follows from the residue theorem [2, pp. 129-131] that the value of

N--1
the above contour integral is a. as claimed. Therefore r,(b)= Yi=o aibi is given by

l fcPs(Z)(l_ 1 )
N-1

2rri ZN 1 ZkN bJZN-j-1 dZ.
=0

N--1 bIzN_i_I bNHowever, Y,:0 =(ZN ) and so we have reduced the problem
of 3-consistency to the problem P5. Therefore P5 is NP-hard. (This is because the
contour integral is zero iff rs(b) is zero, which is true iff r(x)=-0, which is true iff S is
inconsistent.)

Note as before that P5 is still NP-hard if we restrict the nonzero coefficients of the
pj(Z) to be + 1. Also, we can replace b by 2 in P5 without affecting the fact that P5 is
NP-hard. This can be shown as usual by the device of multiplying all exponents of the
polynomials p(Z) by some integer m such that 2" _-> 4p4. Similarly, we could replace
b by 3 or any real or complex number whose absolute value is larger than 1.

There are at least two possible approaches to solving P5. Let f(Z) be

Now, f(Z) has a finite Laurent expansion about the origin. The contour integral of
f(Z) is zero iff the coefficient of Z-1 in f(Z) is zero. But if this coefficient is zero, then
we can integrate f(Z) term by term to obtain F(Z) such that (d/dZ)F(Z)= f(Z) and
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such that F(Z) also has a finite Laurent expansion about the origin. Otherwise, no
such function F exists. Hence one approach to solving P5 is to exhibit a function F as
above. It might be interesting to determine when F can be expressed in a length
polynomial in the length of the input to P5.

Another approach to solving P5 is to perform numerical evaluation of the
contour integral. However, this also seems quite difficult.

Ordinary integrals. The following problem is slightly related to the preceding
problems and is NP-complete:
P6. Given a set {a,..., a} of integers, to determine whether

2-n-

fo (a O (a,O dO # O.COS COS

k

ffroof. Consider the function g(x)=lli=x +x-;). Note that g(e’)
2 rli=l cos (aiO). Thus the above integral is nonzero iff o g(e) dO is nonzero. If
g(Z)=ibiZ then 2o=g(e)dO equals ibi =e dO which equals 27rbo. Hence the
constant term in the power series expansion of g is nonzero iff the above integral is
nonzero. But this term is nonzero iff there is a partition of {a l,’’’, a} into two sets
A1 and A2 such that {a: a 6A1}={a: a 6A2}. And this is just the partition
problem, which is known to be NP-complete [1].

Conclusions. Some problem in algebra and number theory have been shown to be
NP-hard or NP-complete. Many of these problems are "natural" in the sense that the
nondeterminism is hidden. Together with earlier results [3], they represent a new class
of NP-hard and NP-complete problems.

These, problems are all based on an encoding of propositional calculus formulae
into sparse polynomials with integer coefficients. Can this encoding be extended to
first-order predicate calculus formulae in some way? If so, new complexity and
undecidability results might be obtained.
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MINIMAL-COMPARISON 2,3-TREES*

ARNOLD L. ROSENBERG. AND LAWRENCE SNYDER:

Abstract. Those 2,3-trees that are minimal in expected number of comparisons per access for a given
number of keys are characterized. The characterization yields directly a linear-time algorithm for construc-
ting a minimal-comparison 2,3-tree for a given sorted set of keys. Regrettably, the property of comparison
minimality is incompatible with the earlier-studied property of node-visit optimality. Specifically, the two
types of optimality can coexist in a K-key 2,3-tree only for sixteen values of K, none exceeding 32. In
contrast, comparison-minimal node-visit-pessimal K-key 2,3-trees exist for just over half the possible values
of K.

Key words. 2,3-trees, 3-2 trees, search trees, searching, key-comparisons, comparisons per access,
comparison-minimal trees

1. Introduction. Balanced search trees are an attractive data organization for
large files that must efficiently support the operations of accessing, insertion and
deletion. The term "efficiently" here connotes a worst-case execution time that is
proportional to the logarithm of the number of keys in the file. This gross time bound
is valid for any of the numerous varieties of balanced search trees [2, 6.2.3]. But, of
course, a finer examination exposes substantive differences in ease of programming
and in efficiency of execution both among the various species of balanced search trees
and, indeed, within each species. Detailed investigation of these differences will
enhance one’s ability to choose informedly among competing file organizations. It is
our aim here to continue the study begun in [3] of the differences in efficiency among
equally capacious 2,3-trees.

A 2,3-tree (also known as 2-3 tree, or 3-2 tree) is a balanced search tree with a
particularly simple rule for inserting/deleting keys (cf. [2, 6.2.3]). Each internal
node of a 2,3-tree has either 2 or 3 successors and contains one fewer key than it has
successors; all paths from the root of the tree to a leaf are equally long. Due to the
nonbinary nature of the tree, there are (at least) two natural measures of the efficiency
of a 2,3-tree, namely, the expected number of comparisons per access and the
expected number of node-visits per access; these measures are distinct since each
ternary node can engender two comparisons. The former cost measure would likely be
the more important when an entire tree resides in main memory on a cpu equipped
with only binary comparators; the latter measure would likely be preeminent either if
ternary comparators were available or if the tree had to be segmented and stored
external to main memory sothat any edge-crossing carried with it the danger of a page
fault. The node-visit efficiency measure has been studied in depth in [3]: the maxi-
mally efficient 2,3-trees are characterized in that paper, a linear-time algorithm for
constructing node-visit-optimal 2,3-trees is presented, and the differences in structure
between the optimal trees and their "typical" forest-mates are exposed. In this paper,
we conduct the corresponding analysis of the expected-comparison cost measure, with
the outcome consisting of the same three basic components. Additionally, in this
paper we study the relationships between the two measures of the cost of a 2,3-tree.

The remainder of the paper is organized in three sections. Section 2 introduces a
nonstandard presentation of 2,3-trees tailored to our task of defining and studying the

* Received by the editors May 25, 1977.
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comparison-cost of such trees. Section 3 is devoted to three main endeavors" in 3.A,
the comparison-minimal 2,3-trees are characterized structurally; in 3.B, a linear-
time algorithm for constructing minimal-comparison 2,3-trees from an ordered set of
keys is developed from the characterization theorem; in 3.C, the comparison-costs
of optimal trees are compared with those of nonoptimal ones, but the development
leaves open the question of how much cheaper is a comparison-minimal tree from a
comparison-maximal one. Section 4 is devoted to comparing the node-visit cost
measure of [3] to our cost measure. We find that there are only sixteen values of K,
none exceeding 32, for which there is a K-key 2,3-tree that is optimal with respect to
both cost measures. In contrast, for just half the possible values of K, every node-visit
pessimal tree is comparison optimal (though, thankfully, the converse is not true), and
for just over half the values of K, some node-visit pessimal tree is comparison optimal.

Directions for further research. Aside from the problem left open in 3.C, two
postulates in our framework, both discernible in Algorithm A in 2.B, merit further
thought. First, we predicate our development on the use of 3-outcome (<, =, >)
comparators. How would our results differ had 2-outcome (_<-, > comparators been
used? Second, we assume a fixed regimen for searching through a 2,3-tree;
specifically, the first, smaller key in a ternary node is examined before the second key.
How would the development change if the first key to be examined in a ternary node
was sometimes the smaller, sometimes the larger? What would be an intelligent way to
decide which to look at first?

2. 2,3-trees and their comparison costs.
2.A. Trees. Our investigation will be facilitated by a nonstandard presentation of

2,3-trees.
Let S be a set of strings over the alphabet A. We say that S is prefix-closed if the

string x A* is in S whenever any successor xa of x is in S for some c A. For each
x S, we denote by rs(x) the set

rs(x) {a A" xa S}

of letters that can extend x in S; and by Ix] we denote the length of x.
Let A, Ix, 0, l, r be abstract symbols that we shall think of as ternary-left,

ternary-middle, ternary-right, binary-left, and binary-right, respectively.

(2.1) A bi-ter (for binary-ternary) tree is a rooted, oriented tree whose nodes
comprise a prefix-closed set N of strings over the alphabet {A, Ix, p, l, r} such
that

(a) N is a disjoint union N No + N2 + N3 where
(i) each x e No is called a leaf and has rr(x)= ;
(ii) each x N2 is called a binary node and has rre(x) {l, r};
(iii) each x e N3 is called a ternary node and has rr(x) {A,

(b) each edge of the tree has the form {x, xa} for x N and a on(x); we call
node xa a son of node x.

We view a bi-ter tree as comprising levels: the root of the tree resides at level 0; and,
recursively, the sons of a node at level h reside at level h + 1.

The trees that will concern us are special types of bi-ter trees. We are concerned,
of course, with 2,3-trees; but two other types of trees will play a central role in the
characterization theorem in 3; hence, for economy we have defined the general
notion of bi-ter tree.
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(2.2) A 2,3-tree is a bi-ter tree all of whose leaves share the same nonzero length
and, hence, reside at the same nonzero level. Thus, the root of a 2,3-tree is not
a leaf, and all root-to-leaf paths in a 2,3-tree are equally lengthy.

2.B. The comparison-cost measure. In order to motivate our measure of the
comparison-cost of a 2,3-tree, we must explain how such trees are used as search
trees.

A set of K ordered keys is stored in a (K + 1)-leaf 2,3-tree as follows. Each
binary node of the tree receives one key; each ternary node receives two keys; leaf
nodes are dummy placeholders and receive no keys. The key(s) in each node are
strictly intermediate in value between the keys in the node’s left and right ubtrees; if
the node is ternary, then the keys in its center subtree are strictly intermediate in value
between the node’s two keys. See Fig. 1.

For each nonleaf node x in a 2,3-tree, let x[1] denote the smaller and x[2] the
larger key residing at node x; if x is binary, then x[2] does not exist.

The procedure for searching a 2,3-tree (for retrieval, alteration, insertion, or
deletion) is described in ttae following algorithm which derives from Knuth [2, 6.2.3].

STRING-NAME

KEYS

(a)

(b)

FIG. 1. Two 6-key 2,3-trees with key sets {1,..., 6} and with each node’s string-name exhibited. A
denotes the empty string. In tree (a), No {I, z, tO, xl, xr, ol, or}, N2 {ix, O}, and N3 {A, , }; in tree (b),
No {l, Ir, ix1, txtx, 0, ol, or}, Nz {I, 0}, and N3 {A, x}.
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ALGORITHM A. Search for a key k in a 2,3-tree with node set N No + N2 + N3
and root A.

START

FAIL
Y

SUCCEED

XX WHERE

A if XcN3

SUCCEED

The two bold diamonds in the flowchart for Algorithm A denote the key-
comparisons required to search a 2,3-tree. Note tliat a binary node x e N2 engenders
precisely one key-comparison, namely, "k: x[1]", with the possible outcomes (i)
k <x[1], (ii) k =x[1], (iii) k >x[1]. A ternary node x eN3 requires the comparison
"k: x[1]", with outcomes (i)--(iii) possible, but, in the case of outcome (iii), x requires
also the second key-comparison "k: x[2]" with possible outcomes (iv) k <x[2], (v)
k-x[2], (vi) k>x[2]. In tree-oriented terminology, the possible outcomes from
processing node x lead to the actions shown in Table 1.

Outcome

(i)
(ii)
(iii)
(iii) & (iv)
(iii) & (v)
(iii) & (vi)

TABLE

Action

xV2 xe/V3

Search x’s left subtree
Haltmsuccess
Search x’s right subtree
Not applicable
Not applicable
Not applicable

Search x’s left subtree
Haltusuccess
Tes k: x[2]
Search x’s middle subtree
Haltmsuccess
Search x’s right subtree
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This analysis of Algorithm A motivates the following definition which will be
useful in defining precisely our notion of the comparison-cost of a 2,3-tree.

(2.3) Let T be a 2,3-tree with node-set N No+N2 +N3; let A denote the empty
(i.e., length 0) string. Define the function Place as follows:
(a) Place(All]) 1.
(b) For x N2 + N3,

if x N2, then Place(x/J1]) Place(xr[1]) Place(x[1]) + 1;
if x N3, then Place(xA 1]) Place(x [2]) Place(x 1 ]) + 1,

and Place(x/x 1]) Place(xp 1]) Place(x 1 ]) + 2.

We leave to the reader the proof of the following result which ties together the
function (2.3) and Algorithm A.

PROPOSrrION 2.1. Let the key k reside at node x o] the 2,3-tree T; precisely, let
k =x[i], i{1,2}. Exactly Place(x[/]) comparisons are needed to access k using
Algorithm A.

The foregoing renders natural the following measure of the comparison-cost of a
2,3-tree.

(2.4) The comparison-cost of a 2,3-tree T with node set N No + N2 +N3 is given by

COST(T)= 2 Place(x[l])+ Y, Place(x[2l).
N-No N3

Clearly COST(T) is just K times the average number of comparisons needed to
access a key in a (K + 1)-leaf (hence K-key) 2,3-tree.

3. Minimal-comparison 2,3-trees. This section is devoted to three tasks. In 3.A,
we state and prove the main theorem of the paper, which characterizes structurally
those 2,3-trees that have minimal comparison-costs for a given number of leaves (or,
equivalently, of keys). Section 3.B contains the description and validation of a linear-
time algorithm for constructing a minimal-comparison 2,3-tree for a given sorted list
of keys. Finally, in 3.C we compare minimal-comparison trees to their nonoptimal
forest-mates.

3.A. The characterization theorem. Minimal-comparison 2,3-trees enjoy a
simply stated characterization.

THEOREM MC. A 2,3-tree T has minimal comparison-cost among trees with the
same number of leaves if, and only if, T enfoys Property M (for "minimal"):

Property M. Every ternary node of T has a string-name in the set {l, r,A}* of
{/x, p }-less strings.

Theorem MC can be restated in purely tree-oriented terms:
THEOREM MC’. A 2,3-tree T is comparison-minimal iff only binary nodes appear

in the middle- and right-subtrees rooted at ternary nodes in T.
Property M guarantees, for instance, the comparison-minimality of the tree of

Fig. l(a) while refuting that of the tree of Fig. l(b). In fact, the comparison-cost of the
former tree is 14 while that of the latter is 15.

The proof of Theorem MC requires some auxiliary notions and results.

(3.1) (a) A binary tree is a bi-ter tree (2.1) with N3 , that is, one having no
ternary nodes.

(b) A binary tree is flat if no two root-to-leaf paths in the tree differ in length
by more than 1, or, equivalently, if no two leaves have string-names
differing in length by more than 1.
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One uses a binary tree as a search tree in much the same way that one so uses a
2,3-tree: one places one key in each nonleaf node of the tree in such a way that the
key’s value is strictly intermediate between the values of the keys in the node’s left and
right subtrees. Algorithm A will suffice to search through a tree so organized for a
desired key. One determines easily (cf. [2, 6.2.1]) that the average number of
comparisons per access in a binary search tree is intimately related to the so-called
external path length of the tree, from which fact one deduces the following, after
having extended the notion of cost in (2.4) in the obvious way to binary trees.

LEMMA 3.1 [2, 5.3.1, 6.2.1]. A binary tree has minimal comparison-cost among,
equally capacious binary trees if, and only if, it is flat.

Lemma 3.1 plays a central role in our proof of Theorem MC as we see now.

(3.2) Let T be a 2,3-tree with node set N No +N2 +N3. The binarization of T is
the binary tree/3 (T) defined as follows.
Let h be the string-homomorphism from {l, r, A,/x, p}* into {l, r}* defined by

h(1)=h(A)=l,

h(r)=r,

h (Ix) rl

h (p) rr;

and extend h to strings in the obvious way.
The tree/3(T) has node set/3(N) obtained from N as follows.

(a) For each x No CJ N2, the string h (x) 6/3 (N);
(b) for each x N3, both h (x) and h (x)r /3 (N);
(c) provisos (a) and (b) account for all strings in/3(N).

The edges of/3(T) are as with any bi-ter tree.

The transformation /3, which is depicted graphically in Fig. 2, is just a refor-
mulation of Bayer’s [1] representation of 2,3-trees as binary trees as reported in [2,
6.2.3]. We leave to the reader the straightforward proof of the following crucial but

simple proposition.
LEMMA 3.2. For any 2,3-tree T, the transformation t3 is well-defined. Moreover, the

binary tree (T) is equal in capacity (that is, holds the same number o[ keys, or,
equivalently, has the same number of leaves) to T. Finally, the trees T and 3 (T) have
identical comparison-costs.

We are now in a position to embark on our proof of Theorem MC.
Proof of Theorem MC. For any string x {l, r, A,/x, p}*, we have, by (3.2),

(3.3) Ih(x)l Ix[ + (the number of/x’s and p’s in x).

Since the leftmost root-to-leaf path in a 2,3-tree comprises nodes with labels from the
set {l, I }*, we deduce immediately from (3.3),

(3.4) The tree/3 (T) is flat iff the tree T enjoys Property M.

This conclusion is immediate from the facts that no leaf in a 2,3-tree enjoying
Property M contains more than a single occurrence of one letter from the set {/, p},
and that some leaf in a tree not enjoying the property must contain at least two
letter-occurrences from the set.

Lemmas 3.1 and 3.2 combine with (3.4) to prove the sufficiency of Property M for
comparison-minimality.
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FIG. 2. A schematic view of the binarization transformation of (3.2).

The necessity of Property M will follow from these same three sources as soon as
we demonstrate the existence, for any number L of leaves, of an L-leaf 2,3-tree T
whose binarization /3 (T) is flat. By (3.4), it will suffice to show that some such tree T
enjoys Property M. To this end, focus on any integer L > 1 and on its (minimal-length)
binary representation

(3.5) aOal .a,.

PROCrDUIr M. To construct an L-leaf 2,3-tree T(L) with Property M: Let the
2,3-tree T(L) have n + 1 levels. All nodes of T(L) save perhaps those on the leftmost
root-to-leaf path are binary; hence, by design, T(L) enjoys Property M! The nodes
along the leftmost root-to-leaf path are binary or ternary according to the following
rule:

(3.6) Let the path comprise, in this order, nodes v, P2, V.+l where /"1 is the root
and v,+ the leaf. Node v is binary or ternary according as a in (3.5) is 0 or 1,
respectively. Hence, the string-names of these nodes are given by

name (v)= A,

if a, =0,
name (pi+l)--1’’" :i where :k-

h if ak 1.
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The reader can easily use Procedure M to construct the tree T(7) in Fig. l(a) and the
tree T(26) in Fig. 5(c) at the end of 4. That T(L) has L leaves is seen as follows. If
T(L) contained no ternary nodes, it would have 2" leaves. By making node vi in the
left-most path of (3.6) ternary, we add 2"-i leaves to the hitherto-constructed tree.
Thus the tree constructed by rule (3.6) contains., Oli 2n-i L

O<-i<=n

leaves. It is thus the desired L-leaf 2,3-tree with a flat binarization.
The necessity of Property M follows, completing the proof. 71

3.B. Constructing minimal-comparison 2,3-trees. Procedure M, describing the
skeletal structure of the minimal-comparison trees T(L), translates into a linear-time
algorithm for constructing a minimal-comparison 2,3-tree for a given sorted list of
keys. In broad terms, the algorithm comprises two stages.

Stage 1. Given the cardinality c of the set of keys to be stored, use Procedure M
to construct the "skeletal" tree T(c / 1). (Recall that a c-key tree has
c + 1 leaves.)

Stage 2. Visit the skeletal tree in FILLORDER [3, 3.B], depositing keys in order
in interior nodes as one goes. This order of traversal is described
recursively by"
To visit a tree in FILLORDER,

1. visit the left subtree in FILLORDER;
2. visit the root and deposit a key;
3. visit the middle subtree in FILLORDER;] for ternary roots only.4. visit the root and deposit a key;
5. visit the right subtree in FILLORDER.

Any implementation of this algorithm will likely perform Stages 1 and 2 in
tandem for the sake of eciency.

It is patently clear that the described algorithm operates in time O(c) on a
uniform-cost RAM.

3.C. Comparing comparison-costs. In this subsection we try to assess the savings
afforded by minimal-comparison trees.

Minimal comparison-costs. Lemmas 3.1 and 3.2 provide us a vehicle for comput-
ing exactly the comparison-cost of any minimal-comparison 2,3-tree.

PROPOSITION 3.3. Let T be a minimal-comparison L-leaf 2,3-tree. Then

(3.7) COST(T) ( + 1)L-2+’ + 1

where A flog2 L].
Proof. By dint of Lemmas 3.1 and 3.2, we can compute COST(T) by computing

the comparison-cost of the flat L-leaf binary tree/(T). Now, fl(T) is a (A + 1)-level
(A flog2 L] tree having 2h nodes at each level 0 _-< h _-< A and having 2(L 2a) nodes
at level A + 1, as in the following figure.

AA ..- A 7

LEVELS

2(L- 2 LEAVES
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Accordingly, the comparison-cost of/3(T), hence that of T, is given by:

COST(T) COST(/3 (T))

Y’, (i+1)2’+(A+l)(L-2)
O<-i<h

(A 1)2 + ( + 1)(L 2 + 1

(A + 1)L-2;+a + 1. 71

We have not been able to find for maximal-comparison 2,3-trees a charac-
terization that would allow us to determine definitively how much savings the minimal
cost (3.7) represents. We do, however, have some information about these worst-case
trees. A straightforward argument based on the fact that the tree B(T) has at most
twice as many levels as T proves the following

FACT.

T
comparison-minimal 1

T comparison-maximal],COS ( L-leaftree )>-COS ( L-leaftree !

thus bounding the improvement attainable from the minimal-comparison-tree
algorithm just presented in 3.B. Leo Guibas has informed the authors that he, Lyle
Ramshaw, and Robert Sedgewick have found leaf cardinalities L for which

COST(cmparisn-minimal _-< .565 COST(cmparisn-maximal
\ L-leaf tree ] \ L-leaf tree

.565 being an abbreviation of

3 log2 3
6 log2 3-1"

The preceding inequalities bracket in a rather small range the cost savings attainable
by comparison-minimality.

The authors have discovered an explicit infinite family of 2,3-trees that have
maximum costs for their capacities. While these maximal-cost trees are only half again
as costly as equally capacious comparison-minimal trees, and are, thus, not as
dramatic as the Guibas et al. trees as arguments for comparison-minimality, their
simple recursive structure merits mention.

The trees T[ta]. The trees we shall analyze are parameterized by their numbers of
levels, starting with ’= 1 for the 3-leaf ternary-rooted tree. Each tree T[] has a
ternary root. Each of the tree’s ternary nodes at level k <- 1 has a left son that is
binary and middle and right sons that are ternary; each of the tree’s binary nodes at
level k < 4- 1 has two binary sons; all nodes at level 4- 1 have leaves as sons. Thus, if
we momentarily let and revert to their meanings "binary-left" and "ternary-left"
as in 3.A, we find that the leaves of T[l], , >-3, have string-names in one of the sets

x{l, r, A }{l, r} or x{/x, p}{A,/x, p}

where x is the string-name of a leaf of T[g-2]; see Fig. 3.
Now, one can establish easily by induction that the numbers of binary and ternary

nodes at level k of T[], k < t’, are given by

bin(k) 2-I + 2 bin(k 1)= k 2-tern(k)- 2
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FIG. 3. The first three trees T[d].

so that the number of leaves in T[] is given by

(3.8) L(4) (4+ 2)2e-a

The comparison-cost of T[4]. By dint of Lemma 3.2, we can evaluate the
comparison-costs of the trees T[4] by analyzing their binarizations /3(T[4]). This
analysis is simplified by noting the simple structure of these binary trees: /3(T[])
comprises a root whose left subtree is the complete ((-2)-level binary tree, and
whose right subtree comprises a node both of whose subtrees are copies of/3(T[-
1]); see Fig. 4. Accordingly, the number of keys at each level k of/3(T[4]) is given
(via a simple induction) by:

(a) for 0-< k -< 4- 1 there are 2k keys at level k;
(b) for 4 <- k =< 2(- 1 there are 2e-1 keys at level k; and, so,

(3.9) COST(T[g’])= COST(/3(T[4]))= Z (k + 1)2‘ +2e-a. Y’, (k + 1)
O<k<

g2e- 2e + 1 + 2e-2(342 +
2e-2(342 + 54-4)+ 1.

To obtain a contrast to the costs (3.9)of the trees T[4], we can use Procedure M
from Theorem MC to construct a minimal-comparison tree T(L(4)) having the same
number of leaves (3.8) as T[4], and we can use equation (3.7) of Proposition 3.3 to
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(=2:

g=3:

FIG. 4. The binarizations of the first three trees T[te].

gauge the costs of these optimal trees. Letting , (4)= [log: L(4)], we compute

COST(T(L(4))) (I (4)+ 1)L(4)-2(e)+a + 1

<_- (4 + log2 (4 + 2))L(4)- L(4) + 1
(3.10)

(4- 1 + log2 (4 + 2))0f + 2)2e- + 1

2e-2(242 + 24--4 + 2(+ 2) log2 ( + 2))+ 1.

From the analyses leading to equations (3.9) and (3.10) and from the fact that the
trees T[4] and T(L(4)) have the same number of leaves, we conclude the following,
which suggests how much benefit comparison-minimality can yield, at least in the
extreme.

PROPOSITION 3.4. There is an infinite sequence of leaf-cardinalities
L(1)< L(2)< ...,

(specifically, L(4)= (4 + 2)2e-l) with the property that

COST(cmparisn-minimal <-COST(2comparison-maximal (log 4’].
L(4)-leaf tree ] 3 L(4)-leaf tree ) + 0\--]
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4. Comparing the two cost measures. The node-visit cost measure of [3] and our
present cost measure are decidedly distinct in the sense that goodness relative to one
measure is independent of goodness relative to the other, at least in general. However,
the cost measures are not totally unrelated: one can often attain extrema of both
measures simultaneously. This section is devoted to rendering these remarks precise
and proving the resulting propositions.

4.A. The node-visit cost measure. A comparison of the two cost measures
presupposes at least minimal familiarity with both. We now excerpt from [3] just
enough information to render our comparison intelligible and rigorous. We refer the
reader to [3] for all motivation and proofs and for a more detailed development.

(4.1) The profile of a (d+ 1)-level 2,3-tree is the sequence of integers 1-I=
90, 91," , 9a where each 9h is the number of nodes at level h of the tree.

(4.2) The node-visit cost of the 2,3-tree T having profile 1-I 9o," , 9a is given by

COSTnv (T)= due- 9i.
i<d

We call a 2,3-tree bushy if its nv-cost is minimal among 2,3-trees with the same
number of leaves, and we call it scrawny if its nv-cost is maximal among the
same population.

The cost in (4.2) may seem somewhat unintuitive. This expression is, in fact,
derived in [3] from a more cumbersome but more intuitive equivalent.

THEOREM NV [3]. Let the 2,3-tree T have profile II 90, 9, 9a.

(a) T is bushy iff its profile is dense in the sense that

(a) d [log3
(4.3)

(b) 9k min (3 k, [gk+a + 21), k =0,""" ,d-1.

(b) T is scrawny iff its profile is sparse in the sense that

(a) d= Llog2 9aJ;
(4.4)

(b) 9k max (2 k, [9k+1/ 3]), k=0,"" ,d-1.

The following corollary of Theorem NV is useful in characterizing bushy mini-
mal-comparison trees.

COROLLARY 4.1 [3]. If II 90, 9,’’’, 9 is a dense profile, then 9k 3 for all
k<d-2.

4.B. Bushy minimal-comparison trees. The characterization of those values of L
for which there exists an L-leaf bushy minimal-comparison tree takes a surprisingly
simple form.

PROr’OSIrION 4.2. There is a bushy L-leaf minimal-comparison 2,3-tree for
precisely the following values of L: 2 <= L <= 7, 10 <= L <= 15, and 28 -< L =< 31.

Proof. We leave to the reader the straightforward verification that bushy minimal-
comparison trees exist for the indicated sixteen values of L.

For the remaining values of L, an L-leaf bushy tree must have 91 3 and 92 -> 8,
hence a ternary node at level 0 with at least two ternary sons, hence not be a
minimal-comparison tree. These bounds on 9a and 92 can easily be checked directly
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for L=<27. For 32=<L<= 81, the bounds follow from the inequality

[L/4] >_- 8

together with (4.3)(b). For L > 81, the bounds are immediate from Corollary 4.1. El

4.C. Scrawny minimal-compar|son trees. Theorem NV indicates that bushy 2,3-
trees tend to be "as ternary as possible" while scrawny 2,3-trees tend to be "as binary
as possible". One would expect, therefore, that scrawny trees have a much larger
overlap with minimal-comparison trees than do bushy ones. In fact, it is a not
unnatural conjecture that all minimal-comparison trees are scrawny. We shall see now
that one’s expectation is realized, though the conjecture is false. In sharp contrast with
the finite overlap of bushiness with comparison-minimality, one finds that scrawniness
and comparison-minimality overlap just over half the time.

PROPOSITION 4.3. For any integer L, let A (L) flog2 L]. There is a scrawny L-leaf
minimal-comparison 2,3-tree whenever L lies in the range

(4.5) 2(’_<- L _<- 3 2x(’- + 1.

Further, when L lies in the subrange

2x(<-L<-_3 2

every scrawny L-leaf 2,3-tree is comparison-minimal. Finally, ]’or L >= 8, the sufficiency
of lying in the range (4.5) is also necessary.

Proof. Note that, for any integer L, an L-leaf scrawny 2,3-tree has depth A (L); cf.
(4.4)(a). Our argument divides naturally into three parts.

Say first that L lies in the range

2x(c) <_- L =< 3 2x(L)-l.

For any L in this range,

[L/3] -< 2x(L)-l.

By (4.4)(b)of Theorem NV, then, an L-leaf scrawny 2,3-tree has ternary nodes, if at all,
only on level A (L)- 1. By Theorem MC, then, every L-leaf scrawny tree is comparison-
minimal.

Consider next the case

Since

4 _-< L 3 2(a)-I + 1.

[L/3] 2x(c)-a + 1,

equation (4.4)(b) assures us that in any L-leaf scrawny tree,

(4.6) /]A(L)--1 [L/3] 2x()- + 1,

SO that the tree has two binary nodes at level A(L)-1. Further, by (4.4)(b), level
h (L)-2 of a scrawny L-leaf tree has a number of nodes

u(L-2 max (2x(L)-2, [(2(c)-1 + 1)+ 3] ).

Now, for any integer k _-> 1,

2k-1 --> [(2k + 1)+ 3],
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so, for L _-> 4, we have

(4.7) /.(L)--2 2x(L)-2.

Equations (4.4)(b), (4.6), and (4.7) combine to specify completely the profile of any
L-leaf scrawny tree" it has two binary nodes and the rest ternary nodes at level, (L)- 1; it has one ternary node and the rest binary nodes at level A (L)- 2; and it has
only binary nodes at all lower-numbered levels. One of these trees, namely the one
whose level A (L)-2 ternary node has two binary sons, is easily seen via Theorem MC
to be comparison-minimal.

We have established thus far, that, for any L in the range (4.5), there is a scrawny
L-leaf minimal-comparison 2,3-tree. To complete the proof, we must show now that
no such tree exists for L not in the indicated range. To this end, let L lie in the range

(4.8) 14-<_3 2x)-+2 =<L<2)+.

We consider simultaneously the three possible forms of L"

(a) L 3 2x)- + 3x, 3 _-< 3x < 2)-"

(4.9) (b) L 3 2x(L)-I + 3y + 1, 4 -< 3y + 1 < 2(m-l"

(c) L 3 2x)-a + 3z + 2, 2 =< 3z + 2 < 2xm-.
Knowing only the range (4.8) of L, we can assert, using (4.4)(b), that, for any L-leaf
scrawny tree,

ux(- [L/3].

Applying this information to the three cases in (4.9), we deduce

(4.10) In case (4.9)(a), the scrawny tree has only ternary nodes at level , (L)-1. In
case (4.9)(b), the tree has two binary and the rest ternary nodes at level
(L)- 1. In case (4.9)(c), the tree has one binary and the rest ternary nodes at

level , (L)- 1. And, in all cases, the bound L >_- 14 in (4.8) assures us that the
tree has at least four ternary nodes at level , (L)- 1.

Continuing with our analysis, the upper bounds on x, y, and z in (4.9) combine with
(4.4)(b) to assure us that, in any L-leaf scrawny tree,

2x()-2/,. (L)-2

But this information exposes the entire profile of the tree. Specifically,

(4.11) On all levels <A(L)-2, the tree has only binary nodes. (In fact, this is true for
all scrawny trees by a dual to Corollary 4.1 proved in [3].)

(4.12) In case (4.9)(a), the tree has x _-> 1 ternary nodes at level A (L)-2.
In case (4.9)(b), the tree has y + 1 => 2 ternary nodes at level A (L)-2.
In case (4.9)(c), the tree has z + 1 => 1 ternary nodes at level , (L)-2.

In all cases, (4.12) combines with (4.10) to guarantee that any scrawny L-leaf tree has
at level A (L)-2 at least one ternary node two of whose sons are also ternary. By
Theorem MC no such tree is comparison-minimal. 71

The reader can easily verify that L 26 is the first place where bushiness,
scrawniness, and comparison-minimality are mutually exclusive. Figure 5 exhibits (a)
a bushy 26-leaf tree, (b) a scrawny 26-leaf tree, and (c) a minimal-comparison 26-leaf
tree. The comparative costs of these trees are tabulated in Table 2. (The disparity in
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(a)

(c)

FIG. 5. (a) A bushy, (b) a scrawny, and (c) a minimal-comparison 26-leaf 2,3-tree. The trees (a) and (b)
are minimal in comparison-cost among 26-leaf bushy and scrawny trees, respectively.

c-costs could have been made even greater had we not chosen the minimal c-cost
bushy and scrawny trees for Figure 5).

TABLE 2

Tbushy Tscrawny Tmc

nv-cost 65 88 81
c-cost 103 100 99

4.D. A final difference between the cost measures. As a final remark, we note
that minimal-comparison trees are somewhat more likely to occur "in nature" than
are minimal-node-visit trees. Specifically, we noted in [3] that no sequence of 3
key-insertions will give rise to a bushy 3n-leaf 2,3-tree. In contrast, a minimal-
comparison 2,3-tree is guaranteed to arise if one constructs a tree by inserting keys in
decreasing order.
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TREE SIZE BY PARTIAL BACKTRACKING*

PAUL W. PURDOM"

Abstract. Knuth [1] recently showed how to estimate the size of a backtrack tree by repeatedly
following random paths from the root. Often the efficiency of his method can be greatly improved by
occasionally following more than one path from a node. This results in estimating the size of the backtrack
tree by doing a very abbreviated partial backtrack search. An analysis shows that this modification results in
an improvement which increases exponentially with the height of the tree. Experimental results for a

particular tree of height 84 show an order of magnitude improvement. The measuring method is easy to add
to a backtrack program.

Key words, backtrack, partial backtrack, tree size, analysis of algorithms, Monte Carlo method, matrix

multiplication, bilinear forms

1. Introduction. The author had been trying to develop an improved method for
multiplying 3 by 3 matrices using a backtrack program when he heard of Knuth’s [1]
method of estimating the efficiency of backtrack programs. The author had planned to
make extensive use of Knuth’s method, but found that for his particular trees a huge
number of runs were required to obtain even an order of magnitude estimate of the
tree sizes. This experience was quite different from that of several others 1], [2]. The
author finally determined that the important characteristic of his trees was their great
height combined with the large fraction of nodes on each level which had no sons.
Eventually the author discovered a slight modification of Knuth’s algorithm which
produces a large increase in efficiency.

Knuth [1] gives a good discussion of the uses of backtrack programs, which will
not be repeated here. The method he proposes for measuring the size of a backtrack
tree is to repeatedly follow random paths from the root and to estimate that the
number of nodes in the tree is the average over several runs of 1 + all+ did2+""
where di is the number of successors to the node on level i. This gives an unbiased
estimate of the number of nodes in the tree. It is particularly efficient when used to
estimate the size of a complete binary tree of height h, since it concludes that the size
is 2h- 1 after examining 2h- 1 nodes. On the other hand it has trouble with a tree in
which each node has zero or two sons, and no more than one node per level has sons
which have sons themselves. Part of such a tree is shown in Fig. 1, where only the
nodes which Knuth’s algorithm considers expanding (i.e., nodes with sons) are shown.
The original tree can be obtained by adding two sons to each node with no sons. For
such a tree Knuth’s algorithm will examine an average of 7-2-h+3 nodes. While the
expected value of the estimate is 4h- 1, the most frequent result of a single run will be
7. Knuth’s algorithm would have to be run 2h-1 times to have a reasonable chance of
examining the bottom level. The best way to find the size of a tree of the type shown in
Fig. 1 is to examine all the nodes, using a complete backtrack algorithm.

Tall skinny trees can thus best be measured by doing a complete backtrack
search, while short fat trees can be efficiently measured using Knuth’s algorithm. For
intermediate trees neither of these methods works well. The tree can have so many
nodes that it is not practical to do a complete backtrack search, while at the same time
it has so many nodes with no successors at each level that Knuth’s algorithm has
difficulty learning about the deeper levels of the tree. While Knuth [1] offers several
suggestions that help in this situation, they are often difficult to apply, and none of

* Received by the editors March 29, 1977, and in final revised form February 21, 1978.
t Computer Science Department, Indiana University, Bloomington, Indiana 47401.
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FIG. 1. A tall skinny backtrack tree.

them get to the heart of the problem. What is needed is an algorithm that will sample
the deeper levels, which usually contain most of the nodes, with about the same
probability as the upper levels. The way to increase the number of nodes observed at
the deeper levels is to occasionally investigate more than one branch out of a node. If
the average number of branches to follow is selected properly then one may be able to
look at an average of about one node per level. Doing this will greatly improve the
efficiency of the estimating program.

2. Backtrack measuring algorithms. A general backtrack program finds all the
vectors (xl, x2, , xn) which satisfy some property Pn(xl, x2, , xn). There are also
intermediate properties Pk(xl, x2, , xk) such that P+l(X1, X2, Xk+l) D
P(xl x) for 0___< k < n. When P(Xl, x2, , xk) is false, backtracking saves
considerable work since no extension of (x l, x2,..., x) needs to be considered as a
possible solution.

The following algorithm is the common backtrack algorithm with modifications
for measuring tree sizes. The values x are kept on a stack, where k is the stack
pointer. The parameter n is the length of the vectors (xl, x2, , x,) which satisfy the
final property Pn(xl, x2,"’, xn). The function C(xl, x2,"" ,x) gives the cost of
examining node (x l, x2,..., x). Setting C to one for all nodes results in a total cost
equal to the number of nodes in the tree. The stack entry rk contains the number of
sons remaining to be selected from the node on level k- 1. The variable accumulates
the estimated cost of the tree. To monitor the performance of the algorithm the
optional arrays c and f accumulate the estimated cost of examining the nodes on
level k and the number of nodes investigated on level k. For convenience the
algorithm assumes that the values for x are consecutive integers starting with one.
Only minor changes are needed to handle arbitrary discrete x.

BASIC BACKTRACK ESTIMATING ALGORITHM.

Step B1. [Initialize] Set k to 0, to 0, and do to 1. For 1 <-f =< n set c. to 0 and. to 0.
Step B2. [Go down] If k n then output the solution (x, x,. ., x,) and go to

step B6. Otherwise set k to k + 1. Set a to the number of values that x can take on. If
a is zero then go to step B6. Set m to number of values that will be investigated. This
must be an integer such that 1 -< m =< a. Set d to d_a!m, r to m, and x to a + 1.

Step B3. [More] If xk is 1 then go to step B6.
Step B4. [Next] Set x to x- 1. With probability 1- r/x reject xk by going to
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step B3. Otherwise set rk to rk--1, to t+dkC(Xl, x2,’" ",Xk), Ck to Ck+
dkC(Xl, x2,"’, Xk), and fk to fk + 1.

Step BS. [Test] If Pk(Xl, x2,’" ", Xk) is true then go to step B2.
Step B6. [Go up] Set k to k- 1. If k 0 then stop. Otherwise go to step B3.
This algorithm is the traditional backtrack algorithm with additions at steps B1,

B2, and B4 for measuring tree size. Step B4 has the algorithm for selecting m of a
values at random [3], [4]. The efficiency of the algorithm depends on the value of m
selected at step B2. How to select m will be considered in detail later. However m is
selected, the expected value of the sum over all nodes visited on level k of
dkC(Xl, x2," Xk) is the sum of the cost of the nodes on level k.

Knuth’s algorithm for measuring tree size modifies the standard backtrack
algorithm by first testing all the successors to a node before selecting which one to
follow. The following algorithm combines this idea with partial backtracking. It
replaces the stack rk with a stack of sets Sk. The stack Sk contains the set of values
remaining to be considered for Xk. The set Q contains all the values of Xk for which
P(Xl, x2, ", Xk ) is true.

MODIFIED BACKTRACK ESTIMATING ALGORITHM.

Step M1. [Initialize] Set k to 0, to 0, and do to 1. For 1 _-< k _-< n set Ck to 0 and fk
to 0.

Step M2. [Go down] If k n output solution (Xl, x2," , x,,) and go to step M5.
Set k to k + 1. Set Q to the set of all Xk such that Pk (Xl, X2, ", Xk) is true. For each Xk
tested for inclusion in Q, set to + dk-1C(xl, X2, Xk), and [k to [k + 1. Set a to the
number of elements in Q. If Q is empty then go to step MS. Set m to the number of
values that will be investigated, so that 1 -< m <- a. Set dk to dk-la/m.

Step M3. [Select values] Set Sk to a randomly selected subset of m values from Q.
Step M4. [Next] If Sk is empty then go to step MS. Otherwise remove an element

from Sg and set Xk to the element. Go to step M2.
Step MS. [Go up] Set k o k- 1. If k 0 then stop. Otherwise go to step M4.
The stack of sets Sk can be replaced by a stack of values if one is willing to test

each node twice. Simplifications can also be made if m _-< 2 at all times. The modified
algorithm does not test P0, which is nearly always true.

The modified algorithm looks at all the successors of a node, Xk-1, to see where
Pk(Xl, x2," ", Xk) is true, but follows only m of them during partial backtracking. If
Pk (X l, X2, ", Xg) is always false when (xl, x2, ", Xk) has no successors (and is not a

solution) then the tree of nodes considered for expansion by the modified algorithm
can be obtained from the original backtrack tree by deleting the nonsolution nodes
which have no successors. Usually the resulting tree will also have some nodes with no
successors. Knuth’s [1] algorithm is the modified algorithm with m always equal to
one.

The efficiency of either version ofthe algorithm depends on how m is chosen. If it
is always one, then one has essentially Knuth’s original algorithm. If it is always set to
a then one has complete backtracking. Small values of m make it difficult to observe
deep levels in the tree, while large values of m require that a huge number of nodes be
examined. There is often an intermediate value of m which will largely avoid the first
problem without causing the second.

3. Analysis. Figure 2 shows the first three members of a sequence of sets of trees
which are useful for studying the effect of the value of m. For each tree in a set, there is
a probability indicating how often the tree is selected from the set. The set T has the
tree 0, consisting of just a root, with probability one. For > 1 set T has tree 0 with
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probability 1 b. It also has each tree of the form (t], t2), which has a root, left subtree
t], and right subtree t2, where tl and t2 are selected from T_]. The tree (q, t2)occurs
with probability bp(q)p(tz) where p(fi) is the probability that t is selected from T_
and p(t2) is the probability that. t2 is selected from T_a. The parameter b controls the
average size of the trees in T.

In the following the efficiency of a tree size estimating program will be measured
by the product of the expected number of nodes examined (averaged over all trees in
T/) times the expected variance of the estimate of tree size (averaged over all trees in
T). Since this is a measurement of work times error, low numbers indicate high
efficiency. This quantity was selected because it is easy to calculate. Although other
measures of efficiency might be better, the method of selecting m should apply with
little change even with slightly different measures.

I-b b

b(I-b) b2(I-b) bZ(l-b) b
3

FIG. 2. The trees in Tx, T2, and T3 with their associated probabilities.

Let p,(n) be the probability that tree has n nodes and that tree is selected from
T. Then pi,(n)obeys the recurrence

and

pao(n)=6,,a,

pio(n)=(l-b)6.1 for > 1,

p,(,,,t:)(n)= bZ pi-a,,,(m)p,-a,t2(n- 1 m) for > 1.

The expected number of nodes for a tree in T is

The variance is given by

(2b)i- 1
ni Z npi,(n)= 1 + 2bni_]=..,, 2b- 1

tt,

1 + 8bni_ + 2bv_

2(1-[-2b (2b- 11(2i 1)(2b) +(2b)2(2b
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For most values of b and the standard deviation is the same order of magnitude as
the average.

When the basic algorithm selects m to be 1 with probability 1 -p and to be 2 with
probability p, it estimates the size of binary trees according to the recurrences

E(0)= 1,

2E(tl)
E(tl, t2)-- 1 +2E(t2)

[E(ta)+E(t2)

with probability (1-p)/2,
with probability (1 -p)/2,
with probability p.

Let p,t(l) be the probability that nodes are examined when estimating the size of
and that tree is selected from T,. Then

and
p,o(l)=(1-b)6,1

b
| (l- 1) 2 P,-1.t2(m)+P,-.t2(l- 1) p,-1,tl(m)pi,,.t2)(l) (1 -p)_

l-m) for+ bp

The expected number of nodes examined (averaging over all trees in and repeated
runs of the algorithm) is

[b(l+p)]’- 1
l lp.(l) 1 + b(1 +p)l_., b(l+p)- 1

Let p.(e) be the probability that e is the estimate of the size of tree and that tree
is selected from . Then

p,o(e)=(1-b)6
and

=(b _p) 2 P-,,(m)+P-, 2P,-,(m)
2
"1 2 2

+pb p-l.t,(m)p,-1.t2(e- 1 m)

The expected value of the estimate is

(2b)i- 1
ei epit(e) 1 + 2bei-1

e,t 2b-1

The expected value of the square of the estimate is

s, Z e2p.(e) 1 + 2b(2e_l +pe_ )+ 2b(2-p)s,_
e,t

1 [4b4-2bp 1 2(3-p)(1-b)(2b- 1)2

-(2b- 1)L 7----i + (2b- 2p- 1)(p- 1)(2b+p-2)
[2b(z-p)]i

212b -p 1] _p(4b’ ]+ (2bf-
p-1 2b+p-2J"

The total variance can be calculated from si. Of more interest, however, is the
internal variance, which measures the expected variation of the estimate for the size of
a tree about the expected value of the estimate of the size of that tree. The internal
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variance is equal to the total variance minus the variance in the size of the various
trees about the expected tree size. Furthermore, variance in the size of the trees is
independent of p while the internal variance is zero for p 1. Therefore, the internal
variance is

v, s, s,(p 1)

2(1-b) [- 4bZ(1-p)
(2b- 1)3 [4b- 2bp- 1 )[__1+p ] )’ +2b+p-21-p (4b2),+(2b-1 11_-+2i (2b

(2b 1)3 ]+(4b-Zbp- 1)(1-p)(Zb +p-2) [2b(z-p)]i_."
The efficiency of the algorithm is indicated by livi, where a low value indicates

high efficiency. For 1/2 =< b =< 1 and large there are three values of p of interest. When p
is small the term that grows like [2b(2-p)] dominates the variance. The size of this
term decreases with increasing p. The number of nodes examined is small if b(1 + p)=<
1. Therefore, p--b-a- 1 is one value of interest. The [2b(2-p)] term continues to
dominate as long as 4b 2 =<2b(2-p). Therefore, p--2-2b is a second value of inter-
est. Finally, for p 1 the variance is zero. For b -a 1 -< p -< 2 2b both extreme values
for p produce local minima in live, provided that one is above 1/2 and the other is below. If both extreme values are on the same side of 1/2, then only the more distant one
produces a local minimum. For 1/2 =< b < 1/2/, p 2 2b produces the lower value, while
for 1/2/ < b =< 1, p b -1- 1 produces the lower value. For 3

2- =< b -< 1/2/ one may want to
set p to b -1- l to avoid looking at the larger number of nodes required when
p 2-2b, just as one usually does not use p 1 because it requires looking at a
prohibitive number of nodes.

A constant value of p is often not best. Rather than making many runs with
p b-a- 1 or 2-2b, it is better to set p 1 for several consecutive levels starting at
the root and to set p b -a 1 or 2- 2b for the remaining levels. In practice one would
want to make at least 3 runs since it is also important to know the variance of the
estimate.

Now consider the modified algorithm. Let pit(l) be the probability that nodes are
examined when estimating the size of tree and that tree is selected from T. Then

P,o(l) 1 b )6t a, P,(o,o)(1) b 1 b)213,

and

Pi(tl,o)(l)- b(] b)pi_a,tl(l- 2) for tl 0,

p,(o,,2)(l) b(1 b)p,-1,t2(l- 2) for t2 0,

b _p)[p,_ ,t(l-2)Zp,-a,t, ]P,I,,)(/) (1 (m)+pi-,t_(1-Z)2p-a,tl(m)

+ bp Z P,-1,,(m)p,-1,t(l- 1 m) for tl 0 and t2 0.

The expected number of nodes examined is

li Z Ipi,.
l,t

Therefore 11 1, 12 1 + 2b, and for > 2

li 1 +b2(1 +p)+(2b-bZ(1-p))li_l 1 +bZ(1-p)-2b[b(2-b(1-p))]-1-2b+b2(1-p)
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Let pit(e) be the probability that the modified method estimates that tree is of
size e and that tree is selected from T. Then

pio(e) (1 b)6el, pio,o)(e) b(1 b)Z6e3,
pitl,o)(e) b(1-b)pi_l,,(e-2) for

pi(o,t2)(e) b(1 b)p_,t2(e 2) for t2 - 0,
and

b
P,,,)(e -(1 P) Pi-- l,tl 2 Pi

e-1 ]
+ bp Z Pi-l,ta(m)pi-l,tz(e 1 m) for tl : 0

The expected value of the estimate is

ei E epit(e).
e,t

and t2 0.

Therefore el 1, e2 1 + 2b, and for > 2,

(2b) 1
e l + 2be_

2b-1

The expected value of the square of the estimate is s -,e,t e2pt(e) Therefore s 1,
s2 1 + 8b, and for > 2

s 1-2b(1-p)+262(1-p)+4b[2 p-b(1-p)]e_l +2bpe2
i-1

+2b(l+b(1-p))s,_l

_1[1 +2b-Zb(3-p)-8b2(a-b)(1-p)-(2b- 1) 1-2b-2b(1-p)
4(2b- 1)(b 1)(b-bp+2)

[2b(1 + b(1 -p))]-+(1-2b-2b(1-p))(1-b(1 +p))(1 -p)

+ 4[2-b(5-3p)+2b(1-P)l(2by--l-p 1-b(l+p)(4b4bp) ]
The expected internal variance is

For > 2,

4(l-b) [ 4b4(1-p)
(2b- 1)3 -1 + 2b + 2b2(1 -p)

l.)i Si si(p 1).

+(2b-1)[2-3b(1-P)-2ib](2b)i-1-p

t,( -p)
1-b(l+p)

(4b2)i-1

(2b 1)3(2 + b bp)
(-1 +2b+2bZ(1-p))(1-b(1 +p))(1 -p)

[2b + 1 + b(1 _p))]i-1].
Again the efficiency is indicated by lv. For 1/2-< b-_< 1 and large there are three

values of p of interest. These are p (b-a- 1)2, p b-1- 1, and p 1. For (b-a- 1)2

p-----b -a- 1 both endpoints produce local minima if b is near 1/2x/. For ___< b < 1/2x/,
p b-a 1 produces the lower local minimum whereas for 1/2x/ < b _-< 1, p (b -1 1)2
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produces the lower local minimum. The basic and modified algorithms have about the
same efficiency when p is set to the best value for each. The dominant exponential
terms have the same base and exponent, and the coefficients do not differ greatly in
value. The analysis indicates that the modified algorithm is favored for b > .7325, and
the basic algorithm for b<.7325, but this conclusion is dependent on detailed
assumptions made in the analysis. Also, the basic algorithm is easier to program.

4. Experimental results. To test the practical application of these methods, a
number of measurements were made. The first set was made on a backtrack program
that found ways to multiply 2 by 2 matrices with 7 multiplications. The program was
not very sophisticated and it produced a 106,283,567 node binary tree of height 84
(more details are given in the Appendix). Level 48 had the largest number of nodes
(16,077,754). The results of these runs are given in Tables 1 and 2. Figures 3 and 4
show the efficiency of each method as a function of p, the probability that both
branches of the binary tree are investigated. Figures 3 and 4 also have a least square fit
of the theory for T trees to the data. The value of chi-square is 98.7 for Fig. 3 and
21.8 for Fig. 4. The large values of chiosquare are probably caused by using measured
standard deviations rather than exact values. For comparison Fig. 3 also has the curve
for the parameters that give the best fit to the data in Fig. 4. The occasional large
standard deviations result from the non-Gaussian nature of the distributions
generated by the estimating process. The experimental results show that values of
p 0 can produce a considerable improvement in the efficiency of the estimation
process. They also show that the theory for T trees provides a practical guide for
selecting p.

The second set of runs was made with a slightly improved program which looked
for methods to multiply 3 by 3 matrices using 22 multiplications. This program
generated a gigantic tree of height 594 with about 1042 nodes. The level with the
largest number of nodes is near level 300, which has 4 x 1041 nodes. By carefully

TABLE
Results of the basic method with various values of p. Numbers after the +/- signs are standard deviations.

Not all runs were useful for obtaining the standard errors for the last column.

Pl Nodes examined Estimate Nodes variance

"i-) Runs (x 106) (x 108) (x 1021)

0 4.89 107 2.000 0.56+0.18 68+26
3.97 107 2.000 0.80+0.30 176+/- 161

2 3.15 107 2.000 1.49+/-0.74 1099+/- 1086
3 2.39 107 2.000 0.757 +/- 0.055 6.02 +/- 0.66
4 1.66 107 2.000 0.998 +/- 0.072 10.4 +/- 5.5
5 9.69 106 2.000 0.991 +/- 0.027 1.49 +/- 0.22
6 4.29 10 2.000 1.058 +/- 0.036 2.65 +/- 1.13
7 1.39 106 2.000 1.064 +/- 0.030 1.83 +/- 0.82
8 548355 3.000 1.064 +/-0.019 1.16+/-0.46
9 85854 2.000 1.047 +/- 0.018 0.70 + O. 11
10 31541 3.322 1.049 + 0.016 0.86 +/- 0.08
11 5959 2.,905 1.029 + 0.026 1.95 +/- 0.50
12 860 2.005 1.128+/-0.057 6.4 +/- 1.2
13 195 2.009 1.035 +/- 0.074 11.0 + 2.4
14 40 2.045 1.09+/-0.10 21.1 +5.7
15 10 2.389 1.21 + 0.22 119 + 36
16 1.063 1.06283576 0
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TABLE 2
Results of the modified method with various values of p. Not all runs were useful ]’or obtaining the

standard errors ]’or the last column.

Nodes examined Estimate Nodes variance

(xPl-6) Runs (x 106) (x 108) (x 1021)

0 3.85 106 2.000 0.999 + 0.030 1.76 +/- 0.60
2.63 106 2.000 1.046 + 0.021 0.87 + 0.11

2 1.61 106 2.000 1.064 +0.014 0.40+/-0.28

3 860153 2.000 1.123 +0.053 5.6 + 4.9

4 397856 2.000 1.064 + 0.016 0.49 +/- 0.11
5 161623 2.000 1.060 +/- 0.019 0.76 +/- 0.30
6 60744 2.000 1.077 20.015 0.47 20.04

7 21507 2.000 1.055 +/- 0.019 0.73 +/- 0.18

8 3778 1.000 1.094 + 0.058 3.4 +/- 2.2

9 1265 1.001 1.083 20.044 1.97 20.25
10 444 1.005 0.99 +/- 0.13 4.5 +/- 1.3

11 150 1.004 1.044 20.075 6.02 1.6

12 64 1.021 0.93 20.13 17.6+/- 7.3

13 21 1.018 1.05 20.14 19.8 +/- 4.7

14 9 1.354 0.58 +/- 0.38 199 +/- 48

15 5 1.833 1.04 20.15 89+ 48

selecting a value of p for each level it was possible to estimate a size of 7.14 x 1042 with
a standard deviation of 4.79 x 1042. This required examining 7.8 x 108 nodes. A single
value of p was unsuitable because of the variation in the best value at different levels
in the tree. With previous methods it would have been impossible to obtain even a
rough estimate of the size of this tree.

The experimental data was collected on a TI980 minicomputer, which could test
about 108 nodes per day.

Partial backtracking results in an exponential improvement in Knuth’s algorithm
for estimating tree size. The effect is particularly important for trees with a lot of
dead-end branches (b near 1/2 in the analysis) and for tall trees. The analysis suggests
that good results can be obtained by choosing the number of branches to investigate so
that each level, from the root down to the levels with the bulk of the nodes, is
examined at about the same frequency. Further improvement is obtained by looking
at all branches near the root, although one is usually limited by the number of nodes
one can afford to look at.

Appendix. Strassen [5] discovered that matrix multiplication can be done in less
than O(n3) operations. He showed that 2 2 matrix multiplication can be done with 7
multiplications. Finding a method of multiplying N by N matrices with L multi-
plications is equivalent to finding a solution to the non-linear equations

Aijltmkt2tmmn3t 6ik6t,,6,i for 1 _--< i, fi k,/, m, n _--< N.

This is given by Laderman [6] and Brent [7]. The backtrack program which was used
as an example for this paper attempted to solve these equations (modulo 2) by
guessing values for the A0vt, proceeding in lexicographical order on the index ijvt.

The backtrack program uses two tests at each node. The first test is that each
equation must be true. The second test relates to the symmetry of the equations under
a permutation of the index. This symmetry is removed by requiring that the vector
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1024
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BASIC METHOD

51.072
b= 0.7065

0 0.5
P

.0

FIG. 3. The efficiency in nodes per run times variance of estimate of the basic partial backtrack algorithm
as a function of the probability, p, that both branches of the tree are followed. The error bars indicate one

standard deviation. A least-squares fit of the theory for T trees is shown. Also, for comparison, the dotted curve

is for the parameters that best fit the data in Fig. 4.

(A00ot.""" ,ANN3t), where the first three indices increase in lexicographical order,
is lexicographically greater than or equal to (Aoooc," , ANN3t’) when > t’.

Two additional tests are done whenever t--L. For the first test consider the
vector (AiiolAjlo,1, AqvLAilo’L) where v’= (v mod 3)+ 1. Each set of such vectors
formed by varying and must be linearly independent. For the second test consider
any matrix {Bij} and form a vector (i,jBiiAiil,..., i,BAiiL). This vector must
have at least N times the rank of {Bi} nonzero components.

There are a number of additional tests that would be useful, but which the author
did not include in this particular backtrack program. These include using the sym-
metries of Hopcroft, Kerr, and Musinski [8], [9] and using the techniques of
Brockett and Dobkin [10]. Unfortunately the author and his coworkers have not yet
found a set of tests that will result in a quick solution to the problem of how to best
multiply 3 3 matrices.

Acknowledgment. The author wishes to thank Dr. Cynthia A. Brown and David
Seaman, who developed programs which led to this work.
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FIG. 4. The efficiency vs. p for the modified partial backtrack algorithm along with a least-square fit to

the theory of Ti trees.
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RANKING AND LISTING ALGORITHMS FOR k-ARY TREES*

ANTHONY E. TROJANOWSKI’I"

Abstract. The problem of ranking a finite set X may be defined as follows: if IX[ N, define a linear
--1order on X and find the order isomorphism p: X {0, 1, , N- 1}, and its inverse q In this paper, X is

the set of k-ary trees on n vertices, k-> 2, n =>0; the linear order is the lexicographic order on a set of
permutations used to represent the trees. The representation of k-ary trees by permutations leads to
efficient computation of q and p- One result of this investigation is a generalization of binomial
coefficients. The problem of listing all k-ary trees on n vertices is also addressed" an algorithm which,
excluding input-output, is linear in the number of such trees is presented.

Key words, algorithm, binary trees, binomial coefficient, linear order, k-ary tree, permutation, ranking
function, recursion

1. Introduction. The main problem of classical combinatorics may be described
as follows: given a finite set X, evaluate N ]XI. Evaluation of N implicitly defines N!
set isomorphisms - x-{0, ,. .,N-}.

Any choice of such a q induces a total order < on X,

x <y iff p (x) < 0 (y).

p is thus an order isomorphism between the ordered sets (X, < ) and {0, 1, , N-
1} with the usual ordering.

With X and N as as above, a somewhat different problem may be defined"
impose a total order < x on X and construct an order isomorphism

" (X, <,)-{0, ,..., N- }.

Such a function is a ranking function on X with respect to < x. Clearly o is unique,
and also, for x 6 X

q(x)= l{y X y < xx}[.

A converse problem may be defined" given X, < x, N as above, compute q
In this paper, X will be the set of k-ary trees on n vertices, k => 2, n => 0.
DZIINITION 1.1 [k-ary tree]. Let k be an integer, k -> 2.

(i) 4, the empty tree, is a k-ary tree with no root and with vertex set V(b)
(ii) if T1,’" Tk are k-ary trees, then structure produced by joining a new root r

to the root of each nonempty T, 1--</=< k, is a k-ary tree with root r and
vertex set {r} V(Tx) V(Tk);

(iii) there are no other k-ary trees.
DEFINITION 1.2 [subtree rooted at v]. Let T be a nonempty k-ary tree with

Tx, , Tg as in Definition 1.1 (ii). Let v V(t). (i) If v r, the subtree of T rooted at
v is T; (ii) Otherwise, v e V(T) for some , 1 -<] -< k, and the subtree of T rooted at v
is the subtree of T rooted at v.

DEFINITION 1.3 [parent, child, etc.]. Let T be a nonempty k-ary tree, v V(T),
To the subtree of T rooted at v, with Tva,... Tv as in Definition 1.1 (ii). The root of

* Received by the editors June 3, 1977, and in revised form February 10, 1978. This research was
supported in part by the National Science foundation under Grant Numbers DCR 74-02774 and MCS
73-03408; this research was completed while the author was a visitor at the Department of Computer
Science, University of Illinois, Urbana, IL 61801.

5" Department of Mathematics, Illinois State University, Normal, Illinois 61761.
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each nonempty Toj is child of v, and v is the parent of such a root. A vertex w To is a
descendant of v, and v is an ancestor of w. If w v, the descendant and ancestor
relations are proper. A vertex with no proper descendants is a leaf. A vertex which is
not a leaf is internal.

DEFINITION 1.4 [isomorphism]. Let T, T2 be k-ary trees.
(i) If T T2 b, T1 and T2 are isomorphic.
(ii) If T and T2 are nonempty and Tll," ", Tk, T2," T2k are as in Definition

1.1 (ii), T and T2 are isomorphic iff Tj and T.j are isomorphic, 1 <-j<-k.
DEFINITION 1.5 [full k-ary tree]. A k-ary tree T is a full k-ary tree iff
(i) T is nonempty; and
(ii) each internal vertex of T has exactly k children.
There is a relationship between k-ary trees and full k-ary trees given by the

following lemma.
LEMMA 1.6. The set of k-ary trees and the set of full k-ary trees are in 1-1

correspondence.
Proof. The correspondence is defined as follows:
(i) (k corresponds to the full k-ary tree with one vertex;
(ii) A nonempty k-ary tree T corresponds to the full k-ary tree T’ obtained from

T by adding leaves to T so that every vertex of T has exactly k children in T’.
It is clear that this correspondence is 1-1. Q.E.D.
This correspondence is an obvious extension of the special case k- 2 which is

presented on p. 559 of [6].
DEFINITION 1.7 [m-inorder labeling]. Let T be a nonempty k-ary tree with root

r; for v V(T), let To be the subtree of T rooted at v and let To,"" Tok be as in
Definition 1.1 (ii). If Toi b, let ri be the root of Ti. Let 0_-< m _--< k. The following
algorithm labels T in m-inorder.

begin

procedure inorder (v, m);
begin

for/’: 1 until m do
if Toi dp then inorder (rj, m );
label [v]: i: i+l;
for j: m + 1 until k do
it To b then inorder (ri, m);

end inorder (v, m);
i: =0;
inorder (r, m);

end.

A search which visits the vertices of T in the same order in which they are numbered
by an m-inorder labeling is an m-inorder search.

The definition of m-inorder labeling may be extended to arbitrary ordered trees,
but this extension is not necessary in this paper and so the present definition is framed
in terms of k-ary trees.

The cases m --0 and m k are the usual pre-order and post-order labelings of T
respectively; the case k 2 and m 1 is the usual in-order labeling of a binary tree.
See [1] for standard definitions of these labelings.

Finally, to formalize the remarks at the beginning of this paper, the next
definition is made.
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DEFINITION 1.8 [ranking ]:unction]. Let (X, < be a finite, nonempty ordered set
with IXI N. The unique order isomorphism q: (X, <)-+{0, 1,..., N-1} is the
ranking function for X with respect to the total order <.

2. Lexicographic ranking of binary trees. Let B(n) be the set of binary trees on
n vertices; let B(n)=

DEFINITION 2.1 [permutation]. Let n be a positive integer. A permutation o- of 1,
2, ., n is a finite sequence s sz"" s, satisfying

{Sl,"’,snI={,-",n}.

The set of all permutations of 1, 2,. , n is denoted by
There is much more structure which can be associated with S, but it will not be

necessary for the present development.
DEFINITION 2.2 [O’(/’1, ",/’,,,)]. Let n and m be positive integers with n => m. Let

{il,""", i,,}c-{1, ,n}; let o- S,. o-(/1,...,/,,) is the finite sequence obtained by
deleting ,- ,/’m from r.

DEFINITION 2.3 [P(n)]. Let n be a positive integer. P(n)_ S, is defined recur-
sively as follows:

(i) P(1) $1;
(ii) if n > 1, o" P(n) iff o’(n) P(n 1) and si n, Sk n 1 implies ] > k 1.
The following theorem gives the relationship between P(n) and B(n).
THEOREM 2.4. There is a 1-1 correspondence between P(n) and B(n), n => 1.
Proof. Let T eB(n); generate a permutation o-eS, according to the following

scheme: label the vertices of T in pre-order, and read off the labels in in-order. It must
be shown that o- P(n). The proof is by induction on n.

For n 1, 2, the result is immediate. Let n>2, T B(nl), TzGB(n2) as in
Definition 1.1, and assume that the result is true for 1, 2, , n- 1.

Let o- 6 P(nl) be the permutation generated from T1, and - e P(n2) be the permu-
tation generated from T2; if n 0 or n2 0, the corresponding permutation is defined
to be the empty sequence. Let o-= S Sz"’s,1, " tltz’"t,z. Let s =s/+ 1; let
t + n + 1. Then it is clear that the permutation p generated from T is given by

lt’t’z’"t,2.(2.5) to S1S2 Sn

It follows that s’i n, t5 n 1 is impossible, and since o- e P(nl), r P(n2), the second
condition of Definition 2.3 (ii) must be satisfied. Let p rlrz’"r,, with r/= n. Let
v V(T) be the vertex labeled n. If T’eB(n-1) is the binary tree obtained by
deleting v from T, the permutation generated from T’ is to(n), and by the induction
hypothesis, p(n)e P(n- 1); hence the first condition of Definition 2.3 (ii) is satisfied.
Thus the proof that o- P(n) is complete.

So far, the existence of a 1-1 map from B(n) into P(n) has been proven; it
remains to show that this map is onto. This will be accomplished by constructing an
inverse to the map just defined.

Let a az’"a, be a finite sequence of distinct positive integers. An unique
binary tree T(al a2"" an)G B(n) may be constructed as follows:

(I) If n 1, T(al) is the binary tree with one vertex;
(II) if n > 1, let a, =min {al,"’’, a,}. Then T(al, a2’’" am) is the binary tree

formed by joining T(al a2 a_l) and T(ai+a a/+2 a,) to a root r as in Definition
1.1 (ii); if either sequence is empty, so is the corresponding tree.

The claim is that p- T(p) is the inverse of the map previously constructed; the
proof is by induction on n.



RANKING AND LISTING ALGORITHMS 495

For n 1, 2, the result is obvious. Suppose that n > 2, and that the result holds for
1, 2,..., n- 1. Let o" P(nl); " P(n2), si, tj be as before. Referring to Equation 2.5,
it is easy to see that T(s] s’l) T(0-) and T(t] t’2) T(-); thus T(p) is the
binary tree formed by joining T(0-) and T(z) to a new root; but by the induction
hypothesis, T(0-)= T1, T(-)= T2. Hence T(p)= T. Q.E.D.

This same result, using a different (although equivalent) definition of P(n) is
derived in Exercises 2.2.1-5 and 2.3.1-6 of [6]. This derivation goes by way of stacks,
while the above theorem obtains the result directly.

Example 2.6. For n= 1, 2, P(n)=S,,. For n=3, P(n)=S,-{312}. 4321P(4)
while 4312 P(4). The permutation generated from the tree in Fig. 2.7 (i) is 32415;
the permutation generated from the tree in Fig. 2.7 (ii) is 231546.

3 4
3 5 6

(i) (ii)

FIG. 2.7

DEIINIrION 2.8 [lexicographic ordering on B(n)]. Let n be a positive integer; let
T1, TzB(n); T1 is lexicographically less than T2 itt the permutation O-lP(n)
corresponding to T1 is lexicographically less than 0"2 P(n) corresponding to T2.

The remainder of this section will be concerned with ranking and unranking
algorithms on P(n) with respect to the lexicographic ordering.

DEFINITION 2.9 [P(n, m), P(n, m)]. Let n be a positive, m a nonnegative integer;
define

and
P(n, m)={0-P(n):s,, n};

P(n, m) IP(n, m
Clearly P(n, rn)= 0 unless 1 -< m --< n.

From this point on, the notion of concatenation of lists or strings will be
important; the symbol will be used to denote the operation of concatenation of lists
or strings.

DEFINITION 2.10 [Direct insertion order on S,,, P(n)]. Let n be a positive integer.
The direct insertion order is defined on Sn as follows:

(i) S is in direct insertion order;
(ii) let L,_I (o-1, 0-2,""", 0-(,-)t) be a listing of Sn-a in direct insertion order.

For 1 =<i=< (n-1)!, create a list L,,,i by inserting the character n into each possible
position in 0-i, starting at the right and working leftwards. The listing of Sn in direct
insertion order is

L,,,][Ln,2II
The definition of direct insertion order on P(n) is similar except that in part (ii), if
0-i P(n- 1, m), the insertion process halts with the insertion of n to the immediate
left of Sm.
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n=l 2 3 4

S,, 12
21

123
132
312
213
231
321

1234
1243
1423
4123
1324
1342
1432
4132
3124
3142
3412
4312

etc.

P(n) 12 123 1234
21 132 1243

213 1324
231 1342
321 1432

2134
2143
2314
2341
2431
3214
3241
3421
4321

FIG. 2.11. GeneraonofS. and P(n) by dictinsertion.

Figure 2.11 depicts the generation of Sn and P(n) by direct insertion, for n
1,2,3,4.

Note that while lexicographic order and direct insertion order differ on Sn for
n 3, 4, they coincide on P(n) for n 1, 2, 3, 4. This is not accidental.

LEMMA 2.12. The lexicographic and direct insertion orders on P(n) coincide.

Proof. Induction on n; from Fig. 2.11 the result is true for n 1, 2, 3, 4.
Suppose the result is true for P(n-1); let L,,i be the list generated from

1 <-_ <-B(n- 1). Clearly each L,, is in lexicographic order; so it need only be shown
that the last element of L,, is lexicographically less than the first element
l<_i<_B(n-1)-l.

Let o-=s,&...&_l, with rP(n-l,m); and let q+l=s+,&+,...

&+,-l. Then the last element of L,i is O &l &"_(n) &" s,_; and the first
element of L,,i+ is r= &+,... Si+l,n-l(n).

First note that since it is assumed that <-B(n- 1)-1, it must be that 2_-< m
n- 1, for the only element of P(n- 1, 1) is (n- 1) (n-2). (2) (1) o-_1.

Suppose that r < O lexicographically in P(n). Since tr < O’i/ lexicographically in
P(n 1), it follows that s, s+l, for 1 -_< j _--< m 1, and si, Si+ 1,m < ’[- But since p is
the lexicographically largest element of L,,, it follows that si," n- 1; hence &+l,,.
n-1. But o-i and oi/a are successive elements in the list of S,-1 in direct insertion
order; hence Si, Si+l,,. n-- 1 is impossible. Q.E.D.
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Before proceeding with the development of the ranking and unranking
algorithms, it is worthwhile to evaluate P(n, m) for 1 _-< m _-< n. Considering the con-
struction of P(n) form P(n-1) by direct insertion, it is easy to see that for m-> 1,
n=>2,

(2.13) P(n, m)= P(n- 1, ).

As was remarked in the proof of Lemma 2.12,

(2.4) P(n,)=l,n>=.

Equations (2.13) and (2.14) may be used to obtain the following recursion with
boundary conditions:

e(n, m)= e(n, m 1)+ P(n 1, m),
(2.15)

P(n, 1)=l,n>-l;

LEMMA 2.16. For 2 <=’m <--n,

(2.17) P(n, m)

n ->2, m => 1;

P(n, rn)= O, n < m.

(n- m + l) IZ (n + l)
(m- 1)!

where the product is defined to be 1 for m 2.
Proof. The proof is a routine calculation. Q.E.D.
For cr P(n), denote by lexrank (tr) the rank of tr in the lexicographic ordering of

P(n). It will be seen in the next lemma that the P(i, ) are intimately involved in the
computation of lexrank (tr).

LEMMA 2.18. Let tr sl s2 sn P(n), let 0 <- j < < n, and suppose that tr

satisfies
st=l, n-i+ l <-l<=n;

Let ’= sl s2 Sn-i-1 Sn-i+l s,_j(n-j)(n-] + 1).." (n). Then lexrank (tr)-
lexrank (’)= P(i + 1, j + 2).

Proof. By induction on i, j. If j =0, s, # n, and clearly lexrank (or)-lexrank
(r)= i= P(i + 1, 2).

Suppose that j > 0 and j + 1. Then

Let

0’’-" SI Sn-j-2(l’[ -j)s,_j(n-j + 1)... (n);

" s s,_i_2s,,_(n-j)(n-j + 1)-.. (n).

o"= s s,,_i_zS,_i(n)(n- 1)... (n-j+ 1)(n-j).

Considering the insertion process by which r’ and o- are constructed from

Sl sn-j-zSn-jGP(n-j- 1), it is seen that

lexrank (or)= lexrank (tr’)+ 1.

Thus

lexrank (tr)-lexrank (’)= 1 + lexrank (or’)

lexrank (-);
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but {p" 7- _-< p < cr lexicographically} is order isomorphic to P(j + 1). Hence

lexrank (o’)- lexrank (7-)= 1 + P(j + 1)- 1

P(j + 1)

=P(j+2,j+2).

Now let j > O, > j + 1, and suppose inductively that the result is true for 1 and
j; and that the result is true for j- 1 and all i’ satisfying j- 1 < i’ < n. Let

r= ss s.__(n-j)s._,+ s._(n-j + 1)... (n);

then

Let

As before,

thus

But

7"-- S1S2"’" Sn_i_lSn_i+l s,,_j(n-j)(n-j + 1)’" (n).

lexrank (tr)-lexrank (tr’) 1;

lexrank (o-)-lexrank (7")= 1 + lexrank (o")-lexrank (7")

1 + lexrank (tr’)-lexrank (tr")

+ lexrank (tr")- lexrank (7").

lexrank (o-")- lexrank (7")= P(i, j + 2)

by the induction hypothesis on i; and

j-1

lexrank (o")- lexrank (o-")= Y. P(i, , + 2)
=0

by the induction hypothesis on j. Hence
j-1

lexrank (tr)- lexrank (7") 1 + Y P(i, , + 2)+ P(i, j + 2)
,-----0

Y. P(i,v+2)
,=-1

=P(i+l,j+2)

by Equation 2.13. Q.E.D.
The result of Lemma 2.18 is exploited by the following algorithm, which

computes the lexicographic rank of r e P(n). In this algorithm r is represented by a
linked list, although the representation and linked list manipulations are suppressed in
the description presented here; the array p[1 :n, l:n] is used to store the values of
P(i, j); p[i, j] P(i, j). Discussion of the method of computing the p[i, j] is deferred
until after the description of the algorithm.
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ALGORITHM 2.19. Input: o-6P(n), represented by a linked list. Output: The
lexicographic rank of r in P(n).

begin

procedure lexrank (or, n, l);

begin
temp: 0;

for j: until n 2 do

if s,,_/-n n-j then

for i: 1 until n- 1 do

if s,-i n-j then

begin

temp: p[i + 1, j + 2]

+ lexrank (tr(n-j,..., n)]l(n -J)ll""" II(n), n, j + 1);

i: =n;

j: =n-l;

end;

lexrank temp

end lexrank (or, n,/);

compute p[1 :n, 1 :n];

lexrank (tr, n, 0);

end.

THEOREM 2.20. Algorithm 2.19 is O(n2) time-bounded; the algorithm can be
implemented so that it is O(n) space-bounded.

Proof. The procedure call lexrank (tr, n, l) requires O(n- 1) steps to execute the
loops on and j in the worst case; so the worst-case time-complexity for lexrank is
given by the recursion

t(lexrank (r, n, 0))--< 0(n)+ t(lexrank (tr(n)ll(n), n, 1))

since computation of o-(n-j,..., n)ll(n-j)ll""" II"" II(n)is constant time by linked-
list operations. But the time required by lexrank (r(n)ll(n), n, 1) is the same as the
time required by lexrank (o’(n), n- 1, 0). Hence

t(lexrank (r, n, 0)) O(n2).
Computation of p[1 n, 1 n] by Equations 2.15 requires O(n2) time. It appears at

first storing the P(i, j) in the array p[ 1 n, 1 :hi (as opposed to direct computation from
Equation 2.17, which also leads to an O(n2) time-bound)requires O(n2) storage.
However, any particular column of p[l:n, l:n] is accessed at most once during the
execution of Algorithm 2.20; and those columns which are accessed in ascending
order on j. Furthermore, if the jth column of p[1 n, 1 :n] is known, the j + 1st may be
computed using Equations 2.17. Hence no more than two complete columns of
p[1 :n, 1 :n] need be kept in storage at any time; hence the space bound. Q.E.D.
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The essential steps of Algorithm 2.19 are illustrated in the following example.
EXAMPLE 2.21. Compute the lexicographic rank of tr 35421 in P(5). According

to Lemma 2.19,

lexrank (35421)= lexrank (34215)+ P(4, 2)

lexrank (32145)+ P(4, 3)+ P(4, 2)

lexrank (21345)+P(5, 4)+P(4, 3)+P(4, 2)

lexrank (12345)+ e(5, 5)+ P(5, 4)+ P(4, 3)+ P(4, 2).

But lexrank (12345)=0; and evaluation of the appropriate P(i, ])yields

lexrank (35421)= 14 + 14 + 5 + 3

=36.

Lemma 2.19 also leads to an unranking algorithm.
ALGORITHM 2.22. Input: integers n->l, O<-r<-B(n)-l. Output" the rank r

element of P(n), represented as a linked list.

begin

procedure lexrecover (r, n, ]);

begin

it 0 then

begin

find largest such that P[ + 1, j / 2] _-< r;

r: s s.__(n-)s._ s.__l;

lexrecover [r-p[i + 1, ] + 2], n, - 1);

end;

end lexreoer (r, , );

compute p[ 1" n, 1" n

o-"

lexrecover (r, n, n- 2);

end.

In this algorithm, as in Algorithm 2.19, the linked-list operations have been
suppressed.

THEOREM 2.23. Algorithm 2.22 is O(n2) time-bounded and O(n) space bounded.
Proof. In the procedure call lexrecover (r, n, ]), the time required to find the

appropriate P(i, ]) is at most O(n-]); hence the time required for lexrecover (r, n, ]) is
given by

t(lexrecover (r, n, ]))<= O(n-])

+ t(lexrecover (r-P[i + 1, ]+2], n, ]- 1).

(It follows that the call lexrecover (r, n, n-2) requires at most O(n) time. On the
other hand, it can be seen that lexrecover (B(n)- 1, n, n-2) requires O(n) time.
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Computation of P[1 :n, 1 :n] requires O(n 2) time using Equations 2.15.
The O(n) space requirement is demonstrated in a fashion similar to the proof of

Theorem 2.20 in this case, the columns of P[l:n, l:n] are accessed in decreasing
order of j; if the jth column is known, the j-1st can be computed using Equations
2.15. Q.E.D.

Example 2.24. Given n 5, r 36, compute the rank r element of P(n) in
lexicographic order. At the outset, set o-= 1. The largest such that P(i + 1, 5)_-< 36 is
4: P(5, 5) 14. Hence 2 is inserted immediately to the left of s5-4 Sa in r i.e. r 21;
r is decremented to 22. The largest such that P(i + 1, 4)-<22 is 4: P(5, 4)= 14. Hence
3 is inserted into the first position in r, i.e. r 321, and r is decremented to 8. At the
next step, j 1 and is found to be 3; so r becomes 3421 and r is decremented to 3; at
the last step, j =0, and is found to be 3; so cr becomes 35421 and r is decremented to
0. The algorithm halts at this point.

In the next section, the ranking and unranking of k-ary trees will be treated in a
similar fashion.

3. Lexicographic ranking of full k-ary trees. Recall from Lemma 1.6 the cor-
respondence between k-ary trees and full k-ary trees; from this correspondence, it
follows that to rank k-ary trees on n vertices, it suffices to rank full k-ary trees on
kn + 1 vertices. The general strategy will be to relate full k-ary trees on kn + 1 vertices
to a subset of B(nk + 1), which subset will be ranked in a manner similar to the
lexicographic ranking of B(n) in 2.

Using the standard definition of (ordered) tree and forest (see 2.3.2 of [6]), the
following definition is made.

DEFINITION 3.1 [operations on ordered forests]. Let F=(Ta,"., T,) F’=
(T],..., T’,,) be ordered forests; then FF’ is the ordered forest (Ta,’", T,,,
T],. , T);/5 is the ordered forest (T), where T is the tree obtained by joining the
root of each T to a new root r. In particular, if F is the empty ordered forest, if" is the
ordered forest on one vertex.

Definition 3.1 allows a concise statement of the correspondence between ordered
forests on n vertices and elements of B(n).

DEFINITION 3.2 [correspondence between binary trees and ordered forests].
(i) The empty binary tree corresponds to the empty ordered forest;
(ii) If Ta and T2 are binary trees corresponding to the ordered forests F1 and Fz

respectively, the binary tree T which has T and T. as its left and right subtrees
corresponds to FIF2.

The correspondence in 2.3.2 of [6] has the binary tree T corresponding to ff’lF2;
Definition 3.2 (ii) is preferable for the present purposes. That the correspondence in
Definition 3.2 is 1-1 follows from the fact that the correspondence in [6] is 1-1.

DEFINITION 3.3 Uk]. Let k _->2; Uk B(k)is the unique binary tree on k vertices
such that no vertex of Uk has a right child.

DEFINITION 3.4. [F(nk + 1, k)]. Let n _-> 0, k _-> 2.
(i) If n 0, F(1, k)= B(1);
(ii) If n -> 1, let n + + nk n 1, let T F(nk + 1, k), 1 -< -< k, and let T

have root r; form a binary tree T B(nk + 1) as follows"
(a) the root of T is r; r has no left child, and the right child of r is rl;

(b) for 1 -< -< k, the left child of r is r+l, if r+l exists; the right subtree of r is the
right subtree of r in T. Then T F(nk + 1, k).

(iii) F(nk + 1, k) has no other elements.
Example 3.5. Figure 3.6 depicts the sets F(nk + 1, k) for k 2, 3, and n 0, 1, 2.
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F(1,2): e

F(3, 2):

F(5, 2):

F(1,3):

(4, 3):

F

FIG. 3.6. F(nk + 1, k) for k 2, 3, n O, 1, 2.

LEMMA 3.7. Let n >= 0, k ___> 2. There is a 1-1 correspondence between F(nk + 1, k)
and the set offull k-ary trees on nk + 1 vertices.

Proof. The 1-1 correspondence is the restriction to F(nk + 1, k)of the 1-1 cor-
respondence in Definition 3.2. The proof is by induction on n.

The case n 0 follows immediately from Definition 3.2 (ii) applied to the binary
tree on one vertex.

Suppose the result is true for 0, 1, , n 1. Let T F(nk + 1, k) be formed from
T F(nik + 1, k ), 1 <-_ <-_ k as in Definition 3.4. Let Si be the full k-ary tree on nk + 1
vertices corresponding to T. It follows from Definition 3.2 that the ordered forest
corresponding to T is the tree S obtained by joining the root of each T to a new root
r; hence S is a full k-ary tree on nk+ 1 vertices. The argument is completely
reversible. Q.E.D.

Thus, to rank the set of full k-ary trees on nk + 1 vertices, it suffices to rank
F(nk + 1, k). This will be accomplished by considering the subset of P(nk + 1)
generated by F(nk + 1, k) using the method of Theorem 2.4.

DEFINITION 3.8 [P(nk + 1 k)]. P(nk + 1; k)_ S,,k+l is the set of permutations
generated from F(nk + 1, k) by the method of Theorem 2.4.

By what has already been said, P(1; k)= $1; the next result characterizes P(nk +
1; k) for n => 1.
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LEMMA 3.9. Letn >- l, k >-2, o’ESnk+l. ThenrEP(nk + l; k)iff
(i) o-((n 1)k + 2, (n 1)k + 3,..., nk, nk + 1) P((n 1)k + 1, k);
(ii) (nk + 1)(nk)(nk 1). ((n 1)k + 2) is a substring of tr;

(iii) if Sm nk + 1 and s,, (n 1)k + 1, then m > m’.
Proof. By induction on n; it is easily seen that P(k + 1; k) consists of the single

permutation

or= (1)(k + 1)(k)’’- (2),

which satisfies the conditions; and no other - Sk+ satisfies these conditions.
Let n > 1, and suppose that the result is true for n 1. Let T F(nk + 1, k), and

label the vertices of T in pre-order. It follows from Definition 3.4 that the vertices
labeled (n- 1)k + 2,..., nk + 1 form a subtree rooted at the vertex w labeled (n-
1)k + 2, and this subtree is Uk. Let v be the parent of w; then label Iv] ___< (n- 1)k + 1.
Since a descendant of v is labeled nk + 1, it must be that the vertex labeled (n- 1)k + 1
is a descendant of v; furthermore, this vertex must equal v or lie in left subtree of v,
since it can be seen that the right subtree of v is precisely the Uk already mentioned.

If the right subtree of v is deleted, the result is an element of F((n- 1)k + 1, k)
labeled in pre-order. By the induction hypothesis, the permutation generated from
this tree is an element tr of P((n-1)k + 1; k). By the structural properties of T
discussed above, it follows the permutation generated by T may be obtained from tr

by inserting the sequence (nk + 1)(nk)... ((n-1)k +2) immediately to the right
of label [v] in or; but either label [v] (n- 1)k + 1 or (n- 1)k + 1 lies to the left of
label [v] in tr; hence the permutation generated by T satisfies (i), (ii), and (iii).

Let o’Snk+l n_-->2, satisfy (i), (ii), (iii); let T EB(nk+ 1) be the binary tree
generated from o- as in Theorem 2.4. By the induction hypothesis, the binary tree T’
generated from o-((n 1)k + 2, , nk + 1) is an element of F((n- 1)k + 1, k); also,
the subtree of T corresponding to (nk + 1)(nk). ((n 1)k + 2) is Uk SO it remains to
be shown that this Uk is the right subtree of some vertex v in T’. Let v be the parent of
u, where label [u] (n 1)k + 2. Suppose u lchild [v]; now, label [v] _-< (n 1)k + 1,
and v is a vertex in a subtree Uk of T’; if v is not the leaf of Uk, it is obvious that
u rchild [v l; hence v is the leaf of the subtree Uk. Hence label Iv] n’k + 1 for some
n’< n; also, nk + 1 occurs to the left of n’k + 1 in o-, from the construction of the
inverse map in Theorem 2.4, but by (iii), n’k + 1 occurs to the left of (n-1)k + 1;
hence nk + 1 occurs to the left of (n- 1)k + 1, which contradicts the assumption about
o-. It follows that T F(nk + 1, k). Q.E.D.

Lemma 3.9 leads to a lexicographic ranking scheme for P(nk + 1; k); the first step
is to obtain a result analogous to Lemma 2.12.

DEFINITION 3.10 [P(nk + 1, m k)]. Let n _-__ 0, k _-> 2, 1 <- m <- nk + 1. P(nk +
1, m; k)= {r P(nk + 1; k): s, nk + 1}.

DEFINITION 3.11 [direct insertion order on P(nk+ 1; k)]. The direct insertion
order on P(nk + 1; k) is defined analogously to the direct insertion order on P(n); i.e.
for tr P((n 1)k / 1, m ;k), the string (nk / 1)(nk). ((n 1)k / 2) is into o" starting
at the right and proceeding leftwards until insertion between s,, and Sm+l.

LEMMA 3.12. On P(nk + 1; k), the lexicographic order and direct insertion order
coincide.

Proof. By induction on n; the result is trivial for n=0, 1 since P(1; k)=
P(k + 1; k)= 1. Let n > 1 and suppose the result holds for n- 1. As in Lemma 2.12, it
suffices to show that for o- < " lexicographically consecutive in P((n 1)k + 1; tr’, the
lexicographically largest element of P(nk + 1; k) formed from tr by direct insertion, is
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lexicographically less than -’, the lexicographically least element of P(nk+ 1; k)
formed from - by direct insertion.

Let tr- sl s(,,-1)k+l, " t, , t(,,-lk+l. By the induction hypothesis and the
properties of P((n- 1)k + 1; k) there is an > 1 such that

si ti, 1 <- <- l; Sl+l < tl+l.

Suppose that -’ < o"; it follows that o-’ P(nk + 1, m; k) for m =< + 1. By the definition
of direct insertion order on P(nk + 1; k), s,,_=(n- 1)k + 1; hence t,,_a =(n- 1)k + 1.
But this is impossible since P((n- 1)k + 1; k) is in direct insertion order. Q.E.D.

The final step in preparation for the ranking and unranking algorithms on
P(nk + 1; k) is the definition of some auxiliary coefficients.

DEFINITION 3.13 [C(i, j, k)]. Let k>-_2, j>=O, i>-_(]+l)k-1; let n_->

max (j +2)k, i). Let tr= s... S,k+I P(nk + 1; k) satisfy

let

S(n_l_l)k+2 (l- l)k + 1, 0__</<-j-I;

s._+ (n-Dk + 1.

Let - tl tnk+ be obtained from tr((n-j- 1)k + 2, , (n -j)k + 1) by inserting
the substring ((n-j)k+l)((n-j)k)... (n-j- 1)k+2 so that t(,_j_)k+2
(n-’)k + .
Define

C(i, L k)= lexrank (tr)-lexrank

where lexrank is computed with respect to P(kn + 1; k). If 0-< < (j / 1)k- 1, define

C(i,j,k)=O.

The definition of C(i, ], k) and the properties derived therefrom in [9] may be
summarized in the following recursion"

(3.14) C(i,j,k)= i-k+l,

C(i- 1, j- 1, k)+ C(i- 1, j, k),

j=O, i>-k;

otherwise.

Thus the C(i, j, k) satisfy Pascal’s identity, but with different boundary condi-
tions.

TIJEOREM 3.15. Let j >-- O, >-- (j + 1)k 1 then

C(i,j,k)=
j+l

Proof. By induction on i, j. The case/" 0, _-> k 1 is the left boundary condition
of Recursion 3.14.
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Suppose that j > 0 and that the result is true for j 1. Let (j + 1)k 1. Then

((j+ 1)k-1)-(k-1)((j+ 1)k- 1)j+ j

[(j + 1)k- 1 -(k- 1)
((j + 1)k- 1)...((j + 1)(k- 1)+ 1

j+l ]

j + 1 ,/ (j + 1)!

=0

C((j + 1)k 2, j, k).

The rest follows from Pascal’s identity. Q.E.D.
It is worth noting at this point that, although the C(i, j, k) have been defined only

for k _-> 2, if the result of Theorem 3.15 is extended to the case k 1, then

t )C(i,j, 1)-
J+ 1

j>--O, i>-j.

Thus the C(i, j, k)extended to the case k 1 are a generalization of ordinary binomial
coefficients, at least over their common range of definition.

From their definition, the C(i, j, k) will play the same role in lexicographic
ranking algorithm for P(kn + 1; k) as did the P(i, j) for lexicographic ranking of P(n).
In this algorithm, the C(i, j, k) are stored in the array ck [1 :n k, 0: n-2]; as before
the details of computing this array are omitted from the algorithm. The permutation
tr P(nk + 1; k) is represented by an array s[l: n * k + 1].

ALGORITHM 3.16. Input: cre P(nk + 1; k) represented as an array s[ 1 :n k + 1 ].
Output: the lexicographic rank of cr in P(nk + 1; k).

begin

compute ck 1 n k, 0 n 2];

lexrank: 0;

j: =0;

lot i: k- 1 until n k- 2 do

ii sin * k + 1] (n -j) k + 1 then

begin

lexrank: lexrank + ck[i, j];

j: =j+l;

end;

end.

Note that this algorithm is not recursive, and in fact does not explicitly construct
the permutation - of Definition 3.13. This is because the position of ((n- l)k + 1), >
j, is unaffected by the movement of the substring ((n-])k +
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1)((n-])k)... ((n-j-1)k +2) to the right. Thus the statement of the algorithm is
particularly simple. This property of tr also leads to a nonrecursive unranking
algorithm based on the C(i,], k). The unranking algorithm employs a stack for
temporary storage.

ALGORITHM 3.1.7. Input: integers n>--O, O<-_r<-P(nk+l;k)-l. Output: the
rank r element of P(nk + 1; k) represented as an array s[l: n * k + 1].

begin

compute ck[l: n * k, 0: n-2];
[or j: n 2 step- 1 until 0 do

begin

choose maximum such that ck[i, ] <- r;

a[n-j] =i;

r: =r-ck[i,]];

sill: =1;

j: =2;

for 2 until k + 1 do add to stack;

forl: =2untiln*k+ldo

begin

if n * k-a[j]+ 1 lthen

begin

for q: j (n 1) + 2 until j n + 1 do add q to stack;

j: =j+l;

end;

s[l]: top of stack;
delete top of stack;

end;

end.

THOI,M 3.18. Algorithms 3.16 and 3.17 are O(nk) space-bounded; and with
the exception of computing ck [l:n k, 0: n-2] they are O(nk) time-bounded.

Proof. The proof of the space bounds is similar to those in Theorems 2.20 and
2.23.

The time bound on Algorithm 3.16 is clear since the algorithm makes a single
pass through s[1 :n k + 1] from right to left.

To establish the time-bound for Algorithm 3.17 it must be shown that the array
a[2:n] can be constructed in O(nk)time. Let 0_-<j<n-2; suppose that a[j]=i.
Then in the rank r permutation tr P(nk + 1; k),

Snk-i+ --jk + 1.
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By the definition of P(nk + 1; k),

s,,_,+ (] + 1)k + 1

for some i’> i. Hence the entries of a[2 n] are strictly increasing, and a[2 n] can be
constructed by a sequential scan of the integers 1,..., nk. Q.E.D.

As a consequence of Theorem 3.18, it is possible to implement Algorithms 3.16
and 3.17 in linear time, by precomputing the factorials of the integers 0, 1,..., nk
and storing them in an array; the evaluations of ck[i, j] in Algorithms 3.16 and 3.17
may be accomplished by using the result of Theorem 3.15. Since at most nk such
evaluations are required by the algorithms, the result is a linear time-bound. This
approach is, however, not feasible in practice, due to the rapid growth of n! as a
function of n.

4. Listing algorithms.

procedure next (tr, n, m);

begin

comment r P(n, m) for m > 1;

find leastj such that Sin+ --q n--j or m +j> n;

it j 1 then

begin

m: =m-l;

0": =$1"’" Sm-z(n)Sm-l Sn;

end;

else

begin

comment cr s1s2 Sm_a(n)(n 1)- (n-j + 1)Sin+j" Sn

where Sm/i S. may be the empty string;

m::n;

or: s,s2 Sm-z(n -j + 1)S,n-lSm+1" sn(n --j + 2)" (n);

end;

end next;

Clearly, setting o-= 1 2... n and iterating next will generate all binary trees in
lexicographic order. The cost of each iteration is O(]); for a particular ] in the range
1 --< j =< n 2, the number of strings in P(n) for which 0(]) time is required is

B(n)-B(n-1), j=l;

n-j+l

Z P(n-j+l, tz)=B(n-j+l)-l, 2<---j<=n-2.

Hence the total time required to generate all elements of P(n) by iteration of next
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is bounded by a constant multiple of

n--2 n--4

B(n)-B(n- 1)+ jB(n -] + 1)< B(n)+ (j + 2)B(n-j- 1).
j=2 j=0

Now, for j_->0, j+2_-<3B(j); hence the time required is bounded by a constant
multiple of

B(n)+ 3 Y, B(j)B(n-j- 1)
/=0

< B(n)+ 3 Y B(j)B(n -y- 1)
/=0

4B(n).

Hence the expected time required by each iteration of next is bounded by a constant.
A similar analysis applies to P(nk + 1, k).

5. Final remarks. The notion of ranking combinatorial configurations was first
presented in [7]; since then a considerable amount of work has been done on the
subject; see [2], [3], [4], [5], [9], [10], [11], [12].

The problem of ranking binary trees is also considered in [4] and [5], and ranking
k-ary trees is considered in [8]. It is shown in [9] that the method of [5], when
generalized to k-ary trees, leads to algorithms which are exponential in k.

In [4], a full binary tree is represented by the sequence of level numbers of its
leaves; from this, a number T(n, k) is defined which is related to the P(n, m) of 2 by
the equation

P(n, m)= T(n, n-rn + 1).

The results of [4] are generalized to the k-ary case in [8]; however, there does not
appear to be any relation between the coefficients used in [8] and the C(i, .i, k) defined
here.

The ranking algorithms presented here differ from the usual procedure for
ranking permutations and n-tuples, as defined in [10], [11]. This procedure may be
described as follows: to rank Sl Sn lexicographically, let A
{tl t,," ti s 1 -< j -< 1 and t < s}. The rank of Sl s,, is simply ’= IA[. This
idea may be represented graphically by binomial grids [10] or reduction diagrams
[111.

If the methods of [10] or [11] are applied to Recurrence 2.15, the following linear
order is defined on P(n): o- < r in P(n) iff

(i) r e P(n, m), " P(n, m’) and m < m’; or
(ii) r, reP(n, re)and r(n)<r(n)inP(n-1).

The corresponding ranking and unranking algorithms are O(n2) time and O(n) space
bounded. A similar remark applies to P(nk + 1; k).
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GENERALIZED CONNECTORS*

NICHOLAS PIPPENGER

Abstract. An n-connector is an acyclic directed graph having n inputs and n outputs and satisfying
the following condition: given any one-to-one correspondence between inputs and distinct outputs, there
exists a set of vertex-disjoint paths that join each input to the corresponding output. It is known that the
minimum possible number of edges in an n-connector lies between lower and upper bounds that are

asymptotic to 3n log3 n and 6n log3 n respectively. A generalized n-connector satisfies the following
stronger condition: given any one-to-many correspondence between inputs and disjoint sets of outputs,
there exists a set of vertex-disjoint trees that join each input to the corresponding set of outputs. It is shown
that the minimum number of edges in a generalized n-connector is asymptotic to the minimum number in an
n-connector.

Imagine an information transmission network intended to mediate between n
sources of information and n users of this information. At any time, any of the users
may wish to be connected with any of the sources; a user can be connected with only
one source at a time, but many users may wish to be connected with the same source.
This paper deals with an idealized version of the problem of designing a network
capable of providing any such pattern of simultaneous connections.

An (n, m)-graph is an acyclic directed graph with a set of n distinguished vertices
called inputs and a disjoint set of m distinguished vertices called outputs. An n-graph
is an (n, n)-graph.

An n-connector is an n-graph satisfying the following condition: given any one-
to-one correspondence between inputs and distinct outputs, there exists a set of
vertex-disjoint paths that join each input to the corresponding output. (A path joining
an input to an output is a directed path whose origin is the input and whose destination
is the output.) Let c(n) denote the minimum possible number of edges in an n-
connector; it is known that

3n log3 n c(n)<= 6n log3 n + O(n)

(see Pippenger and Valiant [4, Remark 2.2.6]).
A generalized n-connector is an n-graph satisfying the following stronger condi-

tion: given any one-to-many correspondence between inputs and disjoint sets of
outputs, there exists a set of vertex-disjoint trees that join each input to the cor-
responding set of outputs. (A tree joining an input to a set of outputs is a directed tree
whose root is the input and whose leaves are the outputs.) Let d(n) denote the
minimum possible number of edges in a generalized n-connector; that

d(n)<= 10n log2 n + O(n)

for n a power of 2 is implicit in the work of Ofman [1]. Thompson [5] has recently
shown that

d(n)<= 12n log3 n + O(n)

for n a power of 3.
The object of this note is to show that

d(n)=c(n)+O(n),

* Received by the editors May 13, 1977.
t Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,

New York 10598.
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and thus that

It is clear that

thus it will suffice to show that

d(n)c(n).

d(n)>-c(n);

(1) d(n) c(n)+ O(n).

This will be done by means of a new type of graph which will be called a generalizer.
An n-generalizer is an n-graph that satisfies the following condition: given any
correspondence between inputs and nonnegative integers that sum to at most n, there
exists a set of vertex-disjoint trees that join each input to the corresponding number of
distinct outputs. Let g(n)denote the minimum possible number of edges in an
n-generalizer; it will be shown below that

(2) g(n) <- 120n + O((log n)),
so that in particular

g(n)=O(n).

A generalized n-connector can be obtained from an n-generalizer and an n-connector
by identifying the outputs of the generalizer with the inputs of the connector, as shown
in Fig. 1. it is obvious that this yields a generalized n-connector" the generalizer
provides the appropriate number of copies of each input, and the connector joins
these copies to the appropriate outputs. Thus

d(n)<=c(n)+g(n)

c(n)+O(n),

which completes the proof of (1).

n GENERALIZER n CONNECTOR

INPUTS OUTPUTS

GENERALIZED n- CONNECTOR

INDICATES IDENTIFICATION
OF VERTICES (NOT EDGES)

FIG. 1.
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It remains to prove (2). To do this, two more types of graphs, called concentrators
and superconcentrators, will be needed.

An n-superconcentrator is an n-graph that satisfies the following condition" given
any set of inputs and any equinumerous set of outputs, there exists a set of vertex-
disjoint paths that join the given inputs in a one-to-one fashion to the given outputs.
Let s(n)denote the minimum possible number of edges in an n-superconcentrator;
that

s(n)<=234n

was shown by Valiant [6], who first defined superconcentrators. Pippenger [3]
subsequently showed that

s(n)<= 39n + O(log n).

An (n, m)-concentrator is an (n, m)-graph that satisfies the following condition:
given any set of m or fewer inputs, there exists a set of vertex-disjoint paths that join
the given inputs in a one-to-one fashion to distinct outputs. Let r(n, m) denote the
minimum possible number of edges in an (n, m)-concentrator; that

r(n, m) <= 29n
was shown by Pinsker [2], who first defined concentrators. It will now be shown that

(3) r(n, [n/2J )=< 20n + O(log n),

where [.. denotes "the greatest integer less than or equal to ...".
A (n, [n/21)-concentrator can be obtained by combining [n/2J edges with an

[n/2]-superconcentrator (where [... denotes "the least integer greater than or
equal to ..."), as shown in Fig. 2. It is obvious that this yields an (n, [n/2J)-

Ln/2J

INPUTS

n
INPUTS

Ln/2 J EDGES

OUTPUTS

rn/21

INPUTS
ONE OUTPUT NOT USED
IF n ODD

r n/21 SUPERCONCENTRATOR

n, L n /2 J CONCENTRATOR

C

INDICATES EDGES

INDICATES IDENTIFICATION
OF VERTICES (NOT EDGES)

FIG. 2.
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concentrator" those of the given inputs that lie among the upper [n/2J inputs can be
joined to distinct outputs through the edges; those that lie among the lower In/2] can
be joined to other distinct outputs through the superconcentrator. Thus

r(n, [n/2])-< [n/2J +s([n/2])
_-< tn/2J + 39 In/2] + O(log In/21),

=< 20n + O(log n),

which completes the proof of (3).
It still remains to prove (2). This will be done by means of a recursive con-

struction: an n-generalizer can be obtained by combining an (n, Ln/2J )-concentrator,
an/n/2J-generalizer, 2 Ln/2J edges, and an n-superconcentrator, as shown in Fig. 3.
This can be seen to yield an n-generalizer as follows. If an input is to be joined to x

2 Ln/2 J EDGES

(n,Ln/2J) CONCENTRATOR Ln/2 J- GENERALIZER

INPUTS

n- SUPERCONCENTRATOR

n
OUTPUTS

n GENERALIZER

INDICATES EDGES
, INDICATES IDENTIFICATION

OF VERTICES (NOT EDGES)
FIG. 3.
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distinct outputs, one can write x 2y + z, where y is a nonnegative integer and z is
either 0 or 1. Since the x’s sum to at most n, there can be at most [n/2] inputs for
which y is greater than 0. Each of these inputs can therefore be joined to a distinct
output of the concentrator, thence to y distinct outputs of the [n/2]-generalizer, and
finally to 2y distinct outputs of the n-generalizer. All that. remains is to join the inputs
for which z is 1 to other distinct outputs; this can be done through the superconcen-
trator. Thus

g(n)<=g([n/ZJ)+r(n, [n/Z])+2[n/2] +s(n)
<-- g([n/2J )+ 20n + O(log n)+ 2 [n/2J + 39n + O(log n)

<= g([n/21 )+60n + O(log n)

=< 120n + O((log n)2),
which completes the proof of (2).

The result of this note is satisfying from a theoretical point of view" information-
theoretic considerations suggest that since

log n log n!+ O(n)

one should have

d(n)=c(n)+O(n),

as has indeed been shown to be the case. The proof technique used in this note,
however, does not endow the result with any practical significance: 120n exceeds
6n log3 n until n exceeds 32o= 3,486,784,401.

Acknowledgment. The author is indebted to Clark Thompson for suggesting the
possibility of proving the existence of linear generalizers.
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ON THE LOOP SWITCHING ADDRESSING PROBLEM

ANDREW CHI-CHIH YAO

Abstract. The following graph addressing problem was studied by Graham and Pollak in devising a

routing scheme for Pierce’s loop switching network. Let G be a graph with n vertices. It is desired to assign
to each vertex vi an address in {0, 1, *}1, such that the Hamming distance between the addresses of any two
vertices agrees with their distance in G. Let N(G) be the minimum length for which an assignment is
possible. It was shown by Graham and Pollak that N(G)<= m6(n- 1), where me is the diameter of G. In the
present paper, we shall prove that N(G)<-_ 1.09(lg rn)n + 8n by an explicit construction. This shows in
particular that any graph has an addressing scheme of length O(n log n).

Key words, addressing scheme, binary tree, graph, Hamming distance, loop switching network

1. Introduction. An interesting routing scheme to Pierce’s loop switching
network [7] was proposed by Graham and Pollak [3], [4] (see also [1]). In this scheme,
Pierce’s network is represented by a graph where vertices stand for the loops, and
edges stand for the contacts between loops in the network. The scheme calls for
assigning a sequence of ternary symbols to each vertex such that the distances between
vertices in the graph are faithfully represented. The combinatorial problem is
described below; for a detailed discussion of the connection between Pierce’s network
and this combinatorial problem, as well as further information on the subject, see
references [1], [3], [4], [7].

Throughout our discussion, G (V, E) will be a connected graph with a set V of
vertices, and a set E of undirected edges. A path of length in G from a vertex vi to a
vertex v. is a sequence of vertices Vko, vkl,"’, v, such that Vo= vi, v, vi, and
{Vks_, Vks} E for s 1, 2,..., t. The distance dG(vi, vi) between vertices vi and v. is
the minimum length for which a path of length from vi to vi exists. The diameter of
G, denoted by mo, is the largest distance between any two vertices in G. That is,
mo max {do(vi, vi)lvi, vi V}.

Let Y_, be the ternary symbol set {0, 1, ,}. (The character "," is a "don’t-care"
symbol.) The Hamming distance H between elements in E is defined by H(1, 0)=
H(0, 1)--1, and H(a, b)=0 for all other pairs of a, b in E. For two sequences
a ala2 a and/3 blb2 bt in Y_,, where l>0, their Hamming distance is given
by

H(ce,/3) E H(ai, b,).

An addressing scheme for a graph G (V, E) with n vertices is an assignment of a
sequence c(vi) E to each vertex vi such that H(c(vi), c(v))= do(vi, v) for all vi, v in
V. The positive integer is called the length of the addressing scheme, and the
sequence c(vi) the address of vertex vi. It is desired to find addressing schemes with
small length. Let N(G) be the minimum for which an addressing scheme of length
exists for G. In [3], it was proved that an addressing scheme always exists (i.e.,
N(G)<oo), and furthermore, N(G)<-mo(n-1). We shall improve this bound by
explicitly constructing an addressing scheme. The main results are as follows: (We
shall use h to denote the constant ( lg 3 + 32- lg _)-1 1.09.)

* Received by the editors October 20, 1977, and in final revised form February 27, 1978. This research
was supported in part by the National Science Foundation under Grant MCS 72-03752 A03.

t Computer Science Department, Stanford University, Stanford, California 94305.
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THEOREM l. For a graph G with n vertices,

N(G) <- An lg n + 2n.

THEOREM 2. For a graph G with n vertices,

N(G) <- An(lg me)+ 8n.

Note: lg means logarithm to the base 2.

2. Definitions and preliminaries. Let G (V, E) be a (connected, undirected)
graph. A path Vko, Vkl,’’’, Vk, in G is simple if all the vertices 1)ks for 0_--<s_--< are
distinct, except possibly for Vko Vk,. A graph G’ (V’, E’) is called a subgraph of G if
V’g V and E’_E. A subgraph G’=(V’,E’) is said to be a tree in G if G’ is
connected and there is no simple path of length >0 in G’ from any vertex v V’ to
itself. A tree G’= (V’, E’) in G is a spanning tree for G if V’= V. For any subset of
vertices V’_ V, the diameter of V’, written diam (V’), is max {d(vi, vj) vi, vj V’}.
In particular, diam (V)- me. The distance d(v, V’) between a vertex v V and a
subset V’

_
V is defined as d(vi, V’)= min {d(vi, v) vi V’}.

We shall make use of binary trees in our design process. (See for example Knuth
[5] for basic definitions regarding binary trees.) Let T be a binary tree with n leaves.
Assume the nodes of T are numbered arbitrarily from 1 to 2n-1. The laode with
number k will be denoted by rk. We will also use the notation ] for a leaf numbered i,
and() for an internal node numbered j. For a node rk, let R(k) be the subset of leaves
in T which are descendants of rk. The size of R (k) is called the weight of rk, denoted
by w(k). For example, we have R(1)= {rs, r6, r9}, R(2)-- {re}, and w(1)= 3, w(2)= 1 in
Fig. 1. The external path length P(T) is defined by the following equation"

(1) P(T)= Y. w(k).
internal node rk

The quantity P(T) can alternatively be described as the sum of the distances from the
leaves to the root [5]. If r and r are respectively the leftson and the rightson of rk, we
shall write i=leftson(k), j=rightson(k); k father (i)= father (j); and j=
brother (i), i= brother (j). As a shorthand, we shall use k for father (k) and k’ for
brother (k). A binary tree T is said to be weight-balanced if for each internal node rk,

1/2w(k)<--_ w(leftson (k))<=w(k),
(2)

w(k) <- w(rightson (k))<-_w(k).
The following result is from [6, Thm. 2].

LEMMA 1 [Nievergelt and Wong]. If T is a weight-balanced binary tree with n

leaves, then the external path length of T satisfies
P(T)<= An lg n 1.09n lg n.

FIG.
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In a binary tree T, if a leaf precedes another leaf ] in post-order [5], we shall
say that is to the left of - (or ] is to the right of---), and write [.< (or
equivalently ] :>-]). We further extend the relation so that

]"< rk if ] <: -] for all descendants [] of rk,

:> rk if [:> for all descendants[ of rk.

Clearly, for any leaf [ and node rk, either [-]<: rk, []:> rk, or [] is a descendant of rk
and exactly one of the three relations holds. In Fig. 1, we have [-6-] <: [], [-6<: (), and

3. The construction o[ a length O(n lg n) addressing scheme.
3.1. The design tree. The key to obtaining an O( lg ) scheme is by using a

hierarchical design. A design tree M is a pair (T, f) where T is a binary tree with n
leaves, and f is a one-to-one mapping from the leaves of T to the vertices of G. For
notational convenience, we shall number the nodes of T in such a way that the leaves
receive numbers 1 to n and leaf [t is associated with vertex vi under f. The root of T
will be labeled with 2n 1; and the remaining internal nodes with n + 1 through 2n 2
(their actual numbering will be unimportant for M).

We now describe an addressing scheme Z(M) corresponding to a given design
tree M. Every address c(vi) in Z(M) will consist of 2n- 2 blocks of code, where the
kth block has length lk (to be defined later) and is conceptually associated with the
node rk of T. (Note that rk cannot be the root since k 2n- 1.) Thus we shall write for
lin,

(3) c(/)i)=clci2...c,2n_2 where

By definition, the Hamming distance between two addresses c(/)) and c(/)j) is equal to
the sum of the Hamming distances between corresponding blocks. That is,

2n--2

(4) H(c(v,), c(vj)) Y. H(C,k, Cik).

We shall design the code in such a way that in (4), only a few terms will contribute to
the sum, other terms being zero. For example, consider the design tree M shown in
Fig. 2. We shall in fact have

H(c(v3), c(v2)) H(c3,,o, c2,ao)+ H(c3,1,, c2,,,)+ H(c3,2, c2,2)

FIG. 2. A design tree M with a marked path.

and H(3,k, C2,k)--O for k {10,11, 2}. The trick to achieve H(c(/)3),c(/)2))--
dG(/)3,/)2) is as follows. Define S(k)= {f(r)l r e R(k)} i.e., S(k) is the set of vertices



518 ANDREW CHI-CHIH YAO

associated with the leaf descendants of rk. We shall require that,

H(c3,,o, c2,10) d6(v3, S(10)),

(6) H(c3.,o, c2,,0)+H(c3., c2,11) do(v3, S(11)),

H(c3,,o, C2,10)+H(c3,11, c2,11)+H(c3,2, C2,2)"--do(v3, S(2)).

We can view (6) in the following way. Starting at the lowest common ancestor
(lca) of F and ] (i.e., the common ancestor of -I and [ farthest from the root),
which is ri2, we move down the path rt0, rlt, to the leaf r2. Each node rk encountered
along the path, excluding the lca, will add a block of code which creates enough
Hamming distance to bring the total up to d(v3, S(k)). An equivalent form of (6) is

(7) H(c3,k, 2,k do(v3, S(k))- do(v3, S(k ))

for k 10, 1 l, 2, and k father (k). In general, we want to achieve the following. For
]<:[-, let node h0 be the lowest common ancestor of [] and [-], and
h0, h,. , h, ] be the path from node h0 to ], then

H(C,,k, cj,) d(v, S(k))-d(v,, S(k)) for k hi, h2,-’-, h,, and k =father (k);
(8)

H(ci., cj., 0 for all other k.

It is easy to verify that (8), if true for all [<:, will be sufficient to guarantee
that Z(M)={c(v)]l<-i <-n}, as given by (3), is an addressing scheme. That is,
do(v, v) H(c(vi), c(v)) for all i, ]. We now describe a construction of the ci’s that
satisfy (8).

Z(M): The addressing scheme induced by M. For each k, 1 -< k -_< 2n 2, let

(9) lk max [do(v,, S(k))-do(v,, S(k))].
l<=i<__n

The block elk for 1 -< n, has length lk and is given by

000 0 if 7] is a descendant of rk,

(10) Cik---- *** * if[] ">rk,

111" "1"**’’’* with 6=do(v,,S(k))-do(v,,S(k)),

t if< rk.

Finally, form Z(M)= {c(vi)l 1 -< --_< n} according to (3). The length of Z(M), denoted
by r(M), is

(11) T(M)= E I.
1--<k2n-2

To see that ZM_)is actually an addressing scheme, we need only show that,8)is
satisfied. For -]<J, we see from (10) that H(Cik, Cjk) 0 unless []< rk and IJl is a
descendant of rk in the latter case, H(Cik, Cjk) do(vi, S(k))- do(v,, S(k)). But this is
exactly as required by (8). Q.E.D.

3.2. Criteria for a good design tree. Let us find out what sort of design tree M
will generate a short addressing scheme. Notice that for any 1 -< _-< n, 1 _-< k -< 2n 2,
we have

(12) d(v,, S(k))- do(v,, S(k))_-<diamo (S(k)).

Inequality (12) is valid, since we can concatenate a path from v to the nearest point in
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S(k), with a path of length at most diam (S(k)), to reach a vertex in S(k). This tells us
that

(13) lk _<-- diam (S(k)).

An upper bound to r(M) is therefore

(14) r(M)-< diam (S(k)) 2 diam (S(k)),
l<-k__<2n-2 n+ <=k2n-1

every internal node being the father of two nodes. This upper bound will in general be
O(n2), as the subset S(k) may have diameter O(n) for many k. However, if we insist
on two conditions

(i) no two points in S(k) are far apart compared to its size IS(k)l, specifically,
diam (S(k)) <- IS(k)l; and

(if) the binary tree is weight-balanced,
then (14)would give

(15) r(M)<- 2 Y, IS(k)l 2. P(T)<=2An lg n
n+l<=k2n-1

by Lemma 1.
To achieve conditions (i) and (if), we use the following idea. Let us think of

M (T, f) as a tree built topdown by successively breaking V into smaller parts. From
this viewpoint, the tree in Fig. 2 is obtained by first dividing (at node 15)
{Vl, V2, V8} into {vs, V6, /-)1} and {/)4, V3, /-)7, /22, /)8}; each of the two resulting parts
are further divided into {vs}, {v6, Vl} at node 9, and {v4, v3}, {VT, v2, v8} at node 12,
respectively. This process is repeated until we have only the singleton sets {vi}.

We shall see that in building M in this fashion, it is possible to keep the points in
each part close together (condition (i)), and also make the two parts more or less equal
in size (condition (if))on each decomposition. We shall describe such a method next,
and then perform a finer analysis improving the bound given by (15).

3.3. Constructing M from a spanning tree. We shall construct a design tree M
with the properties (i) and (if) given in 3.2. Choose any spanning tree with edge set A
for the graph G. Let us create a new vertex Vo and a new edge {Vo, v}. We now define
a one-to-one mapping q between the edge set of the augmented spanning tree

A’-A U{{vo, Vl}} and the vertex set V (without Vo). The mapping q9 is obtained by
regarding (V U {Vo}, A’) as a rooted tree with root Vo, and mapping each edge onto its
"lower" end point. We shall then number the edges ei in A’ so that (e) v. An
example of this process is shown in Fig. 3.

4 2 D5

U3

(a) (b)

FIG. 3. (a) A spanning tree on V={Vl, v2, v3, 1)4, 1)5}, and (b) the labeling of its edges after aug-

mentation.

Our plan is to construct a binary tree Q by "suitably" splitting the edge set A’
into two disjoint subsets, and repeat the process until only one edge remains in each
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subset. Figure 4(a) shows the binary tree Q that may result from this process when
applied to the spanning tree in Fig. 3(b). Although the tree Q so constructed is not a
design tree on the vertex set, we can easily obtain such a design tree Mo from Q in a
natural way via the mapping q. We shall transform Q into Mo simply by identifying ei
with vi in the tree Q. The design tree Mo obtained from the Q in Fig. 4(a) is shown in
Fig. 4(b).

(a)

S(8)

{1) {VS} N
Fa. 4. (a) A binary tree O, and (b) its associated Mo.

We can now complete our task in two steps, (1) describe the topdown con-
struction of a Q for which Mo would satisfy conditions (i) and (ii), and (2) analyze the
addressing scheme induced by such an Mo.

(1) Constructing Q. A set of edges B in G is called a tree set if B is the edge set of
some tree in G. Two tree sets B1 and B2 is said to form a decomposition of the tree set
B if B f-)B2-- and B1 I,.J B2--B. Note that, in such a decomposition, there is a
unique vertex v, that is incident to both B and B2. For example, in Fig. 3(b),
B {e2, e4, e5} is a tree set. We can decompose B into {e2} and {e4, e5} with v being
the unique vertex v,.

A decomposition of B into B, and B2 is balanced if IBI Bi IBI for i= 1, 2.
The following lemma is implicit in [2].

LEMMA 2 [Chung and Graham]. Any tree set B with IBI->2 has a balanced
decomposition into two tree sets.

Let us now construct Q by breaking the augmented spanning tree A’ into parts
successively, using a balanced decomposition at each step. For example, the tree Q
shown in Figure 4(a) can be obtained this way from A’ in Figure 3(b). Once Q is
constructed, we transform it into a design tree Mo for the vertex set as described
previously. It remains to analyze the address length obtained from this tree Mo. To
avoid confusion, we use S(k) for the set of vertices associated with node rk in Mo, and
use B(k) to denote the tree set at the corresponding node in Q. Clearly, if S(k)--
{V/1 Vi2, l)it}, then B(k)= {eil, ei2,’’’, el,}.
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(2) Analysis. There are two simple properties of the design tree Mo. Firstly, Mo
is weight-balanced by construction. Secondly, at any node rk Of Mo, diamo (S(k))<=
[S(k)[. This is true since any two vertices in S(k) can be connected through at most
IS(k)[ edges in the tree set B(k). Thus, the two conditions (i) and (ii) in 3.2 are
satisfied, which implies -(M)-< 2An lg n. A stronger bound can be obtained, however,
by using the following lemma.

LEMMA 3. For each node rk in Mo, and 1 <- <- n,

(16) do(v,,S(k))-do(v,,S())<-l+lS(k’)l, wherek’=brother(k).

Proof. Let v- be a vertex in S(k) closest to v, i.e.,

(17) do(v,, v)= do(v,, S(k)).

If vieS(k), then dG(V, S(k))= do(v, S(k)), and (16) is true. So we can assume that
veS(k’).

Let v, be the unique vertex that is incident to both an edge in B(k’) and an edge
in B(k). This implies that

(18) do(vi, Vs)<-JB(k’)l IS(k’)I.
Now, let {v, v,} be an edge in B(k) incident with v (see Fig. 5).

(k)

B(k’)

FIG. 5

Then,

(19)

(20) do(v,, v,) <- do(v,, v)+ 1 <--do(v,, S(/)) + 1 + IS(k’)l.
Since {vs, vt} B(k), either Vs or vt must be in S(k). Therefore,

(21) do(v,, S(k))=<max {do(v,, vs), do(v,, vt)}.
Formula (16)follows from (19), (20), and (21). Q.E.D.

Lemma 3 implies that

lk max {do(vi, S(k))- do(vi, S(hS))} -< 1 +

Therefore

(22) r(Mo)

do(v,, Vs) <- do(v,, vi)+ do(vi, v)<-_ do(v,, S())+IS(k’)I,

, 1,, -< 2 (] + IS(k’)l) 2n 2 +
k2n-2 k"<2n-2 k

IS(k)l.
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Making use of the fact that Mo is weight-balanced and Lemma 1, we obtain after
simplification,

"r(M) <-_ An lg n + 2n.

This proves Theorem 1.

3.4. Proof of Theorem 2. When me, the diameter of G, is substantially smaller
than n-1, the addressing scheme we have constructed is better than the bound in
Theorem 1 indicates. The key observation is that lk is always no greater than
because lk _--<maxi d(vi, S(k)) <- me. In the analysis of z(Mo) Y. lk, we can thus use

me to bound Ik, instead of 1 + IS(k’)l, for some of the nodes
Let X be the set of nodes rk in Mo such that IS(k)l <= me, and Is()l > m. For

each rk X, let Jk ={rjlrj is descendant of rk, rj rk}. Let J=UrkxJk. In Fig. 6,
assume me 4, the set X then consists of the nodes marked by arrows, and J is the
set of shaded nodes. We shall use inequality lk ----< 1 + IS(k’)l for the nodes rk J, and use

lk _-< mG for the remaining nodes in deriving a bound for z(Mo).

FIG. 6. The set of shaded nodes is J.

The following facts will be used in the calculation.
FACT 1. Let q be the number of nodes not in J, then q < 6n/
Proof. IJI .rkex (2. [S(k)l- 2)= 2(xllS(k)[)- 2IX 2n 2IXI. Hence q

2n -l/l=2lxl-. Since IS(k)l>=1/2lS()[>=xmG for rk eX, we have IX[=n/(smo).
Thus, q < 21Xl-< 6n/rnG. Q.E.D.

FACT 2. Let rk GX, then Y.r, lS(j’)[<- AIS(k)l lg IS(k)l.
Proof. ,IS(]’)I=,,IS(])I. Fact 2 then follows from the fact that the

subtree of Mo rooted at rk is weight-balanced. O.E.D.
We can now prove the desired bound as follows"

z(Mo)= E Ik+ E lk -< E mG+ E
rk:J rkJ rk:J rkJ

(23) qmo + [J[ +
raeX rjeJk

6n
----<" me +2n +h E IS(k)[ lg IS(k)l

triG k

where we have used Facts 1 and 2 in the last step.
Equation (23) leads by using IS(k)l--< m, to

r(Mo) <--_ Sn +A(lg mG) E
rkX

8n + A (lg me)n.
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This completes the proof of Theorem 2. Q.E.D.

4. Remarks. In this paper we have given an algorithm which, for a graph with n
vertices, constructs an addressing scheme of length O(n log n). The algorithm can be
implemented straightforwardly, and has a O(tl 3) running time on a random access
machine.

Fan Chung [private communication] pointed out that the bounds in Theorems 1
and 2 can be improved to 1/2An lg n +2n and 1/2An(lg me)+3.52n respectively, by a
slight modification of the present constructions. However, we do not know of any
construction that is guaranteed to give an address of length less than O(n lg n). The
very attractive conjecture N(G)<-n 1 of Graham and Pollak [3], [4] thus still
remains an open problem.

Acknowledgment. I wish to thank Ronald L. Graham for introducing this prob-
lem to me in a stimulating conversation on this subject.
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THE UNSOLVABILITY OF THE EQUIVALENCE PROBLEM FOR
e-FREE NGSM’S WITH UNARY INPUT (OUTPUT) ALPHABET

AND APPLICATIONS*

OSCAR H. IBARRA

Abstract. It is shown that the equivalence problem is unsolvable for e-free nondeterministic general-
ized sequential machines whose input/output are restricted to unary/binary (binary/unary) alphabets. This
strengthens a known result of Griffiths. Applications to some decision problems concerning right-linear
grammars and directed graphs are also given.

Key words, unsolvability, equivalence problem, e-free nondeterministic generalized sequential
machines, right-linear grammars, directed graphs

1. Introduction. The equivalence problem for deterministic generalized
sequential machines is decidable. (In fact, the equivalence problem is solvable for
deterministic sequential transducers [1], [3].) It is also obvious that the equivalence
problem for complete nondeterministic generalized sequential machines is decidable.
(These are machines which output exactly one symbol per move.) However, the
equivalence problem for e-free (not having the null string e as output) nondeter-
ministic generalized sequential machines is unsolvable. This result was shown by
Griffiths [4] who also observed (as a corollary) that the equivalence problem for
c-finite languages [3] is undecidable. In [2], the result was used to show the
unsolvability of the equivalence problem for sentential forms of context-free gram-
mars.

In this paper, we strengthen Griffiths’s result. Specifically, we show that the
equivalence problem for e-free nondeterministic generalized sequential machines is
unsolvable even if we restrict the input/output to unary/binary (respectively,
binary/unary) alphabets. This result which is somewhat surprising clearly demon-
strates the complexity that nondeterminism can introduce even in very simple
computing devices. Applications to some decision problems concerning right-linear
grammars and directed graphs are briefly discussed.

The proofs are facilitated by considering a more general type of machine which
we now define.

DEFINITION. An e-free nondeterministic generalized sequential machine with
accepting states (EFNGSMA) over Z x A is a 6-tuple M (K, Z, A, 6, qo, F), where K,
E, and A are finite nonempty sets called the state set, input alphabet, and output
alphabet, respectively. 6 is a function from K x Y_. into the finite subsets of K x A+, qo
in K is the initial state, and F_ K is a set of accepting states.

If F K (i.e., all states are accepting), M is called simply an EFNGSM. In this
case, F( K) is not included in the specification.

The function 6 is extended to KxE+ as follows: For q in K, xl, x2 in Z+,
6(q, xlx2)= {(p, YY2)] for some p’, (p’, y) is in 6(q, x) and (p, y2) is in 6(p’, x2)}. For x
in Z+, let M(x)= {y[(p, y) is in (q0, x) for some p in F}. Let R(M)= {(x, y)lx in Z+, y
in M(x)}. A relation R Y_.+ A+ is called an EFNGSMA (respectively, EFNGSM)
relation over Z A if we can find an EFNGSMA (respectively, EFNGSM)M such that
R(M) R.
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A denotes the set of all nonnull finite-length strings of symbols in A.
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For convenience, we will sometimes represent an EFNGSMA M=
(K, Z, A, 6, qo, F) by a directed labeled graph where the nodes represent states and the
labeled edges represent transitions. If 6(q, a)contains (p, y), then there is an edge
from node q to node p with label a/y. For example, Fig. 1 shows an EFNGSMA,
where K={qo, ql, qz, q3}, 5".={a,b}, A={0, 1}, q0 is the initial state, and F=
{q0, q2, q3}.

all 1, a/101

b/O01, b/O0

a/1

FIG. 1. An EFNGSMA.

The equivalence problem for EFNGSMA (respectively, EFNGSM) relations over
Z x A is the problem of deciding for arbitrary EFNGSMA’s (respectively, EFNGSM’s)
M1 and m2 over Z x A whether R(M)= R(M2).

2. Unsolvability of the equivalence problem for EFNGSM relations over
{0, 1} {1}. First, we prove the following lemma.

LEMMA 1. The following statements are equivalent:
(a) The equivalence problem for EFNGSMA relations over 1 } is solvable for

any containing at least 2 elements.
(b) The equivalence problem for EFNGSM relations over {0, 1 } x { 1 } is solvable.
Proof. Clearly, (a) implies (b). To prove the converse, consider 2 EFNGSMA’s N

and N2 over ={al,’"" ,an}, n>=2 and A={1}. By encoding each aj (1-j-<n) as
string 10Jl"-/1 (of length n+2),2 we can construct 2 new EFNGSMA’s M1 and M2
such that R(M) {(10/’ 1 n-/, 110/21 n-/21 10/k 1 n-/k 1, 1 r(n+2))l(ajlai" a/k, 1 r) is in
R (N/)}, 1, 2. The construction of M from/V is straightforward. For example, if in
N there is a transition of the form shown in Fig. 2(a), then the "encoded" sequence of
transitions in Mi has the form shown in Fig. 2(b), where the intermediates states
numbered 0, 1,..., n are new.

aj/l

(a) Transition in Ni.

(b) Equivalent sequence of transitions in Mi (states O, 1,. , n are new).

FIG. 2

Clearly, R(M1) R(M2)if and only if R(N1) R(N.). Now let Mi =(K, {0, 1}, {1}, 6,,
qo, F), 1, 2. We shall construct 2 EFNGSM’s M nd M’ from M1 and M2.

If x is a string, x is the string x concatenated with itself j times.
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Assume that K1 K2 , and let qo, Pl," ",Pn+2 be new states not in K1LI K2.
Let M =(K1CI K2 CI {q0, pl,..., pn+z}, {0, 1}, {1}, 5, q0), where 6 is defined as follows:

(1) For each a in {0, 1}, let 6(qo, a)= 5(q0, a)LI 62(q02, a).
(2) For each q in K11.3 K2 and a in {0, 1}, let 6(q, a)= 6(q, a)l..J 6z(q, a).
(3) For l=<i<n+2, let 6(pi, 1)={(pi+l, 11)}.
(4) For each q in F1, also let (pl, 11) be in 6(q, 1).

M’ is defined like M except that (4) is replaced by:
(4’) For each q in F’2, also let (p, 11) be in 6(q, 1).
Clearly, R(M1) R(M2) implies R(M)= R(M’). Now suppose R(M)= R(M’).

Consider (x, y) in R(MI). Then (x 1"+2, Y 12,,+2) is in R(M) and, hence, also in R(M’).
But from the construction of M1, m2, M, and M’ it is clear that the only way (x 1 n+2,
yl 2"+2)) can be in R(M’) is for (x, y) to be in R(M2). Hence R(MI)R(M2). By
symmetry, R(M2)___ R(M1). Thus, R(M)= R(M’) if and only if R(M1) R(M2), and
if and only if R(Na)= R (N2). It follows that (b) implies (a). l-!

Notation. For any input alphabet Z, define the one-state EFNGSMA Ms ({q},
Z, {1}, 6, q, {q}), where 6(q, a)= {(q, 1 k)lk 1, 2, 3} for each a in Z. Clearly, R(M)
{(x, lr)lfor some xl, X2, X3 in Y_,*, x xlxzx3 F_, and r IXl[ - 21X21 + 31X31}. 3

THEOREM 1. It is recursively unsolvable to determine for arbitrary input alphabet
and EFNGSMA Mover Z { 1 whether R(M) R(M).

Proof. The proof involves a reduction of the halting problem for single-tape
Turing machines to the problem at hand. We show how we can construct for a given
single-tape Turing machine Z an EFNGSMA M over Z {1} (for some )such that
R(M)= R(Mv.) if and only if Z does not halt on an initially blank tape. Since the
halting problem for Turing machines is unsolvable [5], the result would follow. The
construction of M uses some ideas developed in the proof of Theorem 6.3 of [6].

Let Z be a single-tape Turing machine and K be its set of states. Assume without
loss of generality that Z’s tape alphabet consists of 0, 1 and b (for blank). We may also
assume that Z never overwrites a symbol by a blank. Hence, any configuration of Z
can be written as bxqyb, where x, y are strings of O’s and l’s, and q is in K. The initial
configuration is bqob, where we assume that qo, the initial state, is not a halting state.
The EFNGSMA M we shall construct has input alphabet Y_, {0, 1, b, #} LJ K, where
# is a new symbol.

Let Lz {xlx #ID1 #. # IDk #, k >- 2, IDa, , IDk are configurations of
Z, ID1 is the initial configuration, and IDk is a halting configuration}. Clearly, Lz is a
regular set and finite automata [7] N1 and N2 can be constructed to accept Lz and
Z/-Lz, respectively. The EFNGSMA M is constructed from 4 EFNGSMA’s
M,- , M4 such that R(M)= R(Ma)[3. 1,3 R(M4). Since EFNGSMA relations are
obviously effectively closed under union, we need only describe the construction of

(1) Let Rl={(x, lr)l(x, 1 r) in R(Mz), x in Z+-Lz}. (See notation above.)
Clearly, an EFNGSMA M1 can be constructed from Mz and finite automaton N2 so
that R(M1) R 1.

(2) m2 and M3 are shown in Fig. 3. It is easy to verify that R(M2)-- {(x, lr)l(X, 1 )
in R(Mz), r>Zlxl} and R(M3)={(x, lr)](X, 1 r) in R(Mz), r<Z[xl}.

(3) Now let R4 {(x, 1 r)l(X, 1 ) in R(Mz), x #IDa #" # IDk# in Lz and
either r 21x or r= 2lxl and for some -Oi, 1 <-i < k, IO,+, is not a proper successor of
IDa}. We shall construct an EFNGSMA M4 such that R(M4) R4. Since the finite

E* Y_,+ LJ {e}, where e denotes the null string (i.e., the string of 0 length). Ixl denotes the length of x.
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a/Ill

a/ll, a/lll

M2

1, a/ll

M3

FIG. 3. a/x represents several transitions, one for each a in Z.

automaton N (accepting Lz)can easily be built into the finite-state control of M4, we
may assume that the inputs to M4 come from the language Lz.

M4 may (nondeterministically) choose to simulate either M2 or M3, or perform
the following operations on input x #ID1 #. # IDi # IDi/I #.. # IDk # (see Fig.
4)." M4 moves right emitting 2 ones/move until it reaches the # immediately to the left
of some IDa, 1 <= < k (ID is chosen nondeterministically.)

square 12 square 1,

IP,r/ ID/.+,
Input x

Input segments

Lcngths of
input segments
Output move

Output segments

2 ones

3(2 3(3 3(4

12 /3 14
n

3(

15
2 ones

2Is

Then M4 moves right emitting 1 one/move until it reaches some number 12_-> 1
(chosen nondeterministically)of squares to the right of # and guesses that an "error"
occurs in position 12, 12 + 1, or 12 + 2 of ID and IDi+ 1. M4 uses its finite-state control to
remember these symbols of ID as it moves right (of square /2) emitting 2 ones/move
until it reaches the next #. Then M4 moves right (of #)emitting 3 ones/move. At
some point, M4 guesses that the number 14 (=> 1)of squares it has crossed from the last
# is equal to 12. It then moves right (of square /4) emitting 2 ones/move and checks

ID IDi-1, 020 diD/, 040 4t: IDi+x : *:IDk *:

represents a symbol
FIG. 4
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whether the symbols at positions/4, 14 + 1, and 14 + 2 are appropriate for the successor
of IDi if 12 14. If they are appropriate (respectively, not appropriate), M4 enters a
nonaccepting state (respectively, accepting state) and remains in this state emitting 2
ones/move as it advances to the right. The formal construction of M4 from our
description of its operation is straightforward but tedious and is therefore omitted.

Now suppose (x, 1 r) is in R(M4). Then for some 11, 12, 13, 14, 15,
ll + 12 + 13 + 14 + 15 (see Fig. 4) and r 211 + 12 + 2l + 3/4 + 215. Clearly, r 2Ix if and
only if 12-- 14. It follows that R(M4)= R4.

Let M be an EFNGSMA such that R(M)= R(M1)LJ" CJ R(M4). Then R(M)=
R(Ms) if and only if the Turing machine Z does not halt.

COROLLARY 1. There is no algorithm P to construct for a given EFNGSMA
M (K, Z, { 1 }, 6, qo, F) a state-minimal EFNGSMA M’= (K’, Z, { 1 }, 6’, q’o, F’) such
that R(M) R (M’).

Proof. Suppose an algorithm P exists. Let Z be a single-tape Turing machine and
M be the associated EFNGSMA constructed in the proof of Theorem 1. Using P,
construct a state-minimal machine M’ equivalent to M, i.e., R(M)= R(M’). If M’ has
only 1 state, then R(M)= R(M’)= R(Ms) if and only if M’ and Ms are identical, and
this is trivially decidable. If M’ has more than 1 state, then R(M)= R(M’) R(M.)
since Ms has only 1 state. Hence, we can decide if R(M)= R(M’)= R(Ms). But from
the proof of Theorem 1, R(M)= R(Mz) if and only if Z does not halt. The result
follows.

From the constructions in Lemma 1 and Theorem 1, we have one of our main
results:

THEOREM 2. Let Cl be the class ofEFNGSM’sM (K, {0, 1 }, 1}, 6, qo), where 6

satisfies the property that for each q in K and a in {0, 1}, (p, 1 k) in 6(q, a) implies
k 1, 2, 3. Then the equivalence problem for is unsolvable.

3. Unsolvability of the equivalence problem for EFNGSM relations over
{1} x {0, 1}. We begin by showing that the equivalence problem for EFNGSMA’s
over {1} A is unsolvable. We shall present two statements of this result. The first one
(Theorem 3) is stronger in that we can restrict one of the machines to be a fixed
one-state machine M. The second statement (Theorem 3’) is weaker but the proof is
a lot simpler. We give both proofs since they illustrate two different techniques.

Notation. For any output alphabet A, define the one-state EFNGSMA M {q},
{1}, A, 6, q, {q}), where 6(q, 1)={(q, y)[y in A+, lyl--2, 3, or 6}. Clearly, R(Mx)
{(1 r, y)[for some integers rl, r2, r3>=O, r=r+rz+r3#O, y in A+ and lyl=Zr+3r2 +

THEOREM 3. /t is recursively unsolvable to determine for arbitrary output alphabet
A and EFNGSMA Mover 1 A whether R(M) R (MA).

Proof. Let Z be a single-tape Turing machine with state set K and tape alphabet
consisting of 0, 1, and b. As before, we assume that the initial state q0 is not a halting
state and Z does not overwrite a symbol by a blank. Let A {0, 1, b, #} CI K. We shall
construct an EFNGSMA M over {1} A such that R(M)= R(MA) if and only if Z
does not halt on an initially blank tape.

Let h be a homomorphism on A* defined by h(a)= aaaaaa for each a in A. Let
Oz {h(x)[x = #ID #. # IDk #, k >= 2, IDa, , ID are configurations of Z, ID
is the initial configuration, and ID is a halting configuration}. (Thus, h(x) is just like x
except that each symbol is written 6 times.) We can construct finite automata N and
N2 to accept Oz and A+- Oz, respectively. Now define 4 EFNGSMA’s M,.-., M4
over x A as follows:
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(1) M, is such that R(M)= {(1 r, y)[(1 r, y)in R(Ma), y in A+- Qz}. Clearly, M1
can be constructed from MA and finite automaton N2.

(2) M2 and M3 are shown in Fig. 5. It is easy to check that R(M2) {(1 r, y)l(1 r, y)
in R(Ma), lyl>3r} and R(M3)= {(1 , y)l(1 , y)in e(Ma), [yl < 3r}.

I/abcdef

"ab ",1 1/abcde
l/ab l/ab

M2

1/ab, 1/abc

l/ab

M3

FIG. 5. a, b, c, d, e, f represent symbols in A. 1/ab, e.g., represents several transitions, one for each choice

of a and b in A.

(3) Let R4={(lr, y)I(l,y) in R(Ma), y=h(#ID,#’"#IDk#) in Qz and
either lYl # 3r or lyl 3r and for some IDi, 1 <-i< k, IDi+l is not a proper successor of
IDi}. We shall construct an EFNGSMA M4 such that R(M4)--R4. Since Qz is a
regular set, we may assume that in any successful computation of M4, the output string
generated is an Qz. M4 may (nondeterministically) choose to simulate either Me or
M3, or perform the following operations (see Fig. 6):

Given input 1 , M4 nondeterministically decomposes it into 5 segments, 1=
12111/212/313141 els, and generates the different output segments as follows" M4 generates
h(al) at the rate of 3 symbols/move while reading the first 211 ones. Then M4 scans
the next 12 ones and generates h(a.) at the rate of 6 symbols/move. The next output
segment h(a3) is generated at the rate of 3 symbols/move while h(te4) is generated at
the rate of 2 symbols/move. Finally, for the last 21s ones, M4 generates h(a5) at the
rate of 3 symbols/move. As in the proof of Theorem 1, M4 has to guess that an
"error" occurs after generating h(a2) and checks this condition after generating h(tx4).

Now r 211 + 12 + 213 + 3/4 + 215 and lyl 6(/ + t + 13 -[" 14 + ls). Clearly, [yl 3r if
and only if 6le 6/4. Hence, M4 can be constructed so that R(M4) R4. Construct an
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Output y

Output segments
Lengths of
output segments
Output/move

Input segrhents

h(lDi) h(lDi+ )

h( 1)

611
3 symbols

1211

h(:5)

61
3 symbols

121s

h(l) h( 4# ID1 IDi_ 1), h(2)h(3) h( IDi)
h(74)h() h( # IDi IDk #)
represents a symbol written 6 times

FIG. 6

EFNGSMA M such that R(M) R(M1) U. U R(M4). Then R(M) R(Ma) if and
only if Z does not halt, completing the proof. []

COROLLARY 2. There is no algorithm P to construct for a given EFNGSMA
M (K, { 1 }, A, 8, qo, F) a state-minimal EFNGSMA M’= (K’, 1 }, A, 6’, q’o, F’) such
that R(M) R(M’).

Proof. Similar to that of Corollary 1, this time using Theorem 3. V1
The next result is a weaker form of Theorem 3. The proof was suggested by the

referee.
THEOREM 3’. The equivalence problem for EFNGSMA’s over {1} x {0, 1} is

undecidable even if the machines are restricted so that the output/move is of the form a,
where a is in {0, 1} and k 1, 2, 3.

Proof. The proof relies on Theorem 2. Let N and N2 be EFNGSMA’s over
{0, 1} x {1} whose output/move is of the form 1, k 1, 2, 3. Construct from/V an
EFNGSMA M over { 1 x {0, 1} by making the substitutions indicated in Fig. 7.

Transition in Ni

Corresponding transition in M

FIG. 7

The accepting states of M are the same as those of Ni. Let h be the homomorphism
defined by" h(0)=03 and h(1)=13. Clearly, R(M)={(lr, h(x))I(x, 1 ) in R(N)}.
Hence, R(M1) R(M2) if and only if R(Na) R(N2). The result now follows from
Theorem 2. [3

THEOREM 4. Let (2 be the class ofEFNGSM’sM (K, { 1 }, {0, 1 }, 8, qo), where 8
satisfies the property that for each q in K, (p, y) in 6(q, 1) implies y =Ok or 1 k,
k 1, 2, 3. Then the equivalence problem for 2 is undecidable.

Proof. Let M =(Ki, {1}, {0, 1}, 6, q0, F), 1 1, 2, be the EFNGSMA’s con-
structed in the proof Theorem 3’. Assume that Ka f-)Kz- . Construct an EFNGSM
M=(K1U K2 U {qo, Pl, P2, P3}, {1}, {0, 1}, 8, qo), where qo, pl, P2, p3 are new states and
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6 is defined as follows:
(1) 6(qo, 1) 61(qol, 1) 1,3 62(q02, 1).
(2) For each q in K, tO K2, let 6(q, 1)= 61(q, 1)U 62(q, 1)U S, where S {(p,, 1)}

if q is in F and S , otherwise.
(3) 6(p,, 1)= {(P2, 0)}.
(4) 6(p2, 1) {(P3, 1)}.
Construct another EFNGSM M’ which is defined like M except that in (2),

S {(pl, 1)} if q is in F2 and S-, otherwise. It is straightforward to verify that
R(M)= R(M’) if and only R(M1) R(M2), and the result follows.

Remark. We have shown that the equivalence problem for EFNGSM’s with
unary input (respectively, output) alphabet is unsolvable. If we require both the input
and output to have unary alphabets then the equivalence problem becomes solvable.
In fact, it is decidable to determine for arbitrary (not necessarily e-free) NGSMA’s M1
and M2 satisfying R(Mi)_ w’ w’ z* z*,,, for some k, m -> 1, nonnull strings
Wl," ", wk, Zl,’’ ", z,,, whether R(Ma)= R(M2). This follows from the decidaaoility
of the equivalence problem for bounded context-free languages [3] and the obser-
vation that we can effectively construct linear grammars generating languages Li
{x # ynly in M/(x)} CI {#}, i= 1, 2, where # is a new symbol.4 (See the next section.)

4. Applications. Let M =(K, E, A, 6, qo) be an EFNGSM. Assume that K f)

(ELLA)= Q, and let c be a new symbol. We can construct a linear grammar [3]
G (N, E 1.3 A 0 {c}, P, S), where N K is the set of nonterminals, Y_, LI A (_J {c} is the set
of terminals, S qo, and P is the set of rewriting rules defined as follows: For each q in
K and a in , let q --> apyR be in P if 6(q, a) contains (p, y). Also let q ---> c be in P for
each q in K. Clearly, L(G)Z*cA* and L(G) has the following property which
characterizes c-finite languages [3]: (a) for every x in Z*, the set {ylxcy in L(G)} is
finite, and (b) for every y in A*, the set {xlxcy in L(G)} is finite. G is called a c-finite
grammar Two c-finite grammars Ga and G2 are equivalent if L(G)= L(G2).

From Theorems 2 and 4, we have the following refinement of Grifliths’s result
concerning c-finite languages.

THEORZM 5. The equivalence problem for c-finite grammars is unsolvable even if
the rules are restricted to be of the form A--> c or A--> aB1 k, where A and B are
nonterminals, a is in {0, 1}, and k 1, 2, 3. The result also holds for the case when the
rules are restricted to be of the form A --> c or A 1Ba , A, B, a and k have the same
meaning.

The next result concerns right-linear grammars (RLG’s). A RLG over Z is a
linear grammar G (N, Y_., P, S) where the rules are of the form A - xB or A --> x, A, B
in N and x in E/ [5]. (We shall only consider e-free languages.) If x is in (i.e., x is a
single symbol) then G is normalized. It is obvious that for every RLG G1 we can
construct a normalized RLG G2 equivalent to G1, i.e., L(GI)--L(G2).

Let y be in / and n _-> 1. If S @ y in an n-step derivation, then write S @ y. Call

2 RLG’s G (N, , Pi, Si), 1, 2, time-equivalent if for every y in E+ and n _-> 1,

S @ y if and only if $2 y. Time-equivalence implies equivalence, but the converse
G1 G2

is not true in general. Clearly, time-equivalence of normalized RLG’s is decidable.
Using Theorem 4, it is easy to show that this is not true for arbitrary RLG’s:

4 yR is the reverse of string y.
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THEOREM 6. The time-equivalence problem for RLG’s over ; {0, 1} is undeci-
dable even if the rules are restricted to be of the form A akB orA a k, where A and B
are nonterminals, a is in {0, 1}, and k 1, 2, 3.

Open Problem: A RLG G is nonterminal-minimal if it has the least number of
nonterminals among all RLG’s equivalent to G. Is there an algorithm to construct for
an arbitrary RLG G a nonterminal-minimal RLG G’ equivalent to G? (Note that if
we restrict our search to a normalized RLG G’, such an algorithm exists.)

As a final example, we shall look at a decision problem concerning directed
graphs. Let G (V, E, Vo, ], g) be a directed graph, where V is a finite nonempty set
of vertices, E is a finite nonempty set of ordered pairs (u, v) of distinct vertices called
edges, v0 is a distinguished vertex called the source vertex, and [ and g are functions
from E into {a, b} and {1, 2, 3}, respectively. Let R(G)= {(x, c)lx al an, n >- 1,
each ai in {a,b}, there exist edges (ul, u2), "’, (Un, Un/l) such that Ul=Vo,

f((ui, Ui+l)) ai for l<=i<--_n, and c=1 g((ui, Ui+I))}. Then, we have the following
theorem whose proof is straightforward using Theorem 2.

THEOREM 7. It is recursively unsolvable to determine for arbitrary directed graphs
G =(V, E, v0, 1, g), i= 1, 2, whether R(G)= R(G2).

Open Problem: Using the notation above, define MAX (G)= {(x, a)[a largest c
such that (x, c) is in R(G)}. Is there an algorithm to determine for arbitrary G1 and G2
whether MAX (G1)--MAX (G2)? (We can also define MIN (G) and ask the same
question.) Now, let SUM (G)={(x, a)]a is the sum of all c’s such that (x, c) is in
R(G)}. Clearly, we can construct for an arbitrary G a deterministic GSM Me such
that the relation defined by Me,, R(M)={(x, l)l(x, c) in SUM (G)}. Since the
equivalence problem for deterministic GSM’s is decidable, it follows that equivalence
of SUM (G)’s is decidable.

Acknowledgment. I would like to thank the referee for suggesting the proof of
Theorem 3’.
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A TECHNIQUE FOR EXTENDING RAPID EXACT-MATCH STRING
MATCHING TO ARRAYS OF MORE THAN ONE DIMENSION*

THEODORE P. BAKER?

Abstract. A class of algorithms is presented for very rapid on-line detection of occurrences of a fixed set
of pattern arrays as embedded subarrays in an input array. By reducing the array problem to a string
matching problem in a natural way, it is shown that efficient string matching algorithms may be applied to

arrays. This is illustrated by use of the string-matching algorithm of Knuth, Morris and Pratt [7]. Depending
on the data structure used for the preprocessed pattern graph, this algorithm may be made to run
"real-time" or merely in linear time. Extensions can be made to nonrectangular arrays, multiple arrays of
dissimilar sizes, and arrays of more than two dimensions. Possible applications are foreseen to problems
such as detection of edges in digital pictures and detection of local conditions in board games.

Key words, array matching, pattern matching, pattern recognition, algorithms, real-time, on-line,
subarray, analysis of algorithms, edge detection

Introduction. This pper deals with a conceptual framework that has been found
useful for handling the problem of exact-match subarray identification in more than
one dimension. (It does not claim to deal with any notion of "topological," "approx-
imate," or "fuzzy" pattern recognition.) In the basic two-dimensional array matching
problem, two rectangular arrays are given--a "pattern" and a "subject." The problem
is to find all occurrences of the pattern as embedded subarrays of the subject. Such a
problem occurs in some methods for detecting edges in digital pictures, where a set of
"edge detector" arrays are matched against the picture. It also occurs in the detection
of special local conditions in board games, such as "go."

More formally, if P is a u by v rectangular array of elements of alphabet E and S
is an m by n array of the same type, the problem is to find all pairs (i, j) such that

S[i- u + k, j-v + l] P[k, l]

for all k and such that 1 _-< k <_- u and 1 -<_ _-< v.
Karp, Miller and Rosenberg [6] have studied problems related to this. In par-

ticular, they present a method of finding all repeated occurrences of (all) square
subarrays of an n by n square subject array in time n 2" log n. Unfortunately, their
methods are of no direct benefit for the present problem, due to the overhead of
finding repeated occurrences of "unwanted" subarrays, and the restriction to square
arrays.

The rectangular array matching problem may be viewed as a restricted case of a
more general two-dimensional, or "two-level" string matching problem. Consider
each row P[i, 1]... P[i, v] of P as a pattern string. Identify each of these rows with a
character 5ei in some new alphabet, E’. In this way, the whole array P may be viewed
as a column of "row/characters," and recognizing P becomes a two-level string-
matching process: first, recognize the component rows; second, recognize the column
of these rows.

In this new form, it is possible to apply an extended version of the fast string-
matching algorithm due to Morris and Pratt [10], yielding a new rapid method
for recognition of matching subarrays. This method permits extension to arrays
of irregular shape, multiple pattern arrays, and arrays of arbitrarily many

* Received by the editors September 17, 1976, and in final revised form February 13, 1978.
]" Department of Computer Science, University of Iowa, Iowa City, Iowa 52242. This work was

supported in part by the National Science Foundation under Grant DCR75-06340.
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dimensions. Although these extensions exact a price in increased time, storage and
algorithmic complexity (primarily during the phase of pattern preprocessing), they are
useful and can be more efficient of time overall than more naive algorithms for the
same problems.

In this paper, we first present a general scheme for reducing the array problem to
string problems, then a more detailed algorithm for the two-dimensional rectangular
case, based on the Morris-Pratt string matching algorithm. Several possible extensions
and generalizations are then briefly presented, including multiple pattern arrays,
arrays of irregular shape, and "real-time" matching.

The basic array matching algorithm. When the pattern is a rectangular array, we
may rely upon a very convenient property. The component rows are all of the same
length. It follows that no two component rows may be proper suffixes, one of the
other. So, for each position in a row of the subject string, at most one distinct row of
the pattern may match in that location. (If two rows match at one location, they must
be identical.)

Based on this observation, we present the following general algorithm for two-
dimensional array matching.

ALGORITHM A. General array matching.
Input: u v pattern array P and m n subject array S.
Output: A list of all positions (i,/’) where/9 "matches" S.
Phase I./greprocess the pattern array/9.
1. Identify the distinct rows of P and assign each a unique index. Let the distinct

rows be X1,’",X,.
2. Represent P by the column p(1). p(u) in {1,..., q}*, such that

Phase II. Row matching. Compute the array

Y Y1,1

in ({0,..., q}*)*

defined by: Yi,i k if and only if Xk matches a suffix of Si,1 Si,j,

else Y/,i =0.

Note that Yi,i is uniquely defined, because of the assumption that no suffix relation-
ships exist between the X1,". ,Xq, and that this assumption must be valid if
X1,’’’, Xq are rows of a rectangular array.

Phase III. Column Matching. Compute the array

Z--Zl,1 Zl,n

in ({0, 1}*)*
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defined by: Zi,. 1 if and only if p(1). p(u) matches Y,. Y,,,j at position i, else
Zi, =0.

As an example of the functioning of this algorithm consider

A A A=X1 p(1)=l
A B A=X2 p(2)=2

P=
A B B=X3 p(3)=3
A A A=X1 p(4)= 1

A A A B A B B
A B A B A A A

S=A B B A A B A
A A A B A B B
A B A B A A A

0 0 1 0 2 0 3 0

0 0 2 0 2 0 1 1

Y=0 0 3 0 0 0 2 0

0 0 1 0 2 0 3 0

0 0 2 0 2 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Z=O 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

A
A
B
A
A

Two matches are found for the pattern P, at positions (4, 3) and (5, 7).
In effect, we have reduced the two-dimensional matching problem to a collection

of single-dimensional string matchings. Considerable work has been done in the
efficient matching of strings [1], [2], [3], [4], [7], [8], [9], [10], [11]. In particular, we
can apply a fairly simple extension of the Morris-Pratt algorithm [10], [6], [1].

The original M-P algorithm, stated in terms of a single pattern string o), consists
of two phases. In the first, a deterministic finite-state automaton that will accept the
set Y_.*.w is constructed. Constructing this automaton is simplified by allowing it to

perform state-transitions without advancing on the subject string ("e-transitions"). In
the second phase, this automaton is "run" on the subject string, a match being
reported whenever the automaton advances into an accepting state.

Due to the particular way in which the matching automaton is constructed, it can

be shown that for every e-transition performed there must have been a corresponding
non-e-transition earlier, on which the input was advanced. It thus follows that the
second phase of the M-P algorithm runs in time linear with respect to the length of the
subject string, independent of the pattern string length. By a clever use of the
partially-constructed matching automaton through a kind of "bootstrapping" process
in which the pattern string is matched against itself, the initial phase can also be done
in time linear with respect to the length of the pattern string.

In order to do multi-dimensional matching efficiently, it is necessary to extend the
M-P algorithm to perform simultaneous matching of multiple pattern strings against a

single subject string. This is given as an exercise in [1], and can be done in a fairly
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straightforward fashion. The state transition diagram for the resulting finite automa-
ton we call the "pattern graph." An example is shown in Fig. 1.

0

\ >0 -C;.

FG. 1. Pattern graph for set {FRED, FREDDY, FREE, REEL, REX}.

The pattern graph for strings P, , P, may be constructed in time (and storage)
bounded above by

i=1

where k is a constant that may depend on or log2 I1, according to the choice of
representation.

In addition to its linear running time, the M-P matching algorithm has another
positive feature. It is "on line" in the sense that each position of the input is scanned
only once, and that before the next character is read, all matches at the previous
position have been found. Taking advantage of this characteristic of the M-P
algorithm, our Algorithm A may be rewritten to perform Phases II and III in
"parallel" as follows"

ALGORITHM B. Array matching using M-P approach.
Input: m x n pattern array P and u x v subject array S.
Output" a list of all positions (i, j)where P "matches" S.
Phase I.
1. Identify the distinct rows of P and assign each a unique index. Let the distinct

rows be XI,’’’, X.
2. Represent P by the column p(1). p(u) in {1,..., q}*, such that

P X(

X(u.
Note that the distinct rows may be identified, in linear time, while the pattern graph PAT1 is being

built, by use of the partially built pattern graph.
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3. Build a pattern graph with starting node PAT1 for {X1,’’’, Xq}.
4. Build a pattern graph with starting node PAT2 for p(1).., p(u).
Phase II. Let P1 be the current state of the row-match in the current row.
Let P2[J] be the current state of the column-match in the Jth column.

for J := 1 to n do P2[J] := PAT2;
forI:= 1torn do
begin

P1 := PAT1;
for J:= 1ton do
begin

{advance P1 on character S[I, J] as in M-P algorithm}
C := S[I, J];
while C-son (P1)= do P1 := e-son (P1);
P1 := C-son (P1);
if P1 is final for X,
then begin

{advance P2[J] on character as in M-P algorithm}
while t-son (P2[J])= do P2[J] := e-son (P2[J]);
P2[J] := t-son (P2[J]);
if P2[J] is final for P
then report match at position (L J);
end

else P2[J] := PAT2;
end

end

The running time of this algorithm is linear in the size of S. Specifically, if S is an
m by n matrix and P is a u by v matrix over , with the nodes of the pattern graph
represented in memory as vectors of pointers, the running time of matching is
bounded above by

k rn n (log2 lY-I + log2 U)

bit operations, where k is a constant independent of P, S and Z. In this case, the
pattern building time (and hence storage space) will be bounded by

k2" L/ /.) (l :l + log2 u),

where k2 is another constant also independent of P, S and Z. Of course, for "reason-
able" values of u, and a register computer, log2 u will be less than the register size, so
this factor may be ignored in the running times. This is also true of I1. By use of
alternative data structures other time bounds may be obtained which might be
preferable in certain applications, especially when is large.

The extension of the Algorithms A and B to N-dimensional arrays is straight-
forward and is left as an exercise to the interested reader. Another straightforward
generalization is to a set of pattern arrays with common row length. (This is the case
for "edge detector" matrices in picture processing.) More difficult problems arise,
however, if we wish to allow multiple pattern arrays of dissimilar sizes, or of nonrec-
tangular shape. In these cases, more than one pattern row may match at a single
position in the subject array, due to possible suffix relations between the pattern rows.
If we wish to extend Algorithm A to handle these cases, we are forced to allow the
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arrays Y and Z to take on set values, representing the set of strings and arrays,
respectively, matching at each position of the subject, S. This is not conceptually
difficult, but it causes trouble with our implementation B, which uses the M-P
algorithm, since the M-P algorithm expects a single character at each position. To get
around this, the sets that may appear in Y and Z may be given unique "names," or
indices, in a fashion related to the manner in which the rows were given unique
indices. Y and Z may then be treated as arrays of characters over larger alphabets.
However, a new problem arises with the notion of "matching" which is probably best
illustrated by an example.

Example. Consider the generalized arrays P and O

A-X1 A
P= A A=X2, i= A

A A A=X3

A=X2
A=X2"

Notice that X1 is a suffix of X: and X3, and X: is a suffix of X3. The sets that may
occur in Y are , {1}, {1, 2}, {1, 2, 3}. Assign these indices

0,1,2,3.

The sets that may appear in Z are , {O}, {P, O}, with indices

0,1,2.

With the subject array S"

A A A A
A A A A
A A A A
A A A A

an extended Algorithm A would define Y and Z"

1 2 3 3

1 2 3 3
Y= Z=

1 2 3 3’
1 2 3 3

The problem is that all of the possible columns

1 2 1 2 3

2 2 3 3 3
3 3 3 3 3

in Y may "match" {P, Q} and that all of the columns

1 2 1 2 3
2 2 3 3 3

may "match" {Q}. If the M-P algorithm is to be used to calculate Z from Y, the set of
pattern columns must be expanded to include all of these. This may require a very
large column pattern (exponentially large with respect to the number of occurrences
of suffix-related rows appearing in the column patterns), and proportionally large
preprocessing time, but the running time of the matching phase remains linear. This
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extension has been implemented and tested on several examples in comparison runs
against the "naive" algorithm below.

NAIVE ALGORITHM for generalized array matching. Let p(1),..., p(S)be (irreg-
ular) pattern arrays and S be a subject array, where u is the number of rows in S and
v(i) is the length of the ith row.

fori:= ltoudo
for/" := 1 to v (i) do

fort:= ltoSdo
if "p<t) matches S at position (i, ])"
then "report match"

The results of the comparison showed that:
1) examples of nonrectangular arrays and multiple arrays of dissimilar sizes with

limited suffix relations between rows could be handled without memory size
problems;

2) for all examples including some which pressed memory limits, total pro-
cessing time, including pattern preprocessing, was less with the extended
version of Algorithm B than it was with the naive algorithm.

The examples tested were neither "random" nor specifically contrived to benefit one
algorithm over the other; they consisted of several occurrences of the patterns arbi-
trarily placed in a blank space, with some overlapping.

Real-time matching. One advantage of Algorithm B is that it is "on-line." That
is, the input is scanned only once, and, after scanning the character at any position of
the input, before scanning further, it is possible to answer yes or no to whether any of
the patterns match at that position. "Real-time" computability, introduced by Hart-
manis and Stearns [5], and recently applied to string matching by Galil [4], is a further
refinement of this notion. Intuitively, for an on-line algorithm to operate in real time,
the delay between reading the ith input and reporting the appropriate output should
be bounded above by a constant. It is possible to achieve this, on a register machine,
for array matching by a modification of our techniques, if it is assumed that the
number of distinct pattern rows is within the range of numbers that may be operated
on in one register-operation.

The Morris-Pratt algorithm is essentially real-time already, except for the e-
transitions of the finite state matching automaton. These may be eliminated in a
straightforward manner by specifying the correct state transition for all possible
inputs, for all states. This is not difficult, and in work with examples we found that
many of the "new" transitions added to replace the e-transitions are either to the
starting state or to one of its immediate successors. Recording these "informationless"
transitions on the state diagram, or pattern graph, is not necessary. The modifications
to the pattern graph for the pattern strings {FREDDY, FRED, FREE, REEL, REX}
to allow real-time matching are shown in Fig. 2.

The wiggly arrows are the only new arcs. As can be seen the new graph acttlally
has fewer arcs than the original one, which had e-arcs.

In making a state transition on symbol C, one follows the arc labeled C, if one
exists, from the current node. For any node that has no C-arc from it, one goes to the
starting node and advances along the C-arc from it, if one exists. If neither of these
approaches succeeds, then one remains at the starting node.

The real-time pattern graph may be constructed similarly to the pattern graph
mentioned earlier, working breadth-first in the pattern tree and using the "backward"
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O R >O E D >-O D Y______.(C)

>0 >0 0

FIG. 2. "Real time" pattern graph for set {FREDDY, FRED, FREE, REEL, REX}.

arcs from the preceding level. In some cases, as in the example given, fewer arcs (and
hence less storage) are needed for the real-time graph than for the graph with e-arcs,
but it is possible that the number of arcs may be greater by nearly a factor of (at
least in certain pathological cases). However, where real-time operation might be
advantageous, Algorithm B may be trivially altered to make use of this alternate form
of pattern graph, thereby operating in "real-time."

Conclusions. The algorithms presented in this paper appear practical, at least for
cases such as rectangular pattern arrays of identical size, and other cases where
occurrences of suffix-related component rows are not numerous enough to cause
difficulty. Unfortunately, the range of problems to which they apply appears limited to
discrete exact-match situations.

Another approach to string matching, proposed by Weiner [11] and further
developed by McCreight [9], is to preprocess the subject string (as opposed to
preprocessing the pattern string), permitting the matching time to be reduced to linear
in the length of the pattern string. This is particularly useful when the subject is likely
to remain fixed for a long series of matches, but the patterns are not known in
advance. It may be possible to extend this approach to arrays. Straightforward
application, however, would appear to require that the set of permissible rows be
strictly limited and fixed at the time the subject-array is preprocessed.

Note in revision. Since first writing of this paper, Boyer and Moore have pub-
lished another interesting string matching algorithm [2], and improvements have been
made on the original M-P algorithm [3]. Working from Algorithm A, it appears that
these new techniques may be applied to improve on Algorithm B presented here.
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